summaryrefslogtreecommitdiffstats
path: root/runtime/stack.h
diff options
context:
space:
mode:
authorBrian Carlstrom <bdc@google.com>2013-07-12 13:46:57 -0700
committerBrian Carlstrom <bdc@google.com>2013-07-12 17:49:01 -0700
commit7940e44f4517de5e2634a7e07d58d0fb26160513 (patch)
treeac90242d96229a6942f6e24ab137bc1f8f2e0025 /runtime/stack.h
parent5cd9e3b122f276f610980cbaf0d2ad6ed4cd9088 (diff)
downloadart-7940e44f4517de5e2634a7e07d58d0fb26160513.zip
art-7940e44f4517de5e2634a7e07d58d0fb26160513.tar.gz
art-7940e44f4517de5e2634a7e07d58d0fb26160513.tar.bz2
Create separate Android.mk for main build targets
The runtime, compiler, dex2oat, and oatdump now are in seperate trees to prevent dependency creep. They can now be individually built without rebuilding the rest of the art projects. dalvikvm and jdwpspy were already this way. Builds in the art directory should behave as before, building everything including tests. Change-Id: Ic6b1151e5ed0f823c3dd301afd2b13eb2d8feb81
Diffstat (limited to 'runtime/stack.h')
-rw-r--r--runtime/stack.h647
1 files changed, 647 insertions, 0 deletions
diff --git a/runtime/stack.h b/runtime/stack.h
new file mode 100644
index 0000000..fbfacb1
--- /dev/null
+++ b/runtime/stack.h
@@ -0,0 +1,647 @@
+/*
+ * Copyright (C) 2011 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef ART_SRC_STACK_H_
+#define ART_SRC_STACK_H_
+
+#include "dex_file.h"
+#include "instrumentation.h"
+#include "base/macros.h"
+#include "oat/runtime/context.h"
+
+#include <stdint.h>
+#include <string>
+
+namespace art {
+
+namespace mirror {
+class AbstractMethod;
+class Object;
+} // namespace mirror
+
+class Context;
+class ShadowFrame;
+class StackIndirectReferenceTable;
+class ScopedObjectAccess;
+class Thread;
+
+// The kind of vreg being accessed in calls to Set/GetVReg.
+enum VRegKind {
+ kReferenceVReg,
+ kIntVReg,
+ kFloatVReg,
+ kLongLoVReg,
+ kLongHiVReg,
+ kDoubleLoVReg,
+ kDoubleHiVReg,
+ kConstant,
+ kImpreciseConstant,
+ kUndefined,
+};
+
+// ShadowFrame has 3 possible layouts:
+// - portable - a unified array of VRegs and references. Precise references need GC maps.
+// - interpreter - separate VRegs and reference arrays. References are in the reference array.
+// - JNI - just VRegs, but where every VReg holds a reference.
+class ShadowFrame {
+ public:
+ // Compute size of ShadowFrame in bytes.
+ static size_t ComputeSize(uint32_t num_vregs) {
+ return sizeof(ShadowFrame) + (sizeof(uint32_t) * num_vregs) +
+ (sizeof(mirror::Object*) * num_vregs);
+ }
+
+ // Create ShadowFrame in heap for deoptimization.
+ static ShadowFrame* Create(uint32_t num_vregs, ShadowFrame* link,
+ mirror::AbstractMethod* method, uint32_t dex_pc) {
+ uint8_t* memory = new uint8_t[ComputeSize(num_vregs)];
+ ShadowFrame* sf = new (memory) ShadowFrame(num_vregs, link, method, dex_pc, true);
+ return sf;
+ }
+
+ // Create ShadowFrame for interpreter using provided memory.
+ static ShadowFrame* Create(uint32_t num_vregs, ShadowFrame* link,
+ mirror::AbstractMethod* method, uint32_t dex_pc, void* memory) {
+ ShadowFrame* sf = new (memory) ShadowFrame(num_vregs, link, method, dex_pc, true);
+ return sf;
+ }
+ ~ShadowFrame() {}
+
+ bool HasReferenceArray() const {
+#if defined(ART_USE_PORTABLE_COMPILER)
+ return (number_of_vregs_ & kHasReferenceArray) != 0;
+#else
+ return true;
+#endif
+ }
+
+ uint32_t NumberOfVRegs() const {
+#if defined(ART_USE_PORTABLE_COMPILER)
+ return number_of_vregs_ & ~kHasReferenceArray;
+#else
+ return number_of_vregs_;
+#endif
+ }
+
+ void SetNumberOfVRegs(uint32_t number_of_vregs) {
+#if defined(ART_USE_PORTABLE_COMPILER)
+ number_of_vregs_ = number_of_vregs | (number_of_vregs_ & kHasReferenceArray);
+#else
+ UNUSED(number_of_vregs);
+ UNIMPLEMENTED(FATAL) << "Should only be called when portable is enabled";
+#endif
+ }
+
+ uint32_t GetDexPC() const {
+ return dex_pc_;
+ }
+
+ void SetDexPC(uint32_t dex_pc) {
+ dex_pc_ = dex_pc;
+ }
+
+ ShadowFrame* GetLink() const {
+ return link_;
+ }
+
+ void SetLink(ShadowFrame* frame) {
+ DCHECK_NE(this, frame);
+ link_ = frame;
+ }
+
+ int32_t GetVReg(size_t i) const {
+ DCHECK_LT(i, NumberOfVRegs());
+ const uint32_t* vreg = &vregs_[i];
+ return *reinterpret_cast<const int32_t*>(vreg);
+ }
+
+ float GetVRegFloat(size_t i) const {
+ DCHECK_LT(i, NumberOfVRegs());
+ // NOTE: Strict-aliasing?
+ const uint32_t* vreg = &vregs_[i];
+ return *reinterpret_cast<const float*>(vreg);
+ }
+
+ int64_t GetVRegLong(size_t i) const {
+ DCHECK_LT(i, NumberOfVRegs());
+ const uint32_t* vreg = &vregs_[i];
+ return *reinterpret_cast<const int64_t*>(vreg);
+ }
+
+ double GetVRegDouble(size_t i) const {
+ DCHECK_LT(i, NumberOfVRegs());
+ const uint32_t* vreg = &vregs_[i];
+ return *reinterpret_cast<const double*>(vreg);
+ }
+
+ mirror::Object* GetVRegReference(size_t i) const {
+ DCHECK_LT(i, NumberOfVRegs());
+ if (HasReferenceArray()) {
+ return References()[i];
+ } else {
+ const uint32_t* vreg = &vregs_[i];
+ return *reinterpret_cast<mirror::Object* const*>(vreg);
+ }
+ }
+
+ // Get view of vregs as range of consecutive arguments starting at i.
+ uint32_t* GetVRegArgs(size_t i) {
+ return &vregs_[i];
+ }
+
+ void SetVReg(size_t i, int32_t val) {
+ DCHECK_LT(i, NumberOfVRegs());
+ uint32_t* vreg = &vregs_[i];
+ *reinterpret_cast<int32_t*>(vreg) = val;
+ }
+
+ void SetVRegFloat(size_t i, float val) {
+ DCHECK_LT(i, NumberOfVRegs());
+ uint32_t* vreg = &vregs_[i];
+ *reinterpret_cast<float*>(vreg) = val;
+ }
+
+ void SetVRegLong(size_t i, int64_t val) {
+ DCHECK_LT(i, NumberOfVRegs());
+ uint32_t* vreg = &vregs_[i];
+ *reinterpret_cast<int64_t*>(vreg) = val;
+ }
+
+ void SetVRegDouble(size_t i, double val) {
+ DCHECK_LT(i, NumberOfVRegs());
+ uint32_t* vreg = &vregs_[i];
+ *reinterpret_cast<double*>(vreg) = val;
+ }
+
+ void SetVRegReference(size_t i, mirror::Object* val) {
+ DCHECK_LT(i, NumberOfVRegs());
+ uint32_t* vreg = &vregs_[i];
+ *reinterpret_cast<mirror::Object**>(vreg) = val;
+ if (HasReferenceArray()) {
+ References()[i] = val;
+ }
+ }
+
+ mirror::AbstractMethod* GetMethod() const {
+ DCHECK_NE(method_, static_cast<void*>(NULL));
+ return method_;
+ }
+
+ mirror::Object* GetThisObject() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
+
+ mirror::Object* GetThisObject(uint16_t num_ins) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
+
+ ThrowLocation GetCurrentLocationForThrow() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
+
+ void SetMethod(mirror::AbstractMethod* method) {
+#if defined(ART_USE_PORTABLE_COMPILER)
+ DCHECK_NE(method, static_cast<void*>(NULL));
+ method_ = method;
+#else
+ UNUSED(method);
+ UNIMPLEMENTED(FATAL) << "Should only be called when portable is enabled";
+#endif
+ }
+
+ bool Contains(mirror::Object** shadow_frame_entry_obj) const {
+ if (HasReferenceArray()) {
+ return ((&References()[0] <= shadow_frame_entry_obj) &&
+ (shadow_frame_entry_obj <= (&References()[NumberOfVRegs() - 1])));
+ } else {
+ uint32_t* shadow_frame_entry = reinterpret_cast<uint32_t*>(shadow_frame_entry_obj);
+ return ((&vregs_[0] <= shadow_frame_entry) &&
+ (shadow_frame_entry <= (&vregs_[NumberOfVRegs() - 1])));
+ }
+ }
+
+ static size_t LinkOffset() {
+ return OFFSETOF_MEMBER(ShadowFrame, link_);
+ }
+
+ static size_t MethodOffset() {
+ return OFFSETOF_MEMBER(ShadowFrame, method_);
+ }
+
+ static size_t DexPCOffset() {
+ return OFFSETOF_MEMBER(ShadowFrame, dex_pc_);
+ }
+
+ static size_t NumberOfVRegsOffset() {
+ return OFFSETOF_MEMBER(ShadowFrame, number_of_vregs_);
+ }
+
+ static size_t VRegsOffset() {
+ return OFFSETOF_MEMBER(ShadowFrame, vregs_);
+ }
+
+ private:
+ ShadowFrame(uint32_t num_vregs, ShadowFrame* link, mirror::AbstractMethod* method,
+ uint32_t dex_pc, bool has_reference_array)
+ : number_of_vregs_(num_vregs), link_(link), method_(method), dex_pc_(dex_pc) {
+ if (has_reference_array) {
+#if defined(ART_USE_PORTABLE_COMPILER)
+ CHECK_LT(num_vregs, static_cast<uint32_t>(kHasReferenceArray));
+ number_of_vregs_ |= kHasReferenceArray;
+#endif
+ memset(vregs_, 0, num_vregs * (sizeof(uint32_t) + sizeof(mirror::Object*)));
+ } else {
+ memset(vregs_, 0, num_vregs * sizeof(uint32_t));
+ }
+ }
+
+ mirror::Object* const* References() const {
+ DCHECK(HasReferenceArray());
+ const uint32_t* vreg_end = &vregs_[NumberOfVRegs()];
+ return reinterpret_cast<mirror::Object* const*>(vreg_end);
+ }
+
+ mirror::Object** References() {
+ return const_cast<mirror::Object**>(const_cast<const ShadowFrame*>(this)->References());
+ }
+
+#if defined(ART_USE_PORTABLE_COMPILER)
+ enum ShadowFrameFlag {
+ kHasReferenceArray = 1ul << 31
+ };
+ // TODO: make const in the portable case.
+ uint32_t number_of_vregs_;
+#else
+ const uint32_t number_of_vregs_;
+#endif
+ // Link to previous shadow frame or NULL.
+ ShadowFrame* link_;
+#if defined(ART_USE_PORTABLE_COMPILER)
+ // TODO: make const in the portable case.
+ mirror::AbstractMethod* method_;
+#else
+ mirror::AbstractMethod* const method_;
+#endif
+ uint32_t dex_pc_;
+ uint32_t vregs_[0];
+
+ DISALLOW_IMPLICIT_CONSTRUCTORS(ShadowFrame);
+};
+
+// The managed stack is used to record fragments of managed code stacks. Managed code stacks
+// may either be shadow frames or lists of frames using fixed frame sizes. Transition records are
+// necessary for transitions between code using different frame layouts and transitions into native
+// code.
+class PACKED(4) ManagedStack {
+ public:
+ ManagedStack()
+ : link_(NULL), top_shadow_frame_(NULL), top_quick_frame_(NULL), top_quick_frame_pc_(0) {}
+
+ void PushManagedStackFragment(ManagedStack* fragment) {
+ // Copy this top fragment into given fragment.
+ memcpy(fragment, this, sizeof(ManagedStack));
+ // Clear this fragment, which has become the top.
+ memset(this, 0, sizeof(ManagedStack));
+ // Link our top fragment onto the given fragment.
+ link_ = fragment;
+ }
+
+ void PopManagedStackFragment(const ManagedStack& fragment) {
+ DCHECK(&fragment == link_);
+ // Copy this given fragment back to the top.
+ memcpy(this, &fragment, sizeof(ManagedStack));
+ }
+
+ ManagedStack* GetLink() const {
+ return link_;
+ }
+
+ mirror::AbstractMethod** GetTopQuickFrame() const {
+ return top_quick_frame_;
+ }
+
+ void SetTopQuickFrame(mirror::AbstractMethod** top) {
+ DCHECK(top_shadow_frame_ == NULL);
+ top_quick_frame_ = top;
+ }
+
+ uintptr_t GetTopQuickFramePc() const {
+ return top_quick_frame_pc_;
+ }
+
+ void SetTopQuickFramePc(uintptr_t pc) {
+ DCHECK(top_shadow_frame_ == NULL);
+ top_quick_frame_pc_ = pc;
+ }
+
+ static size_t TopQuickFrameOffset() {
+ return OFFSETOF_MEMBER(ManagedStack, top_quick_frame_);
+ }
+
+ static size_t TopQuickFramePcOffset() {
+ return OFFSETOF_MEMBER(ManagedStack, top_quick_frame_pc_);
+ }
+
+ ShadowFrame* PushShadowFrame(ShadowFrame* new_top_frame) {
+ DCHECK(top_quick_frame_ == NULL);
+ ShadowFrame* old_frame = top_shadow_frame_;
+ top_shadow_frame_ = new_top_frame;
+ new_top_frame->SetLink(old_frame);
+ return old_frame;
+ }
+
+ ShadowFrame* PopShadowFrame() {
+ DCHECK(top_quick_frame_ == NULL);
+ CHECK(top_shadow_frame_ != NULL);
+ ShadowFrame* frame = top_shadow_frame_;
+ top_shadow_frame_ = frame->GetLink();
+ return frame;
+ }
+
+ ShadowFrame* GetTopShadowFrame() const {
+ return top_shadow_frame_;
+ }
+
+ void SetTopShadowFrame(ShadowFrame* top) {
+ DCHECK(top_quick_frame_ == NULL);
+ top_shadow_frame_ = top;
+ }
+
+ static size_t TopShadowFrameOffset() {
+ return OFFSETOF_MEMBER(ManagedStack, top_shadow_frame_);
+ }
+
+ size_t NumJniShadowFrameReferences() const;
+
+ bool ShadowFramesContain(mirror::Object** shadow_frame_entry) const;
+
+ private:
+ ManagedStack* link_;
+ ShadowFrame* top_shadow_frame_;
+ mirror::AbstractMethod** top_quick_frame_;
+ uintptr_t top_quick_frame_pc_;
+};
+
+class StackVisitor {
+ protected:
+ StackVisitor(Thread* thread, Context* context) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
+
+ public:
+ virtual ~StackVisitor() {}
+
+ // Return 'true' if we should continue to visit more frames, 'false' to stop.
+ virtual bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) = 0;
+
+ void WalkStack(bool include_transitions = false)
+ SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
+
+ mirror::AbstractMethod* GetMethod() const {
+ if (cur_shadow_frame_ != NULL) {
+ return cur_shadow_frame_->GetMethod();
+ } else if (cur_quick_frame_ != NULL) {
+ return *cur_quick_frame_;
+ } else {
+ return NULL;
+ }
+ }
+
+ bool IsShadowFrame() const {
+ return cur_shadow_frame_ != NULL;
+ }
+
+ uint32_t GetDexPc() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
+
+ mirror::Object* GetThisObject() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
+
+ size_t GetNativePcOffset() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
+
+ uintptr_t* CalleeSaveAddress(int num, size_t frame_size) const {
+ // Callee saves are held at the top of the frame
+ DCHECK(GetMethod() != NULL);
+ byte* save_addr =
+ reinterpret_cast<byte*>(cur_quick_frame_) + frame_size - ((num + 1) * kPointerSize);
+#if defined(__i386__)
+ save_addr -= kPointerSize; // account for return address
+#endif
+ return reinterpret_cast<uintptr_t*>(save_addr);
+ }
+
+ // Returns the height of the stack in the managed stack frames, including transitions.
+ size_t GetFrameHeight() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
+ return GetNumFrames() - cur_depth_ - 1;
+ }
+
+ // Returns a frame ID for JDWP use, starting from 1.
+ size_t GetFrameId() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
+ return GetFrameHeight() + 1;
+ }
+
+ size_t GetNumFrames() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
+ if (num_frames_ == 0) {
+ num_frames_ = ComputeNumFrames(thread_);
+ }
+ return num_frames_;
+ }
+
+ uint32_t GetVReg(mirror::AbstractMethod* m, uint16_t vreg, VRegKind kind) const
+ SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
+
+ void SetVReg(mirror::AbstractMethod* m, uint16_t vreg, uint32_t new_value, VRegKind kind)
+ SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
+
+ uintptr_t GetGPR(uint32_t reg) const;
+ void SetGPR(uint32_t reg, uintptr_t value);
+
+ uint32_t GetVReg(mirror::AbstractMethod** cur_quick_frame, const DexFile::CodeItem* code_item,
+ uint32_t core_spills, uint32_t fp_spills, size_t frame_size,
+ uint16_t vreg) const {
+ int offset = GetVRegOffset(code_item, core_spills, fp_spills, frame_size, vreg);
+ DCHECK_EQ(cur_quick_frame, GetCurrentQuickFrame());
+ byte* vreg_addr = reinterpret_cast<byte*>(cur_quick_frame) + offset;
+ return *reinterpret_cast<uint32_t*>(vreg_addr);
+ }
+
+ uintptr_t GetReturnPc() const;
+
+ void SetReturnPc(uintptr_t new_ret_pc);
+
+ /*
+ * Return sp-relative offset for a Dalvik virtual register, compiler
+ * spill or Method* in bytes using Method*.
+ * Note that (reg >= 0) refers to a Dalvik register, (reg == -2)
+ * denotes Method* and (reg <= -3) denotes a compiler temp.
+ *
+ * +------------------------+
+ * | IN[ins-1] | {Note: resides in caller's frame}
+ * | . |
+ * | IN[0] |
+ * | caller's Method* |
+ * +========================+ {Note: start of callee's frame}
+ * | core callee-save spill | {variable sized}
+ * +------------------------+
+ * | fp callee-save spill |
+ * +------------------------+
+ * | filler word | {For compatibility, if V[locals-1] used as wide
+ * +------------------------+
+ * | V[locals-1] |
+ * | V[locals-2] |
+ * | . |
+ * | . | ... (reg == 2)
+ * | V[1] | ... (reg == 1)
+ * | V[0] | ... (reg == 0) <---- "locals_start"
+ * +------------------------+
+ * | Compiler temps | ... (reg == -2)
+ * | | ... (reg == -3)
+ * | | ... (reg == -4)
+ * +------------------------+
+ * | stack alignment padding| {0 to (kStackAlignWords-1) of padding}
+ * +------------------------+
+ * | OUT[outs-1] |
+ * | OUT[outs-2] |
+ * | . |
+ * | OUT[0] |
+ * | curMethod* | ... (reg == -1) <<== sp, 16-byte aligned
+ * +========================+
+ */
+ static int GetVRegOffset(const DexFile::CodeItem* code_item,
+ uint32_t core_spills, uint32_t fp_spills,
+ size_t frame_size, int reg) {
+ DCHECK_EQ(frame_size & (kStackAlignment - 1), 0U);
+ int num_spills = __builtin_popcount(core_spills) + __builtin_popcount(fp_spills) + 1; // Filler.
+ int num_ins = code_item->ins_size_;
+ int num_regs = code_item->registers_size_ - num_ins;
+ int locals_start = frame_size - ((num_spills + num_regs) * sizeof(uint32_t));
+ if (reg == -2) {
+ return 0; // Method*
+ } else if (reg <= -3) {
+ return locals_start - ((reg + 1) * sizeof(uint32_t)); // Compiler temp.
+ } else if (reg < num_regs) {
+ return locals_start + (reg * sizeof(uint32_t)); // Dalvik local reg.
+ } else {
+ return frame_size + ((reg - num_regs) * sizeof(uint32_t)) + sizeof(uint32_t); // Dalvik in.
+ }
+ }
+
+ uintptr_t GetCurrentQuickFramePc() const {
+ return cur_quick_frame_pc_;
+ }
+
+ mirror::AbstractMethod** GetCurrentQuickFrame() const {
+ return cur_quick_frame_;
+ }
+
+ ShadowFrame* GetCurrentShadowFrame() const {
+ return cur_shadow_frame_;
+ }
+
+ StackIndirectReferenceTable* GetCurrentSirt() const {
+ mirror::AbstractMethod** sp = GetCurrentQuickFrame();
+ ++sp; // Skip Method*; SIRT comes next;
+ return reinterpret_cast<StackIndirectReferenceTable*>(sp);
+ }
+
+ std::string DescribeLocation() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
+
+ static size_t ComputeNumFrames(Thread* thread) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
+
+ static void DescribeStack(Thread* thread) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
+
+ private:
+
+ instrumentation::InstrumentationStackFrame GetInstrumentationStackFrame(uint32_t depth) const;
+
+ void SanityCheckFrame() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
+
+ Thread* const thread_;
+ ShadowFrame* cur_shadow_frame_;
+ mirror::AbstractMethod** cur_quick_frame_;
+ uintptr_t cur_quick_frame_pc_;
+ // Lazily computed, number of frames in the stack.
+ size_t num_frames_;
+ // Depth of the frame we're currently at.
+ size_t cur_depth_;
+ protected:
+ Context* const context_;
+};
+
+class VmapTable {
+ public:
+ explicit VmapTable(const uint16_t* table) : table_(table) {
+ }
+
+ uint16_t operator[](size_t i) const {
+ return table_[i + 1];
+ }
+
+ size_t size() const {
+ return table_[0];
+ }
+
+ // Is the dex register 'vreg' in the context or on the stack? Should not be called when the
+ // 'kind' is unknown or constant.
+ bool IsInContext(size_t vreg, uint32_t& vmap_offset, VRegKind kind) const {
+ DCHECK(kind == kReferenceVReg || kind == kIntVReg || kind == kFloatVReg ||
+ kind == kLongLoVReg || kind == kLongHiVReg || kind == kDoubleLoVReg ||
+ kind == kDoubleHiVReg || kind == kImpreciseConstant);
+ vmap_offset = 0xEBAD0FF5;
+ // TODO: take advantage of the registers being ordered
+ // TODO: we treat kImpreciseConstant as an integer below, need to ensure that such values
+ // are never promoted to floating point registers.
+ bool is_float = (kind == kFloatVReg) || (kind == kDoubleLoVReg) || (kind == kDoubleHiVReg);
+ bool in_floats = false;
+ for (size_t i = 0; i < size(); ++i) {
+ // Stop if we find what we are are looking for.
+ if ((table_[i + 1] == vreg) && (in_floats == is_float)) {
+ vmap_offset = i;
+ return true;
+ }
+ // 0xffff is the marker for LR (return PC on x86), following it are spilled float registers.
+ if (table_[i + 1] == 0xffff) {
+ in_floats = true;
+ }
+ }
+ return false;
+ }
+
+ // Compute the register number that corresponds to the entry in the vmap (vmap_offset, computed
+ // by IsInContext above). If the kind is floating point then the result will be a floating point
+ // register number, otherwise it will be an integer register number.
+ uint32_t ComputeRegister(uint32_t spill_mask, uint32_t vmap_offset, VRegKind kind) const {
+ // Compute the register we need to load from the context.
+ DCHECK(kind == kReferenceVReg || kind == kIntVReg || kind == kFloatVReg ||
+ kind == kLongLoVReg || kind == kLongHiVReg || kind == kDoubleLoVReg ||
+ kind == kDoubleHiVReg || kind == kImpreciseConstant);
+ // TODO: we treat kImpreciseConstant as an integer below, need to ensure that such values
+ // are never promoted to floating point registers.
+ bool is_float = (kind == kFloatVReg) || (kind == kDoubleLoVReg) || (kind == kDoubleHiVReg);
+ uint32_t matches = 0;
+ if (is_float) {
+ while (table_[matches] != 0xffff) {
+ matches++;
+ }
+ }
+ CHECK_LT(vmap_offset - matches, static_cast<uint32_t>(__builtin_popcount(spill_mask)));
+ uint32_t spill_shifts = 0;
+ while (matches != (vmap_offset + 1)) {
+ DCHECK_NE(spill_mask, 0u);
+ matches += spill_mask & 1; // Add 1 if the low bit is set
+ spill_mask >>= 1;
+ spill_shifts++;
+ }
+ spill_shifts--; // wind back one as we want the last match
+ return spill_shifts;
+ }
+ private:
+ const uint16_t* table_;
+};
+
+} // namespace art
+
+#endif // ART_SRC_STACK_H_