summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--build/Android.gtest.mk3
-rw-r--r--compiler/Android.mk1
-rw-r--r--compiler/dex/compiler_enums.h6
-rw-r--r--compiler/dex/frontend.cc12
-rw-r--r--compiler/dex/quick/arm/target_arm.cc1
-rw-r--r--compiler/dex/quick/arm64/call_arm64.cc17
-rw-r--r--compiler/dex/quick/arm64/codegen_arm64.h34
-rw-r--r--compiler/dex/quick/arm64/fp_arm64.cc12
-rw-r--r--compiler/dex/quick/arm64/target_arm64.cc1
-rw-r--r--compiler/dex/quick/arm64/utility_arm64.cc6
-rw-r--r--compiler/dex/quick/gen_common.cc6
-rw-r--r--compiler/dex/quick/gen_invoke.cc41
-rw-r--r--compiler/dex/quick/gen_loadstore.cc36
-rw-r--r--compiler/dex/quick/mips/target_mips.cc1
-rw-r--r--compiler/dex/quick/mir_to_lir.cc64
-rw-r--r--compiler/dex/quick/mir_to_lir.h4
-rw-r--r--compiler/dex/quick/x86/assemble_x86.cc1388
-rw-r--r--compiler/dex/quick/x86/call_x86.cc39
-rw-r--r--compiler/dex/quick/x86/codegen_x86.h1583
-rw-r--r--compiler/dex/quick/x86/fp_x86.cc65
-rw-r--r--compiler/dex/quick/x86/int_x86.cc679
-rw-r--r--compiler/dex/quick/x86/target_x86.cc598
-rw-r--r--compiler/dex/quick/x86/utility_x86.cc171
-rw-r--r--compiler/dex/quick/x86/x86_lir.h77
-rw-r--r--compiler/optimizing/code_generator_arm.cc17
-rw-r--r--compiler/optimizing/code_generator_x86.cc17
-rw-r--r--compiler/optimizing/graph_test.cc322
-rw-r--r--compiler/optimizing/linearize_test.cc6
-rw-r--r--compiler/optimizing/live_ranges_test.cc39
-rw-r--r--compiler/optimizing/liveness_test.cc22
-rw-r--r--compiler/optimizing/nodes.cc19
-rw-r--r--compiler/optimizing/nodes.h44
-rw-r--r--compiler/optimizing/optimizing_compiler.cc2
-rw-r--r--compiler/optimizing/register_allocator.cc121
-rw-r--r--compiler/optimizing/register_allocator.h7
-rw-r--r--compiler/optimizing/register_allocator_test.cc41
-rw-r--r--compiler/optimizing/ssa_builder.cc34
-rw-r--r--compiler/optimizing/ssa_liveness_analysis.cc68
-rw-r--r--compiler/optimizing/ssa_liveness_analysis.h201
-rw-r--r--compiler/optimizing/ssa_test.cc54
-rw-r--r--compiler/optimizing/ssa_type_propagation.cc97
-rw-r--r--compiler/optimizing/ssa_type_propagation.h48
-rw-r--r--compiler/utils/arena_allocator.cc2
-rw-r--r--compiler/utils/arena_allocator.h2
-rw-r--r--compiler/utils/scoped_arena_allocator.cc2
-rw-r--r--compiler/utils/scoped_arena_allocator.h2
-rw-r--r--disassembler/disassembler_x86.cc11
-rw-r--r--runtime/Android.mk1
-rw-r--r--runtime/arch/arm64/quick_entrypoints_arm64.S2
-rw-r--r--runtime/arch/stub_test.cc36
-rw-r--r--runtime/arch/x86/quick_entrypoints_x86.S88
-rw-r--r--runtime/arch/x86_64/quick_entrypoints_x86_64.S7
-rw-r--r--runtime/atomic.h8
-rw-r--r--runtime/base/scoped_flock.cc75
-rw-r--r--runtime/base/scoped_flock.h51
-rw-r--r--runtime/base/scoped_flock_test.cc41
-rw-r--r--runtime/class_linker.cc57
-rw-r--r--runtime/entrypoints/quick/callee_save_frame.h37
-rw-r--r--runtime/entrypoints/quick/quick_field_entrypoints.cc7
-rw-r--r--runtime/entrypoints/quick/quick_instrumentation_entrypoints.cc6
-rw-r--r--runtime/entrypoints/quick/quick_trampoline_entrypoints.cc96
-rw-r--r--runtime/entrypoints/quick/quick_trampoline_entrypoints_test.cc107
-rw-r--r--runtime/gc/heap.cc2
-rw-r--r--runtime/gc/heap.h2
-rw-r--r--runtime/gc/reference_processor.cc25
-rw-r--r--runtime/gc/reference_queue.cc21
-rw-r--r--runtime/gc/reference_queue.h2
-rw-r--r--runtime/gc/space/image_space.cc13
-rw-r--r--runtime/globals.h21
-rw-r--r--runtime/instruction_set.cc93
-rw-r--r--runtime/instruction_set.h117
-rw-r--r--runtime/instruction_set_test.cc4
-rw-r--r--runtime/oat_file.cc13
-rw-r--r--runtime/oat_file.h15
-rw-r--r--test/107-int-math2/src/Main.java2
-rw-r--r--test/700-LoadArgRegs/expected.txt75
-rw-r--r--test/700-LoadArgRegs/info.txt1
-rw-r--r--test/700-LoadArgRegs/src/Main.java288
78 files changed, 4993 insertions, 2343 deletions
diff --git a/build/Android.gtest.mk b/build/Android.gtest.mk
index b07e4f8..407269b 100644
--- a/build/Android.gtest.mk
+++ b/build/Android.gtest.mk
@@ -25,6 +25,7 @@ RUNTIME_GTEST_COMMON_SRC_FILES := \
runtime/base/hex_dump_test.cc \
runtime/base/histogram_test.cc \
runtime/base/mutex_test.cc \
+ runtime/base/scoped_flock_test.cc \
runtime/base/timing_logger_test.cc \
runtime/base/unix_file/fd_file_test.cc \
runtime/base/unix_file/mapped_file_test.cc \
@@ -36,6 +37,7 @@ RUNTIME_GTEST_COMMON_SRC_FILES := \
runtime/dex_instruction_visitor_test.cc \
runtime/dex_method_iterator_test.cc \
runtime/entrypoints/math_entrypoints_test.cc \
+ runtime/entrypoints/quick/quick_trampoline_entrypoints_test.cc \
runtime/entrypoints_order_test.cc \
runtime/exception_test.cc \
runtime/gc/accounting/space_bitmap_test.cc \
@@ -80,6 +82,7 @@ COMPILER_GTEST_COMMON_SRC_FILES := \
compiler/optimizing/codegen_test.cc \
compiler/optimizing/dominator_test.cc \
compiler/optimizing/find_loops_test.cc \
+ compiler/optimizing/graph_test.cc \
compiler/optimizing/linearize_test.cc \
compiler/optimizing/liveness_test.cc \
compiler/optimizing/live_interval_test.cc \
diff --git a/compiler/Android.mk b/compiler/Android.mk
index cfce9f7..3cf7368 100644
--- a/compiler/Android.mk
+++ b/compiler/Android.mk
@@ -91,6 +91,7 @@ LIBART_COMPILER_SRC_FILES := \
optimizing/register_allocator.cc \
optimizing/ssa_builder.cc \
optimizing/ssa_liveness_analysis.cc \
+ optimizing/ssa_type_propagation.cc \
trampolines/trampoline_compiler.cc \
utils/arena_allocator.cc \
utils/arena_bit_vector.cc \
diff --git a/compiler/dex/compiler_enums.h b/compiler/dex/compiler_enums.h
index eb48cc3..f0b4787 100644
--- a/compiler/dex/compiler_enums.h
+++ b/compiler/dex/compiler_enums.h
@@ -48,10 +48,16 @@ enum SpecialTargetRegister {
kArg1,
kArg2,
kArg3,
+ kArg4,
+ kArg5,
kFArg0,
kFArg1,
kFArg2,
kFArg3,
+ kFArg4,
+ kFArg5,
+ kFArg6,
+ kFArg7,
kRet0,
kRet1,
kInvokeTgt,
diff --git a/compiler/dex/frontend.cc b/compiler/dex/frontend.cc
index 5b9c763..d544397 100644
--- a/compiler/dex/frontend.cc
+++ b/compiler/dex/frontend.cc
@@ -157,6 +157,8 @@ int arm64_support_list[] = {
Instruction::GOTO,
Instruction::GOTO_16,
Instruction::GOTO_32,
+ Instruction::PACKED_SWITCH,
+ Instruction::SPARSE_SWITCH,
Instruction::IF_EQ,
Instruction::IF_NE,
Instruction::IF_LT,
@@ -248,8 +250,6 @@ int arm64_support_list[] = {
Instruction::MOVE_OBJECT,
Instruction::MOVE_OBJECT_FROM16,
Instruction::MOVE_OBJECT_16,
- // Instruction::PACKED_SWITCH,
- // Instruction::SPARSE_SWITCH,
// Instruction::MOVE_RESULT,
// Instruction::MOVE_RESULT_WIDE,
// Instruction::MOVE_RESULT_OBJECT,
@@ -707,7 +707,7 @@ int x86_64_support_list[] = {
// which has problems with long, float, double
constexpr char arm64_supported_types[] = "ZBSCILVJFD";
// (x84_64) We still have troubles with compiling longs/doubles/floats
-constexpr char x86_64_supported_types[] = "ZBSCILV";
+constexpr char x86_64_supported_types[] = "ZBSCILVJFD";
// TODO: Remove this when we are able to compile everything.
static bool CanCompileShorty(const char* shorty, InstructionSet instruction_set) {
@@ -718,7 +718,7 @@ static bool CanCompileShorty(const char* shorty, InstructionSet instruction_set)
// 1 is for the return type. Currently, we only accept 2 parameters at the most.
// (x86_64): For now we have the same limitation. But we might want to split this
// check in future into two separate cases for arm64 and x86_64.
- if (shorty_size > (1 + 2)) {
+ if ((shorty_size > (1 + 2)) && (instruction_set != kX86_64)) {
return false;
}
@@ -889,7 +889,9 @@ static CompiledMethod* CompileMethod(CompilerDriver& driver,
// TODO(Arm64): enable optimizations once backend is mature enough.
// TODO(X86_64): enable optimizations once backend is mature enough.
cu.disable_opt = ~(uint32_t)0;
- cu.enable_debug |= (1 << kDebugCodegenDump);
+ if (cu.instruction_set == kArm64) {
+ cu.enable_debug |= (1 << kDebugCodegenDump);
+ }
}
cu.StartTimingSplit("BuildMIRGraph");
diff --git a/compiler/dex/quick/arm/target_arm.cc b/compiler/dex/quick/arm/target_arm.cc
index bd9c8b4..3b30cde 100644
--- a/compiler/dex/quick/arm/target_arm.cc
+++ b/compiler/dex/quick/arm/target_arm.cc
@@ -113,6 +113,7 @@ RegStorage ArmMir2Lir::TargetReg(SpecialTargetRegister reg) {
case kHiddenArg: res_reg = rs_r12; break;
case kHiddenFpArg: res_reg = RegStorage::InvalidReg(); break;
case kCount: res_reg = RegStorage::InvalidReg(); break;
+ default: res_reg = RegStorage::InvalidReg();
}
return res_reg;
}
diff --git a/compiler/dex/quick/arm64/call_arm64.cc b/compiler/dex/quick/arm64/call_arm64.cc
index b80938a..b85f569 100644
--- a/compiler/dex/quick/arm64/call_arm64.cc
+++ b/compiler/dex/quick/arm64/call_arm64.cc
@@ -68,7 +68,7 @@ void Arm64Mir2Lir::GenSparseSwitch(MIR* mir, uint32_t table_offset,
// Get the switch value
rl_src = LoadValue(rl_src, kCoreReg);
- RegStorage r_base = AllocTemp();
+ RegStorage r_base = AllocTempWide();
// Allocate key and disp temps.
RegStorage r_key = AllocTemp();
RegStorage r_disp = AllocTemp();
@@ -95,7 +95,8 @@ void Arm64Mir2Lir::GenSparseSwitch(MIR* mir, uint32_t table_offset,
tab_rec->anchor = switch_label;
// Add displacement to base branch address and go!
- OpRegRegRegShift(kOpAdd, r_base, r_base, r_disp, ENCODE_NO_SHIFT);
+ // TODO(Arm64): generate "add x1, x1, w3, sxtw" rather than "add x1, x1, x3"?
+ OpRegRegRegShift(kOpAdd, r_base, r_base, As64BitReg(r_disp), ENCODE_NO_SHIFT);
NewLIR1(kA64Br1x, r_base.GetReg());
// Loop exit label.
@@ -105,7 +106,7 @@ void Arm64Mir2Lir::GenSparseSwitch(MIR* mir, uint32_t table_offset,
void Arm64Mir2Lir::GenPackedSwitch(MIR* mir, uint32_t table_offset,
- RegLocation rl_src) {
+ RegLocation rl_src) {
const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
if (cu_->verbose) {
DumpPackedSwitchTable(table);
@@ -122,7 +123,7 @@ void Arm64Mir2Lir::GenPackedSwitch(MIR* mir, uint32_t table_offset,
// Get the switch value
rl_src = LoadValue(rl_src, kCoreReg);
- RegStorage table_base = AllocTemp();
+ RegStorage table_base = AllocTempWide();
// Materialize a pointer to the switch table
NewLIR3(kA64Adr2xd, table_base.GetReg(), 0, WrapPointer(tab_rec));
int low_key = s4FromSwitchData(&table[2]);
@@ -140,15 +141,17 @@ void Arm64Mir2Lir::GenPackedSwitch(MIR* mir, uint32_t table_offset,
// Load the displacement from the switch table
RegStorage disp_reg = AllocTemp();
- LoadBaseIndexed(table_base, key_reg, disp_reg, 2, k32);
+ // TODO(Arm64): generate "ldr w3, [x1,w2,sxtw #2]" rather than "ldr w3, [x1,x2,lsl #2]"?
+ LoadBaseIndexed(table_base, key_reg, As64BitReg(disp_reg), 2, k32);
// Get base branch address.
- RegStorage branch_reg = AllocTemp();
+ RegStorage branch_reg = AllocTempWide();
LIR* switch_label = NewLIR3(kA64Adr2xd, branch_reg.GetReg(), 0, -1);
tab_rec->anchor = switch_label;
// Add displacement to base branch address and go!
- OpRegRegRegShift(kOpAdd, branch_reg, branch_reg, disp_reg, ENCODE_NO_SHIFT);
+ // TODO(Arm64): generate "add x4, x4, w3, sxtw" rather than "add x4, x4, x3"?
+ OpRegRegRegShift(kOpAdd, branch_reg, branch_reg, As64BitReg(disp_reg), ENCODE_NO_SHIFT);
NewLIR1(kA64Br1x, branch_reg.GetReg());
// branch_over target here
diff --git a/compiler/dex/quick/arm64/codegen_arm64.h b/compiler/dex/quick/arm64/codegen_arm64.h
index 6251f4f..21db771 100644
--- a/compiler/dex/quick/arm64/codegen_arm64.h
+++ b/compiler/dex/quick/arm64/codegen_arm64.h
@@ -223,6 +223,40 @@ class Arm64Mir2Lir : public Mir2Lir {
bool skip_this);
private:
+ /**
+ * @brief Given register xNN (dNN), returns register wNN (sNN).
+ * @param reg #RegStorage containing a Solo64 input register (e.g. @c x1 or @c d2).
+ * @return A Solo32 with the same register number as the @p reg (e.g. @c w1 or @c s2).
+ * @see As64BitReg
+ */
+ RegStorage As32BitReg(RegStorage reg) {
+ DCHECK(reg.Is64Bit());
+ DCHECK(!reg.IsPair());
+ RegStorage ret_val = RegStorage(RegStorage::k32BitSolo,
+ reg.GetRawBits() & RegStorage::kRegTypeMask);
+ DCHECK_EQ(GetRegInfo(reg)->FindMatchingView(RegisterInfo::k32SoloStorageMask)
+ ->GetReg().GetReg(),
+ ret_val.GetReg());
+ return ret_val;
+ }
+
+ /**
+ * @brief Given register wNN (sNN), returns register xNN (dNN).
+ * @param reg #RegStorage containing a Solo32 input register (e.g. @c w1 or @c s2).
+ * @return A Solo64 with the same register number as the @p reg (e.g. @c x1 or @c d2).
+ * @see As32BitReg
+ */
+ RegStorage As64BitReg(RegStorage reg) {
+ DCHECK(reg.Is32Bit());
+ DCHECK(!reg.IsPair());
+ RegStorage ret_val = RegStorage(RegStorage::k64BitSolo,
+ reg.GetRawBits() & RegStorage::kRegTypeMask);
+ DCHECK_EQ(GetRegInfo(reg)->FindMatchingView(RegisterInfo::k64SoloStorageMask)
+ ->GetReg().GetReg(),
+ ret_val.GetReg());
+ return ret_val;
+ }
+
LIR* LoadFPConstantValue(int r_dest, int32_t value);
LIR* LoadFPConstantValueWide(int r_dest, int64_t value);
void ReplaceFixup(LIR* prev_lir, LIR* orig_lir, LIR* new_lir);
diff --git a/compiler/dex/quick/arm64/fp_arm64.cc b/compiler/dex/quick/arm64/fp_arm64.cc
index acc7d17..265e8d2 100644
--- a/compiler/dex/quick/arm64/fp_arm64.cc
+++ b/compiler/dex/quick/arm64/fp_arm64.cc
@@ -45,6 +45,7 @@ void Arm64Mir2Lir::GenArithOpFloat(Instruction::Code opcode, RegLocation rl_dest
case Instruction::REM_FLOAT_2ADDR:
case Instruction::REM_FLOAT:
FlushAllRegs(); // Send everything to home location
+ // TODO: Fix xSELF.
CallRuntimeHelperRegLocationRegLocation(QUICK_ENTRYPOINT_OFFSET(8, pFmodf), rl_src1, rl_src2,
false);
rl_result = GetReturn(kFPReg);
@@ -88,8 +89,15 @@ void Arm64Mir2Lir::GenArithOpDouble(Instruction::Code opcode,
case Instruction::REM_DOUBLE_2ADDR:
case Instruction::REM_DOUBLE:
FlushAllRegs(); // Send everything to home location
- CallRuntimeHelperRegLocationRegLocation(QUICK_ENTRYPOINT_OFFSET(8, pFmod), rl_src1, rl_src2,
- false);
+ // TODO: Fix xSELF.
+ {
+ ThreadOffset<8> helper_offset = QUICK_ENTRYPOINT_OFFSET(8, pFmod);
+ RegStorage r_tgt = CallHelperSetup(helper_offset);
+ LoadValueDirectWideFixed(rl_src1, rs_d0);
+ LoadValueDirectWideFixed(rl_src2, rs_d1);
+ ClobberCallerSave();
+ CallHelper(r_tgt, helper_offset, false);
+ }
rl_result = GetReturnWide(kFPReg);
StoreValueWide(rl_dest, rl_result);
return;
diff --git a/compiler/dex/quick/arm64/target_arm64.cc b/compiler/dex/quick/arm64/target_arm64.cc
index b287399..ce95286 100644
--- a/compiler/dex/quick/arm64/target_arm64.cc
+++ b/compiler/dex/quick/arm64/target_arm64.cc
@@ -127,6 +127,7 @@ RegStorage Arm64Mir2Lir::TargetReg(SpecialTargetRegister reg) {
case kHiddenArg: res_reg = rs_x12; break;
case kHiddenFpArg: res_reg = RegStorage::InvalidReg(); break;
case kCount: res_reg = RegStorage::InvalidReg(); break;
+ default: res_reg = RegStorage::InvalidReg();
}
return res_reg;
}
diff --git a/compiler/dex/quick/arm64/utility_arm64.cc b/compiler/dex/quick/arm64/utility_arm64.cc
index d0ab4f6..4f0d7bc 100644
--- a/compiler/dex/quick/arm64/utility_arm64.cc
+++ b/compiler/dex/quick/arm64/utility_arm64.cc
@@ -532,11 +532,11 @@ LIR* Arm64Mir2Lir::OpRegRegImm(OpKind op, RegStorage r_dest, RegStorage r_src1,
switch (op) {
case kOpLsl: {
// "lsl w1, w2, #imm" is an alias of "ubfm w1, w2, #(-imm MOD 32), #(31-imm)"
- // and "lsl x1, x2, #imm" of "ubfm x1, x2, #(-imm MOD 32), #(31-imm)".
+ // and "lsl x1, x2, #imm" of "ubfm x1, x2, #(-imm MOD 64), #(63-imm)".
// For now, we just use ubfm directly.
- int max_value = (is_wide) ? 64 : 32;
+ int max_value = (is_wide) ? 63 : 31;
return NewLIR4(kA64Ubfm4rrdd | wide, r_dest.GetReg(), r_src1.GetReg(),
- (-value) & (max_value - 1), max_value - value);
+ (-value) & max_value, max_value - value);
}
case kOpLsr:
return NewLIR3(kA64Lsr3rrd | wide, r_dest.GetReg(), r_src1.GetReg(), value);
diff --git a/compiler/dex/quick/gen_common.cc b/compiler/dex/quick/gen_common.cc
index 62c81d0..69ca715 100644
--- a/compiler/dex/quick/gen_common.cc
+++ b/compiler/dex/quick/gen_common.cc
@@ -1959,7 +1959,7 @@ static void GenArithOpLongImpl(Mir2Lir* mir_to_lir, CompilationUnit* cu, Instruc
switch (opcode) {
case Instruction::NOT_LONG:
- if (cu->instruction_set == kArm64) {
+ if (cu->instruction_set == kArm64 || cu->instruction_set == kX86_64) {
mir_to_lir->GenNotLong(rl_dest, rl_src2);
return;
}
@@ -2009,7 +2009,7 @@ static void GenArithOpLongImpl(Mir2Lir* mir_to_lir, CompilationUnit* cu, Instruc
break;
case Instruction::DIV_LONG:
case Instruction::DIV_LONG_2ADDR:
- if (cu->instruction_set == kArm64) {
+ if (cu->instruction_set == kArm64 || cu->instruction_set == kX86_64) {
mir_to_lir->GenDivRemLong(opcode, rl_dest, rl_src1, rl_src2, /*is_div*/ true);
return;
}
@@ -2020,7 +2020,7 @@ static void GenArithOpLongImpl(Mir2Lir* mir_to_lir, CompilationUnit* cu, Instruc
break;
case Instruction::REM_LONG:
case Instruction::REM_LONG_2ADDR:
- if (cu->instruction_set == kArm64) {
+ if (cu->instruction_set == kArm64 || cu->instruction_set == kX86_64) {
mir_to_lir->GenDivRemLong(opcode, rl_dest, rl_src1, rl_src2, /*is_div*/ false);
return;
}
diff --git a/compiler/dex/quick/gen_invoke.cc b/compiler/dex/quick/gen_invoke.cc
index 842533b..b7ea362 100644
--- a/compiler/dex/quick/gen_invoke.cc
+++ b/compiler/dex/quick/gen_invoke.cc
@@ -277,6 +277,8 @@ void Mir2Lir::CallRuntimeHelperRegLocationRegLocation(ThreadOffset<pointer_size>
if (arg1.wide == 0) {
if (cu_->instruction_set == kMips) {
LoadValueDirectFixed(arg1, arg1.fp ? TargetReg(kFArg2) : TargetReg(kArg1));
+ } else if (cu_->instruction_set == kArm64) {
+ LoadValueDirectFixed(arg1, arg1.fp ? TargetReg(kFArg1) : TargetReg(kArg1));
} else {
LoadValueDirectFixed(arg1, TargetReg(kArg1));
}
@@ -290,26 +292,51 @@ void Mir2Lir::CallRuntimeHelperRegLocationRegLocation(ThreadOffset<pointer_size>
}
LoadValueDirectWideFixed(arg1, r_tmp);
} else {
- RegStorage r_tmp = RegStorage::MakeRegPair(TargetReg(kArg1), TargetReg(kArg2));
+ RegStorage r_tmp;
+ if (cu_->instruction_set == kX86_64) {
+ r_tmp = RegStorage::Solo64(TargetReg(kArg1).GetReg());
+ } else {
+ r_tmp = RegStorage::MakeRegPair(TargetReg(kArg1), TargetReg(kArg2));
+ }
LoadValueDirectWideFixed(arg1, r_tmp);
}
}
} else {
RegStorage r_tmp;
if (arg0.fp) {
- r_tmp = RegStorage::MakeRegPair(TargetReg(kFArg0), TargetReg(kFArg1));
+ if (cu_->instruction_set == kX86_64) {
+ r_tmp = RegStorage::FloatSolo64(TargetReg(kFArg0).GetReg());
+ } else {
+ r_tmp = RegStorage::MakeRegPair(TargetReg(kFArg0), TargetReg(kFArg1));
+ }
} else {
- r_tmp = RegStorage::MakeRegPair(TargetReg(kArg0), TargetReg(kArg1));
+ if (cu_->instruction_set == kX86_64) {
+ r_tmp = RegStorage::Solo64(TargetReg(kArg0).GetReg());
+ } else {
+ r_tmp = RegStorage::MakeRegPair(TargetReg(kArg0), TargetReg(kArg1));
+ }
}
LoadValueDirectWideFixed(arg0, r_tmp);
if (arg1.wide == 0) {
- LoadValueDirectFixed(arg1, arg1.fp ? TargetReg(kFArg2) : TargetReg(kArg2));
+ if (cu_->instruction_set == kX86_64) {
+ LoadValueDirectFixed(arg1, arg1.fp ? TargetReg(kFArg1) : TargetReg(kArg1));
+ } else {
+ LoadValueDirectFixed(arg1, arg1.fp ? TargetReg(kFArg2) : TargetReg(kArg2));
+ }
} else {
RegStorage r_tmp;
if (arg1.fp) {
- r_tmp = RegStorage::MakeRegPair(TargetReg(kFArg2), TargetReg(kFArg3));
+ if (cu_->instruction_set == kX86_64) {
+ r_tmp = RegStorage::FloatSolo64(TargetReg(kFArg1).GetReg());
+ } else {
+ r_tmp = RegStorage::MakeRegPair(TargetReg(kFArg2), TargetReg(kFArg3));
+ }
} else {
- r_tmp = RegStorage::MakeRegPair(TargetReg(kArg2), TargetReg(kArg3));
+ if (cu_->instruction_set == kX86_64) {
+ r_tmp = RegStorage::Solo64(TargetReg(kArg1).GetReg());
+ } else {
+ r_tmp = RegStorage::MakeRegPair(TargetReg(kArg2), TargetReg(kArg3));
+ }
}
LoadValueDirectWideFixed(arg1, r_tmp);
}
@@ -662,7 +689,7 @@ static int NextInterfaceCallInsn(CompilationUnit* cu, CallInfo* info, int state,
case 0: // Set target method index in case of conflict [set kHiddenArg, kHiddenFpArg (x86)]
CHECK_LT(target_method.dex_method_index, target_method.dex_file->NumMethodIds());
cg->LoadConstant(cg->TargetReg(kHiddenArg), target_method.dex_method_index);
- if (cu->instruction_set == kX86 || cu->instruction_set == kX86_64) {
+ if (cu->instruction_set == kX86) {
cg->OpRegCopy(cg->TargetReg(kHiddenFpArg), cg->TargetReg(kHiddenArg));
}
break;
diff --git a/compiler/dex/quick/gen_loadstore.cc b/compiler/dex/quick/gen_loadstore.cc
index 2c8b9b9..6ef7934 100644
--- a/compiler/dex/quick/gen_loadstore.cc
+++ b/compiler/dex/quick/gen_loadstore.cc
@@ -391,24 +391,34 @@ RegLocation Mir2Lir::ForceTemp(RegLocation loc) {
return loc;
}
-// FIXME: will need an update for 64-bit core regs.
RegLocation Mir2Lir::ForceTempWide(RegLocation loc) {
DCHECK(loc.wide);
DCHECK(loc.location == kLocPhysReg);
DCHECK(!loc.reg.IsFloat());
- if (IsTemp(loc.reg.GetLow())) {
- Clobber(loc.reg.GetLow());
- } else {
- RegStorage temp_low = AllocTemp();
- OpRegCopy(temp_low, loc.reg.GetLow());
- loc.reg.SetLowReg(temp_low.GetReg());
- }
- if (IsTemp(loc.reg.GetHigh())) {
- Clobber(loc.reg.GetHigh());
+
+ if (!loc.reg.IsPair()) {
+ if (IsTemp(loc.reg)) {
+ Clobber(loc.reg);
+ } else {
+ RegStorage temp = AllocTempWide();
+ OpRegCopy(temp, loc.reg);
+ loc.reg = temp;
+ }
} else {
- RegStorage temp_high = AllocTemp();
- OpRegCopy(temp_high, loc.reg.GetHigh());
- loc.reg.SetHighReg(temp_high.GetReg());
+ if (IsTemp(loc.reg.GetLow())) {
+ Clobber(loc.reg.GetLow());
+ } else {
+ RegStorage temp_low = AllocTemp();
+ OpRegCopy(temp_low, loc.reg.GetLow());
+ loc.reg.SetLowReg(temp_low.GetReg());
+ }
+ if (IsTemp(loc.reg.GetHigh())) {
+ Clobber(loc.reg.GetHigh());
+ } else {
+ RegStorage temp_high = AllocTemp();
+ OpRegCopy(temp_high, loc.reg.GetHigh());
+ loc.reg.SetHighReg(temp_high.GetReg());
+ }
}
// Ensure that this doesn't represent the original SR any more.
diff --git a/compiler/dex/quick/mips/target_mips.cc b/compiler/dex/quick/mips/target_mips.cc
index c1a7c99..381c7ce 100644
--- a/compiler/dex/quick/mips/target_mips.cc
+++ b/compiler/dex/quick/mips/target_mips.cc
@@ -98,6 +98,7 @@ RegStorage MipsMir2Lir::TargetReg(SpecialTargetRegister reg) {
case kHiddenArg: res_reg = rs_rT0; break;
case kHiddenFpArg: res_reg = RegStorage::InvalidReg(); break;
case kCount: res_reg = rs_rMIPS_COUNT; break;
+ default: res_reg = RegStorage::InvalidReg();
}
return res_reg;
}
diff --git a/compiler/dex/quick/mir_to_lir.cc b/compiler/dex/quick/mir_to_lir.cc
index 1f12b6f..a85be5e 100644
--- a/compiler/dex/quick/mir_to_lir.cc
+++ b/compiler/dex/quick/mir_to_lir.cc
@@ -68,20 +68,51 @@ void Mir2Lir::LockArg(int in_position, bool wide) {
// TODO: needs revisit for 64-bit.
RegStorage Mir2Lir::LoadArg(int in_position, RegisterClass reg_class, bool wide) {
- RegStorage reg_arg_low = GetArgMappingToPhysicalReg(in_position);
- RegStorage reg_arg_high = wide ? GetArgMappingToPhysicalReg(in_position + 1) :
- RegStorage::InvalidReg();
-
int offset = StackVisitor::GetOutVROffset(in_position, cu_->instruction_set);
- if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) {
+
+ if (cu_->instruction_set == kX86) {
/*
* When doing a call for x86, it moves the stack pointer in order to push return.
* Thus, we add another 4 bytes to figure out the out of caller (in of callee).
- * TODO: This needs revisited for 64-bit.
*/
offset += sizeof(uint32_t);
}
+ if (cu_->instruction_set == kX86_64) {
+ /*
+ * When doing a call for x86, it moves the stack pointer in order to push return.
+ * Thus, we add another 8 bytes to figure out the out of caller (in of callee).
+ */
+ offset += sizeof(uint64_t);
+ }
+
+ if (cu_->instruction_set == kX86_64) {
+ RegStorage reg_arg = GetArgMappingToPhysicalReg(in_position);
+ if (!reg_arg.Valid()) {
+ RegStorage new_reg = wide ? AllocTypedTempWide(false, reg_class) : AllocTypedTemp(false, reg_class);
+ LoadBaseDisp(TargetReg(kSp), offset, new_reg, wide ? k64 : k32);
+ return new_reg;
+ } else {
+ // Check if we need to copy the arg to a different reg_class.
+ if (!RegClassMatches(reg_class, reg_arg)) {
+ if (wide) {
+ RegStorage new_reg = AllocTypedTempWide(false, reg_class);
+ OpRegCopyWide(new_reg, reg_arg);
+ reg_arg = new_reg;
+ } else {
+ RegStorage new_reg = AllocTypedTemp(false, reg_class);
+ OpRegCopy(new_reg, reg_arg);
+ reg_arg = new_reg;
+ }
+ }
+ }
+ return reg_arg;
+ }
+
+ RegStorage reg_arg_low = GetArgMappingToPhysicalReg(in_position);
+ RegStorage reg_arg_high = wide ? GetArgMappingToPhysicalReg(in_position + 1) :
+ RegStorage::InvalidReg();
+
// If the VR is wide and there is no register for high part, we need to load it.
if (wide && !reg_arg_high.Valid()) {
// If the low part is not in a reg, we allocate a pair. Otherwise, we just load to high reg.
@@ -129,15 +160,22 @@ RegStorage Mir2Lir::LoadArg(int in_position, RegisterClass reg_class, bool wide)
void Mir2Lir::LoadArgDirect(int in_position, RegLocation rl_dest) {
int offset = StackVisitor::GetOutVROffset(in_position, cu_->instruction_set);
- if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) {
+ if (cu_->instruction_set == kX86) {
/*
* When doing a call for x86, it moves the stack pointer in order to push return.
* Thus, we add another 4 bytes to figure out the out of caller (in of callee).
- * TODO: This needs revisited for 64-bit.
*/
offset += sizeof(uint32_t);
}
+ if (cu_->instruction_set == kX86_64) {
+ /*
+ * When doing a call for x86, it moves the stack pointer in order to push return.
+ * Thus, we add another 8 bytes to figure out the out of caller (in of callee).
+ */
+ offset += sizeof(uint64_t);
+ }
+
if (!rl_dest.wide) {
RegStorage reg = GetArgMappingToPhysicalReg(in_position);
if (reg.Valid()) {
@@ -146,6 +184,16 @@ void Mir2Lir::LoadArgDirect(int in_position, RegLocation rl_dest) {
Load32Disp(TargetReg(kSp), offset, rl_dest.reg);
}
} else {
+ if (cu_->instruction_set == kX86_64) {
+ RegStorage reg = GetArgMappingToPhysicalReg(in_position);
+ if (reg.Valid()) {
+ OpRegCopy(rl_dest.reg, reg);
+ } else {
+ LoadBaseDisp(TargetReg(kSp), offset, rl_dest.reg, k64);
+ }
+ return;
+ }
+
RegStorage reg_arg_low = GetArgMappingToPhysicalReg(in_position);
RegStorage reg_arg_high = GetArgMappingToPhysicalReg(in_position + 1);
diff --git a/compiler/dex/quick/mir_to_lir.h b/compiler/dex/quick/mir_to_lir.h
index ed94a8d..9718acd 100644
--- a/compiler/dex/quick/mir_to_lir.h
+++ b/compiler/dex/quick/mir_to_lir.h
@@ -910,13 +910,13 @@ class Mir2Lir : public Backend {
void GenInvoke(CallInfo* info);
void GenInvokeNoInline(CallInfo* info);
virtual void FlushIns(RegLocation* ArgLocs, RegLocation rl_method);
- int GenDalvikArgsNoRange(CallInfo* info, int call_state, LIR** pcrLabel,
+ virtual int GenDalvikArgsNoRange(CallInfo* info, int call_state, LIR** pcrLabel,
NextCallInsn next_call_insn,
const MethodReference& target_method,
uint32_t vtable_idx,
uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
bool skip_this);
- int GenDalvikArgsRange(CallInfo* info, int call_state, LIR** pcrLabel,
+ virtual int GenDalvikArgsRange(CallInfo* info, int call_state, LIR** pcrLabel,
NextCallInsn next_call_insn,
const MethodReference& target_method,
uint32_t vtable_idx,
diff --git a/compiler/dex/quick/x86/assemble_x86.cc b/compiler/dex/quick/x86/assemble_x86.cc
index 39a0365..0a8193a 100644
--- a/compiler/dex/quick/x86/assemble_x86.cc
+++ b/compiler/dex/quick/x86/assemble_x86.cc
@@ -23,9 +23,9 @@ namespace art {
#define MAX_ASSEMBLER_RETRIES 50
const X86EncodingMap X86Mir2Lir::EncodingMap[kX86Last] = {
- { kX8632BitData, kData, IS_UNARY_OP, { 0, 0, 0x00, 0, 0, 0, 0, 4 }, "data", "0x!0d" },
- { kX86Bkpt, kNullary, NO_OPERAND | IS_BRANCH, { 0, 0, 0xCC, 0, 0, 0, 0, 0 }, "int 3", "" },
- { kX86Nop, kNop, NO_OPERAND, { 0, 0, 0x90, 0, 0, 0, 0, 0 }, "nop", "" },
+ { kX8632BitData, kData, IS_UNARY_OP, { 0, 0, 0x00, 0, 0, 0, 0, 4, false }, "data", "0x!0d" },
+ { kX86Bkpt, kNullary, NO_OPERAND | IS_BRANCH, { 0, 0, 0xCC, 0, 0, 0, 0, 0, false }, "int 3", "" },
+ { kX86Nop, kNop, NO_OPERAND, { 0, 0, 0x90, 0, 0, 0, 0, 0, false }, "nop", "" },
#define ENCODING_MAP(opname, mem_use, reg_def, uses_ccodes, \
rm8_r8, rm32_r32, \
@@ -34,65 +34,65 @@ const X86EncodingMap X86Mir2Lir::EncodingMap[kX86Last] = {
rm8_i8, rm8_i8_modrm, \
rm32_i32, rm32_i32_modrm, \
rm32_i8, rm32_i8_modrm) \
-{ kX86 ## opname ## 8MR, kMemReg, mem_use | IS_TERTIARY_OP | REG_USE02 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_r8, 0, 0, 0, 0, 0 }, #opname "8MR", "[!0r+!1d],!2r" }, \
-{ kX86 ## opname ## 8AR, kArrayReg, mem_use | IS_QUIN_OP | REG_USE014 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_r8, 0, 0, 0, 0, 0 }, #opname "8AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
-{ kX86 ## opname ## 8TR, kThreadReg, mem_use | IS_BINARY_OP | REG_USE1 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm8_r8, 0, 0, 0, 0, 0 }, #opname "8TR", "fs:[!0d],!1r" }, \
-{ kX86 ## opname ## 8RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RR", "!0r,!1r" }, \
-{ kX86 ## opname ## 8RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RM", "!0r,[!1r+!2d]" }, \
-{ kX86 ## opname ## 8RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
-{ kX86 ## opname ## 8RT, kRegThread, IS_LOAD | IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RT", "!0r,fs:[!1d]" }, \
-{ kX86 ## opname ## 8RI, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, ax8_i8, 1 }, #opname "8RI", "!0r,!1d" }, \
-{ kX86 ## opname ## 8MI, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1 }, #opname "8MI", "[!0r+!1d],!2d" }, \
-{ kX86 ## opname ## 8AI, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1 }, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
-{ kX86 ## opname ## 8TI, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1 }, #opname "8TI", "fs:[!0d],!1d" }, \
+{ kX86 ## opname ## 8MR, kMemReg, mem_use | IS_TERTIARY_OP | REG_USE02 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_r8, 0, 0, 0, 0, 0, true }, #opname "8MR", "[!0r+!1d],!2r" }, \
+{ kX86 ## opname ## 8AR, kArrayReg, mem_use | IS_QUIN_OP | REG_USE014 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_r8, 0, 0, 0, 0, 0, true}, #opname "8AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
+{ kX86 ## opname ## 8TR, kThreadReg, mem_use | IS_BINARY_OP | REG_USE1 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm8_r8, 0, 0, 0, 0, 0, true }, #opname "8TR", "fs:[!0d],!1r" }, \
+{ kX86 ## opname ## 8RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r8_rm8, 0, 0, 0, 0, 0, true }, #opname "8RR", "!0r,!1r" }, \
+{ kX86 ## opname ## 8RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r8_rm8, 0, 0, 0, 0, 0, true }, #opname "8RM", "!0r,[!1r+!2d]" }, \
+{ kX86 ## opname ## 8RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0, 0, r8_rm8, 0, 0, 0, 0, 0, true }, #opname "8RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
+{ kX86 ## opname ## 8RT, kRegThread, IS_LOAD | IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, r8_rm8, 0, 0, 0, 0, 0, true }, #opname "8RT", "!0r,fs:[!1d]" }, \
+{ kX86 ## opname ## 8RI, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, ax8_i8, 1, true }, #opname "8RI", "!0r,!1d" }, \
+{ kX86 ## opname ## 8MI, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1, true }, #opname "8MI", "[!0r+!1d],!2d" }, \
+{ kX86 ## opname ## 8AI, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1, true }, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
+{ kX86 ## opname ## 8TI, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1, true }, #opname "8TI", "fs:[!0d],!1d" }, \
\
-{ kX86 ## opname ## 16MR, kMemReg, mem_use | IS_TERTIARY_OP | REG_USE02 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "16MR", "[!0r+!1d],!2r" }, \
-{ kX86 ## opname ## 16AR, kArrayReg, mem_use | IS_QUIN_OP | REG_USE014 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "16AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
-{ kX86 ## opname ## 16TR, kThreadReg, mem_use | IS_BINARY_OP | REG_USE1 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_r32, 0, 0, 0, 0, 0 }, #opname "16TR", "fs:[!0d],!1r" }, \
-{ kX86 ## opname ## 16RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RR", "!0r,!1r" }, \
-{ kX86 ## opname ## 16RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RM", "!0r,[!1r+!2d]" }, \
-{ kX86 ## opname ## 16RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
-{ kX86 ## opname ## 16RT, kRegThread, IS_LOAD | IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RT", "!0r,fs:[!1d]" }, \
-{ kX86 ## opname ## 16RI, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 2 }, #opname "16RI", "!0r,!1d" }, \
-{ kX86 ## opname ## 16MI, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2 }, #opname "16MI", "[!0r+!1d],!2d" }, \
-{ kX86 ## opname ## 16AI, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2 }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
-{ kX86 ## opname ## 16TI, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2 }, #opname "16TI", "fs:[!0d],!1d" }, \
-{ kX86 ## opname ## 16RI8, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16RI8", "!0r,!1d" }, \
-{ kX86 ## opname ## 16MI8, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16MI8", "[!0r+!1d],!2d" }, \
-{ kX86 ## opname ## 16AI8, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
-{ kX86 ## opname ## 16TI8, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16TI8", "fs:[!0d],!1d" }, \
+{ kX86 ## opname ## 16MR, kMemReg, mem_use | IS_TERTIARY_OP | REG_USE02 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_r32, 0, 0, 0, 0, 0, false }, #opname "16MR", "[!0r+!1d],!2r" }, \
+{ kX86 ## opname ## 16AR, kArrayReg, mem_use | IS_QUIN_OP | REG_USE014 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_r32, 0, 0, 0, 0, 0, false }, #opname "16AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
+{ kX86 ## opname ## 16TR, kThreadReg, mem_use | IS_BINARY_OP | REG_USE1 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_r32, 0, 0, 0, 0, 0, false }, #opname "16TR", "fs:[!0d],!1r" }, \
+{ kX86 ## opname ## 16RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0, false }, #opname "16RR", "!0r,!1r" }, \
+{ kX86 ## opname ## 16RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0, false }, #opname "16RM", "!0r,[!1r+!2d]" }, \
+{ kX86 ## opname ## 16RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0, false }, #opname "16RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
+{ kX86 ## opname ## 16RT, kRegThread, IS_LOAD | IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, r32_rm32, 0, 0, 0, 0, 0, false }, #opname "16RT", "!0r,fs:[!1d]" }, \
+{ kX86 ## opname ## 16RI, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 2, false }, #opname "16RI", "!0r,!1d" }, \
+{ kX86 ## opname ## 16MI, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2, false }, #opname "16MI", "[!0r+!1d],!2d" }, \
+{ kX86 ## opname ## 16AI, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2, false }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
+{ kX86 ## opname ## 16TI, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2, false }, #opname "16TI", "fs:[!0d],!1d" }, \
+{ kX86 ## opname ## 16RI8, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1, false }, #opname "16RI8", "!0r,!1d" }, \
+{ kX86 ## opname ## 16MI8, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1, false }, #opname "16MI8", "[!0r+!1d],!2d" }, \
+{ kX86 ## opname ## 16AI8, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1, false }, #opname "16AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
+{ kX86 ## opname ## 16TI8, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1, false }, #opname "16TI8", "fs:[!0d],!1d" }, \
\
-{ kX86 ## opname ## 32MR, kMemReg, mem_use | IS_TERTIARY_OP | REG_USE02 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "32MR", "[!0r+!1d],!2r" }, \
-{ kX86 ## opname ## 32AR, kArrayReg, mem_use | IS_QUIN_OP | REG_USE014 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "32AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
-{ kX86 ## opname ## 32TR, kThreadReg, mem_use | IS_BINARY_OP | REG_USE1 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "32TR", "fs:[!0d],!1r" }, \
-{ kX86 ## opname ## 32RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RR", "!0r,!1r" }, \
-{ kX86 ## opname ## 32RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RM", "!0r,[!1r+!2d]" }, \
-{ kX86 ## opname ## 32RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
-{ kX86 ## opname ## 32RT, kRegThread, IS_LOAD | IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RT", "!0r,fs:[!1d]" }, \
-{ kX86 ## opname ## 32RI, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 4 }, #opname "32RI", "!0r,!1d" }, \
-{ kX86 ## opname ## 32MI, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4 }, #opname "32MI", "[!0r+!1d],!2d" }, \
-{ kX86 ## opname ## 32AI, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4 }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
-{ kX86 ## opname ## 32TI, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4 }, #opname "32TI", "fs:[!0d],!1d" }, \
-{ kX86 ## opname ## 32RI8, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32RI8", "!0r,!1d" }, \
-{ kX86 ## opname ## 32MI8, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32MI8", "[!0r+!1d],!2d" }, \
-{ kX86 ## opname ## 32AI8, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
-{ kX86 ## opname ## 32TI8, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32TI8", "fs:[!0d],!1d" }, \
+{ kX86 ## opname ## 32MR, kMemReg, mem_use | IS_TERTIARY_OP | REG_USE02 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_r32, 0, 0, 0, 0, 0, false }, #opname "32MR", "[!0r+!1d],!2r" }, \
+{ kX86 ## opname ## 32AR, kArrayReg, mem_use | IS_QUIN_OP | REG_USE014 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_r32, 0, 0, 0, 0, 0, false }, #opname "32AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
+{ kX86 ## opname ## 32TR, kThreadReg, mem_use | IS_BINARY_OP | REG_USE1 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_r32, 0, 0, 0, 0, 0, false }, #opname "32TR", "fs:[!0d],!1r" }, \
+{ kX86 ## opname ## 32RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r32_rm32, 0, 0, 0, 0, 0, false }, #opname "32RR", "!0r,!1r" }, \
+{ kX86 ## opname ## 32RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r32_rm32, 0, 0, 0, 0, 0, false }, #opname "32RM", "!0r,[!1r+!2d]" }, \
+{ kX86 ## opname ## 32RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0, 0, r32_rm32, 0, 0, 0, 0, 0, false }, #opname "32RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
+{ kX86 ## opname ## 32RT, kRegThread, IS_LOAD | IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, r32_rm32, 0, 0, 0, 0, 0, false }, #opname "32RT", "!0r,fs:[!1d]" }, \
+{ kX86 ## opname ## 32RI, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 4, false }, #opname "32RI", "!0r,!1d" }, \
+{ kX86 ## opname ## 32MI, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4, false }, #opname "32MI", "[!0r+!1d],!2d" }, \
+{ kX86 ## opname ## 32AI, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4, false }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
+{ kX86 ## opname ## 32TI, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4, false }, #opname "32TI", "fs:[!0d],!1d" }, \
+{ kX86 ## opname ## 32RI8, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1, false }, #opname "32RI8", "!0r,!1d" }, \
+{ kX86 ## opname ## 32MI8, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1, false }, #opname "32MI8", "[!0r+!1d],!2d" }, \
+{ kX86 ## opname ## 32AI8, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1, false }, #opname "32AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
+{ kX86 ## opname ## 32TI8, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1, false }, #opname "32TI8", "fs:[!0d],!1d" }, \
\
-{ kX86 ## opname ## 64MR, kMemReg, mem_use | IS_TERTIARY_OP | REG_USE02 | SETS_CCODES | uses_ccodes, { REX_W, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "64MR", "[!0r+!1d],!2r" }, \
-{ kX86 ## opname ## 64AR, kArrayReg, mem_use | IS_QUIN_OP | REG_USE014 | SETS_CCODES | uses_ccodes, { REX_W, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "64AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
-{ kX86 ## opname ## 64TR, kThreadReg, mem_use | IS_BINARY_OP | REG_USE1 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, REX_W, rm32_r32, 0, 0, 0, 0, 0 }, #opname "64TR", "fs:[!0d],!1r" }, \
-{ kX86 ## opname ## 64RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { REX_W, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "64RR", "!0r,!1r" }, \
-{ kX86 ## opname ## 64RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { REX_W, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "64RM", "!0r,[!1r+!2d]" }, \
-{ kX86 ## opname ## 64RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { REX_W, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "64RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
-{ kX86 ## opname ## 64RT, kRegThread, IS_LOAD | IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, REX_W, r32_rm32, 0, 0, 0, 0, 0 }, #opname "64RT", "!0r,fs:[!1d]" }, \
-{ kX86 ## opname ## 64RI, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { REX_W, 0, rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 4 }, #opname "64RI", "!0r,!1d" }, \
-{ kX86 ## opname ## 64MI, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { REX_W, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4 }, #opname "64MI", "[!0r+!1d],!2d" }, \
-{ kX86 ## opname ## 64AI, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { REX_W, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4 }, #opname "64AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
-{ kX86 ## opname ## 64TI, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, REX_W, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4 }, #opname "64TI", "fs:[!0d],!1d" }, \
-{ kX86 ## opname ## 64RI8, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { REX_W, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "64RI8", "!0r,!1d" }, \
-{ kX86 ## opname ## 64MI8, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { REX_W, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "64MI8", "[!0r+!1d],!2d" }, \
-{ kX86 ## opname ## 64AI8, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { REX_W, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "64AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
-{ kX86 ## opname ## 64TI8, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, REX_W, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "64TI8", "fs:[!0d],!1d" }
+{ kX86 ## opname ## 64MR, kMemReg, mem_use | IS_TERTIARY_OP | REG_USE02 | SETS_CCODES | uses_ccodes, { REX_W, 0, rm32_r32, 0, 0, 0, 0, 0, false }, #opname "64MR", "[!0r+!1d],!2r" }, \
+{ kX86 ## opname ## 64AR, kArrayReg, mem_use | IS_QUIN_OP | REG_USE014 | SETS_CCODES | uses_ccodes, { REX_W, 0, rm32_r32, 0, 0, 0, 0, 0, false }, #opname "64AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
+{ kX86 ## opname ## 64TR, kThreadReg, mem_use | IS_BINARY_OP | REG_USE1 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, REX_W, rm32_r32, 0, 0, 0, 0, 0, false }, #opname "64TR", "fs:[!0d],!1r" }, \
+{ kX86 ## opname ## 64RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { REX_W, 0, r32_rm32, 0, 0, 0, 0, 0, false }, #opname "64RR", "!0r,!1r" }, \
+{ kX86 ## opname ## 64RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { REX_W, 0, r32_rm32, 0, 0, 0, 0, 0, false }, #opname "64RM", "!0r,[!1r+!2d]" }, \
+{ kX86 ## opname ## 64RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { REX_W, 0, r32_rm32, 0, 0, 0, 0, 0, false }, #opname "64RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
+{ kX86 ## opname ## 64RT, kRegThread, IS_LOAD | IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, REX_W, r32_rm32, 0, 0, 0, 0, 0, false }, #opname "64RT", "!0r,fs:[!1d]" }, \
+{ kX86 ## opname ## 64RI, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { REX_W, 0, rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 4, false }, #opname "64RI", "!0r,!1d" }, \
+{ kX86 ## opname ## 64MI, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { REX_W, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4, false }, #opname "64MI", "[!0r+!1d],!2d" }, \
+{ kX86 ## opname ## 64AI, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { REX_W, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4, false }, #opname "64AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
+{ kX86 ## opname ## 64TI, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, REX_W, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4, false }, #opname "64TI", "fs:[!0d],!1d" }, \
+{ kX86 ## opname ## 64RI8, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { REX_W, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1, false }, #opname "64RI8", "!0r,!1d" }, \
+{ kX86 ## opname ## 64MI8, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { REX_W, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1, false }, #opname "64MI8", "[!0r+!1d],!2d" }, \
+{ kX86 ## opname ## 64AI8, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { REX_W, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1, false }, #opname "64AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
+{ kX86 ## opname ## 64TI8, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, REX_W, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1, false }, #opname "64TI8", "fs:[!0d],!1d" }
ENCODING_MAP(Add, IS_LOAD | IS_STORE, REG_DEF0, 0,
0x00 /* RegMem8/Reg8 */, 0x01 /* RegMem32/Reg32 */,
@@ -144,114 +144,112 @@ ENCODING_MAP(Cmp, IS_LOAD, 0, 0,
0x81, 0x7 /* RegMem32/imm32 */, 0x83, 0x7 /* RegMem32/imm8 */),
#undef ENCODING_MAP
- { kX86Imul16RRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RRI", "!0r,!1r,!2d" },
- { kX86Imul16RMI, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RMI", "!0r,[!1r+!2d],!3d" },
- { kX86Imul16RAI, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
-
- { kX86Imul32RRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RRI", "!0r,!1r,!2d" },
- { kX86Imul32RMI, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RMI", "!0r,[!1r+!2d],!3d" },
- { kX86Imul32RAI, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
- { kX86Imul32RRI8, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RRI8", "!0r,!1r,!2d" },
- { kX86Imul32RMI8, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RMI8", "!0r,[!1r+!2d],!3d" },
- { kX86Imul32RAI8, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RAI8", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
-
- { kX86Imul64RRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { REX_W, 0, 0x69, 0, 0, 0, 0, 8 }, "Imul64RRI", "!0r,!1r,!2d" },
- { kX86Imul64RMI, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { REX_W, 0, 0x69, 0, 0, 0, 0, 8 }, "Imul64RMI", "!0r,[!1r+!2d],!3d" },
- { kX86Imul64RAI, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { REX_W, 0, 0x69, 0, 0, 0, 0, 8 }, "Imul64RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
- { kX86Imul64RRI8, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { REX_W, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul64RRI8", "!0r,!1r,!2d" },
- { kX86Imul64RMI8, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { REX_W, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul64RMI8", "!0r,[!1r+!2d],!3d" },
- { kX86Imul64RAI8, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { REX_W, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul64RAI8", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
-
- { kX86Mov8MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0, 0, 0x88, 0, 0, 0, 0, 0 }, "Mov8MR", "[!0r+!1d],!2r" },
- { kX86Mov8AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0, 0, 0x88, 0, 0, 0, 0, 0 }, "Mov8AR", "[!0r+!1r<<!2d+!3d],!4r" },
- { kX86Mov8TR, kThreadReg, IS_STORE | IS_BINARY_OP | REG_USE1, { THREAD_PREFIX, 0, 0x88, 0, 0, 0, 0, 0 }, "Mov8TR", "fs:[!0d],!1r" },
- { kX86Mov8RR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RR", "!0r,!1r" },
- { kX86Mov8RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0_USE1, { 0, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RM", "!0r,[!1r+!2d]" },
- { kX86Mov8RA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RA", "!0r,[!1r+!2r<<!3d+!4d]" },
- { kX86Mov8RT, kRegThread, IS_LOAD | IS_BINARY_OP | REG_DEF0, { THREAD_PREFIX, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RT", "!0r,fs:[!1d]" },
- { kX86Mov8RI, kMovRegImm, IS_BINARY_OP | REG_DEF0, { 0, 0, 0xB0, 0, 0, 0, 0, 1 }, "Mov8RI", "!0r,!1d" },
- { kX86Mov8MI, kMemImm, IS_STORE | IS_TERTIARY_OP | REG_USE0, { 0, 0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8MI", "[!0r+!1d],!2d" },
- { kX86Mov8AI, kArrayImm, IS_STORE | IS_QUIN_OP | REG_USE01, { 0, 0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8AI", "[!0r+!1r<<!2d+!3d],!4d" },
- { kX86Mov8TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8TI", "fs:[!0d],!1d" },
-
- { kX86Mov16MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x66, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov16MR", "[!0r+!1d],!2r" },
- { kX86Mov16AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x66, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov16AR", "[!0r+!1r<<!2d+!3d],!4r" },
- { kX86Mov16TR, kThreadReg, IS_STORE | IS_BINARY_OP | REG_USE1, { THREAD_PREFIX, 0x66, 0x89, 0, 0, 0, 0, 0 }, "Mov16TR", "fs:[!0d],!1r" },
- { kX86Mov16RR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RR", "!0r,!1r" },
- { kX86Mov16RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0_USE1, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RM", "!0r,[!1r+!2d]" },
- { kX86Mov16RA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RA", "!0r,[!1r+!2r<<!3d+!4d]" },
- { kX86Mov16RT, kRegThread, IS_LOAD | IS_BINARY_OP | REG_DEF0, { THREAD_PREFIX, 0x66, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RT", "!0r,fs:[!1d]" },
- { kX86Mov16RI, kMovRegImm, IS_BINARY_OP | REG_DEF0, { 0x66, 0, 0xB8, 0, 0, 0, 0, 2 }, "Mov16RI", "!0r,!1d" },
- { kX86Mov16MI, kMemImm, IS_STORE | IS_TERTIARY_OP | REG_USE0, { 0x66, 0, 0xC7, 0, 0, 0, 0, 2 }, "Mov16MI", "[!0r+!1d],!2d" },
- { kX86Mov16AI, kArrayImm, IS_STORE | IS_QUIN_OP | REG_USE01, { 0x66, 0, 0xC7, 0, 0, 0, 0, 2 }, "Mov16AI", "[!0r+!1r<<!2d+!3d],!4d" },
- { kX86Mov16TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0x66, 0xC7, 0, 0, 0, 0, 2 }, "Mov16TI", "fs:[!0d],!1d" },
-
- { kX86Mov32MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov32MR", "[!0r+!1d],!2r" },
- { kX86Mov32AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov32AR", "[!0r+!1r<<!2d+!3d],!4r" },
- { kX86Mov32TR, kThreadReg, IS_STORE | IS_BINARY_OP | REG_USE1, { THREAD_PREFIX, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov32TR", "fs:[!0d],!1r" },
- { kX86Mov32RR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RR", "!0r,!1r" },
- { kX86Mov32RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0_USE1, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RM", "!0r,[!1r+!2d]" },
- { kX86Mov32RA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RA", "!0r,[!1r+!2r<<!3d+!4d]" },
- { kX86Mov32RT, kRegThread, IS_LOAD | IS_BINARY_OP | REG_DEF0, { THREAD_PREFIX, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RT", "!0r,fs:[!1d]" },
- { kX86Mov32RI, kMovRegImm, IS_BINARY_OP | REG_DEF0, { 0, 0, 0xB8, 0, 0, 0, 0, 4 }, "Mov32RI", "!0r,!1d" },
- { kX86Mov32MI, kMemImm, IS_STORE | IS_TERTIARY_OP | REG_USE0, { 0, 0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32MI", "[!0r+!1d],!2d" },
- { kX86Mov32AI, kArrayImm, IS_STORE | IS_QUIN_OP | REG_USE01, { 0, 0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32AI", "[!0r+!1r<<!2d+!3d],!4d" },
- { kX86Mov32TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32TI", "fs:[!0d],!1d" },
-
- { kX86Lea32RM, kRegMem, IS_TERTIARY_OP | IS_LOAD | REG_DEF0_USE1, { 0, 0, 0x8D, 0, 0, 0, 0, 0 }, "Lea32RM", "!0r,[!1r+!2d]" },
-
- { kX86Lea32RA, kRegArray, IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8D, 0, 0, 0, 0, 0 }, "Lea32RA", "!0r,[!1r+!2r<<!3d+!4d]" },
-
- { kX86Mov64MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { REX_W, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov64MR", "[!0r+!1d],!2r" },
- { kX86Mov64AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { REX_W, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov64AR", "[!0r+!1r<<!2d+!3d],!4r" },
- { kX86Mov64TR, kThreadReg, IS_STORE | IS_BINARY_OP | REG_USE1, { THREAD_PREFIX, REX_W, 0x89, 0, 0, 0, 0, 0 }, "Mov64TR", "fs:[!0d],!1r" },
- { kX86Mov64RR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { REX_W, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov64RR", "!0r,!1r" },
- { kX86Mov64RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0_USE1, { REX_W, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov64RM", "!0r,[!1r+!2d]" },
- { kX86Mov64RA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { REX_W, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov64RA", "!0r,[!1r+!2r<<!3d+!4d]" },
- { kX86Mov64RT, kRegThread, IS_LOAD | IS_BINARY_OP | REG_DEF0, { THREAD_PREFIX, REX_W, 0x8B, 0, 0, 0, 0, 0 }, "Mov64RT", "!0r,fs:[!1d]" },
- { kX86Mov64RI, kMovRegImm, IS_BINARY_OP | REG_DEF0, { REX_W, 0, 0xB8, 0, 0, 0, 0, 8 }, "Mov64RI", "!0r,!1d" },
- { kX86Mov64MI, kMemImm, IS_STORE | IS_TERTIARY_OP | REG_USE0, { REX_W, 0, 0xC7, 0, 0, 0, 0, 8 }, "Mov64MI", "[!0r+!1d],!2d" },
- { kX86Mov64AI, kArrayImm, IS_STORE | IS_QUIN_OP | REG_USE01, { REX_W, 0, 0xC7, 0, 0, 0, 0, 8 }, "Mov64AI", "[!0r+!1r<<!2d+!3d],!4d" },
- { kX86Mov64TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, REX_W, 0xC7, 0, 0, 0, 0, 8 }, "Mov64TI", "fs:[!0d],!1d" },
-
- { kX86Lea64RM, kRegMem, IS_TERTIARY_OP | IS_LOAD | REG_DEF0_USE1, { REX_W, 0, 0x8D, 0, 0, 0, 0, 0 }, "Lea64RM", "!0r,[!1r+!2d]" },
-
- { kX86Lea64RA, kRegArray, IS_QUIN_OP | REG_DEF0_USE12, { REX_W, 0, 0x8D, 0, 0, 0, 0, 0 }, "Lea64RA", "!0r,[!1r+!2r<<!3d+!4d]" },
-
- { kX86Cmov32RRC, kRegRegCond, IS_TERTIARY_OP | REG_DEF0_USE01 | USES_CCODES, {0, 0, 0x0F, 0x40, 0, 0, 0, 0}, "Cmovcc32RR", "!2c !0r,!1r" },
- { kX86Cmov64RRC, kRegRegCond, IS_TERTIARY_OP | REG_DEF0_USE01 | USES_CCODES, {REX_W, 0, 0x0F, 0x40, 0, 0, 0, 0}, "Cmovcc64RR", "!2c !0r,!1r" },
-
- { kX86Cmov32RMC, kRegMemCond, IS_QUAD_OP | IS_LOAD | REG_DEF0_USE01 | USES_CCODES, {0, 0, 0x0F, 0x40, 0, 0, 0, 0}, "Cmovcc32RM", "!3c !0r,[!1r+!2d]" },
- { kX86Cmov64RMC, kRegMemCond, IS_QUAD_OP | IS_LOAD | REG_DEF0_USE01 | USES_CCODES, {REX_W, 0, 0x0F, 0x40, 0, 0, 0, 0}, "Cmovcc64RM", "!3c !0r,[!1r+!2d]" },
+ { kX86Imul16RRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2, false }, "Imul16RRI", "!0r,!1r,!2d" },
+ { kX86Imul16RMI, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2, false }, "Imul16RMI", "!0r,[!1r+!2d],!3d" },
+ { kX86Imul16RAI, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2, false }, "Imul16RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
+
+ { kX86Imul32RRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4, false }, "Imul32RRI", "!0r,!1r,!2d" },
+ { kX86Imul32RMI, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4, false }, "Imul32RMI", "!0r,[!1r+!2d],!3d" },
+ { kX86Imul32RAI, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4, false }, "Imul32RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
+ { kX86Imul32RRI8, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1, false }, "Imul32RRI8", "!0r,!1r,!2d" },
+ { kX86Imul32RMI8, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1, false }, "Imul32RMI8", "!0r,[!1r+!2d],!3d" },
+ { kX86Imul32RAI8, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1, false }, "Imul32RAI8", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
+
+ { kX86Imul64RRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { REX_W, 0, 0x69, 0, 0, 0, 0, 4, false }, "Imul64RRI", "!0r,!1r,!2d" },
+ { kX86Imul64RMI, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { REX_W, 0, 0x69, 0, 0, 0, 0, 4, false }, "Imul64RMI", "!0r,[!1r+!2d],!3d" },
+ { kX86Imul64RAI, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { REX_W, 0, 0x69, 0, 0, 0, 0, 4, false }, "Imul64RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
+ { kX86Imul64RRI8, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { REX_W, 0, 0x6B, 0, 0, 0, 0, 1, false }, "Imul64RRI8", "!0r,!1r,!2d" },
+ { kX86Imul64RMI8, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { REX_W, 0, 0x6B, 0, 0, 0, 0, 1, false }, "Imul64RMI8", "!0r,[!1r+!2d],!3d" },
+ { kX86Imul64RAI8, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { REX_W, 0, 0x6B, 0, 0, 0, 0, 1, false }, "Imul64RAI8", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
+
+ { kX86Mov8MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0, 0, 0x88, 0, 0, 0, 0, 0, true }, "Mov8MR", "[!0r+!1d],!2r" },
+ { kX86Mov8AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0, 0, 0x88, 0, 0, 0, 0, 0, true }, "Mov8AR", "[!0r+!1r<<!2d+!3d],!4r" },
+ { kX86Mov8TR, kThreadReg, IS_STORE | IS_BINARY_OP | REG_USE1, { THREAD_PREFIX, 0, 0x88, 0, 0, 0, 0, 0, true }, "Mov8TR", "fs:[!0d],!1r" },
+ { kX86Mov8RR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0, 0, 0x8A, 0, 0, 0, 0, 0, true }, "Mov8RR", "!0r,!1r" },
+ { kX86Mov8RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0_USE1, { 0, 0, 0x8A, 0, 0, 0, 0, 0, true }, "Mov8RM", "!0r,[!1r+!2d]" },
+ { kX86Mov8RA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8A, 0, 0, 0, 0, 0, true }, "Mov8RA", "!0r,[!1r+!2r<<!3d+!4d]" },
+ { kX86Mov8RT, kRegThread, IS_LOAD | IS_BINARY_OP | REG_DEF0, { THREAD_PREFIX, 0, 0x8A, 0, 0, 0, 0, 0, true }, "Mov8RT", "!0r,fs:[!1d]" },
+ { kX86Mov8RI, kMovRegImm, IS_BINARY_OP | REG_DEF0, { 0, 0, 0xB0, 0, 0, 0, 0, 1, true }, "Mov8RI", "!0r,!1d" },
+ { kX86Mov8MI, kMemImm, IS_STORE | IS_TERTIARY_OP | REG_USE0, { 0, 0, 0xC6, 0, 0, 0, 0, 1, true }, "Mov8MI", "[!0r+!1d],!2d" },
+ { kX86Mov8AI, kArrayImm, IS_STORE | IS_QUIN_OP | REG_USE01, { 0, 0, 0xC6, 0, 0, 0, 0, 1, true }, "Mov8AI", "[!0r+!1r<<!2d+!3d],!4d" },
+ { kX86Mov8TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0, 0xC6, 0, 0, 0, 0, 1, true }, "Mov8TI", "fs:[!0d],!1d" },
+
+ { kX86Mov16MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x66, 0, 0x89, 0, 0, 0, 0, 0, false }, "Mov16MR", "[!0r+!1d],!2r" },
+ { kX86Mov16AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x66, 0, 0x89, 0, 0, 0, 0, 0, false }, "Mov16AR", "[!0r+!1r<<!2d+!3d],!4r" },
+ { kX86Mov16TR, kThreadReg, IS_STORE | IS_BINARY_OP | REG_USE1, { THREAD_PREFIX, 0x66, 0x89, 0, 0, 0, 0, 0, false }, "Mov16TR", "fs:[!0d],!1r" },
+ { kX86Mov16RR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0, false }, "Mov16RR", "!0r,!1r" },
+ { kX86Mov16RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0_USE1, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0, false }, "Mov16RM", "!0r,[!1r+!2d]" },
+ { kX86Mov16RA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0, false }, "Mov16RA", "!0r,[!1r+!2r<<!3d+!4d]" },
+ { kX86Mov16RT, kRegThread, IS_LOAD | IS_BINARY_OP | REG_DEF0, { THREAD_PREFIX, 0x66, 0x8B, 0, 0, 0, 0, 0, false }, "Mov16RT", "!0r,fs:[!1d]" },
+ { kX86Mov16RI, kMovRegImm, IS_BINARY_OP | REG_DEF0, { 0x66, 0, 0xB8, 0, 0, 0, 0, 2, false }, "Mov16RI", "!0r,!1d" },
+ { kX86Mov16MI, kMemImm, IS_STORE | IS_TERTIARY_OP | REG_USE0, { 0x66, 0, 0xC7, 0, 0, 0, 0, 2, false }, "Mov16MI", "[!0r+!1d],!2d" },
+ { kX86Mov16AI, kArrayImm, IS_STORE | IS_QUIN_OP | REG_USE01, { 0x66, 0, 0xC7, 0, 0, 0, 0, 2, false }, "Mov16AI", "[!0r+!1r<<!2d+!3d],!4d" },
+ { kX86Mov16TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0x66, 0xC7, 0, 0, 0, 0, 2, false }, "Mov16TI", "fs:[!0d],!1d" },
+
+ { kX86Mov32MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0, 0, 0x89, 0, 0, 0, 0, 0, false }, "Mov32MR", "[!0r+!1d],!2r" },
+ { kX86Mov32AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0, 0, 0x89, 0, 0, 0, 0, 0, false }, "Mov32AR", "[!0r+!1r<<!2d+!3d],!4r" },
+ { kX86Mov32TR, kThreadReg, IS_STORE | IS_BINARY_OP | REG_USE1, { THREAD_PREFIX, 0, 0x89, 0, 0, 0, 0, 0, false }, "Mov32TR", "fs:[!0d],!1r" },
+ { kX86Mov32RR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0, 0, 0x8B, 0, 0, 0, 0, 0, false }, "Mov32RR", "!0r,!1r" },
+ { kX86Mov32RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0_USE1, { 0, 0, 0x8B, 0, 0, 0, 0, 0, false }, "Mov32RM", "!0r,[!1r+!2d]" },
+ { kX86Mov32RA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8B, 0, 0, 0, 0, 0, false }, "Mov32RA", "!0r,[!1r+!2r<<!3d+!4d]" },
+ { kX86Mov32RT, kRegThread, IS_LOAD | IS_BINARY_OP | REG_DEF0, { THREAD_PREFIX, 0, 0x8B, 0, 0, 0, 0, 0, false }, "Mov32RT", "!0r,fs:[!1d]" },
+ { kX86Mov32RI, kMovRegImm, IS_BINARY_OP | REG_DEF0, { 0, 0, 0xB8, 0, 0, 0, 0, 4, false }, "Mov32RI", "!0r,!1d" },
+ { kX86Mov32MI, kMemImm, IS_STORE | IS_TERTIARY_OP | REG_USE0, { 0, 0, 0xC7, 0, 0, 0, 0, 4, false }, "Mov32MI", "[!0r+!1d],!2d" },
+ { kX86Mov32AI, kArrayImm, IS_STORE | IS_QUIN_OP | REG_USE01, { 0, 0, 0xC7, 0, 0, 0, 0, 4, false }, "Mov32AI", "[!0r+!1r<<!2d+!3d],!4d" },
+ { kX86Mov32TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0, 0xC7, 0, 0, 0, 0, 4, false }, "Mov32TI", "fs:[!0d],!1d" },
+
+ { kX86Lea32RM, kRegMem, IS_TERTIARY_OP | IS_LOAD | REG_DEF0_USE1, { 0, 0, 0x8D, 0, 0, 0, 0, 0, false }, "Lea32RM", "!0r,[!1r+!2d]" },
+ { kX86Lea32RA, kRegArray, IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8D, 0, 0, 0, 0, 0, false }, "Lea32RA", "!0r,[!1r+!2r<<!3d+!4d]" },
+
+ { kX86Mov64MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { REX_W, 0, 0x89, 0, 0, 0, 0, 0, false }, "Mov64MR", "[!0r+!1d],!2r" },
+ { kX86Mov64AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { REX_W, 0, 0x89, 0, 0, 0, 0, 0, false }, "Mov64AR", "[!0r+!1r<<!2d+!3d],!4r" },
+ { kX86Mov64TR, kThreadReg, IS_STORE | IS_BINARY_OP | REG_USE1, { THREAD_PREFIX, REX_W, 0x89, 0, 0, 0, 0, 0, false }, "Mov64TR", "fs:[!0d],!1r" },
+ { kX86Mov64RR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { REX_W, 0, 0x8B, 0, 0, 0, 0, 0, false }, "Mov64RR", "!0r,!1r" },
+ { kX86Mov64RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0_USE1, { REX_W, 0, 0x8B, 0, 0, 0, 0, 0, false }, "Mov64RM", "!0r,[!1r+!2d]" },
+ { kX86Mov64RA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { REX_W, 0, 0x8B, 0, 0, 0, 0, 0, false }, "Mov64RA", "!0r,[!1r+!2r<<!3d+!4d]" },
+ { kX86Mov64RT, kRegThread, IS_LOAD | IS_BINARY_OP | REG_DEF0, { THREAD_PREFIX, REX_W, 0x8B, 0, 0, 0, 0, 0, false }, "Mov64RT", "!0r,fs:[!1d]" },
+ { kX86Mov64RI, kMovRegImm, IS_BINARY_OP | REG_DEF0, { REX_W, 0, 0xB8, 0, 0, 0, 0, 8, false }, "Mov64RI", "!0r,!1d" },
+ { kX86Mov64MI, kMemImm, IS_STORE | IS_TERTIARY_OP | REG_USE0, { REX_W, 0, 0xC7, 0, 0, 0, 0, 4, false }, "Mov64MI", "[!0r+!1d],!2d" },
+ { kX86Mov64AI, kArrayImm, IS_STORE | IS_QUIN_OP | REG_USE01, { REX_W, 0, 0xC7, 0, 0, 0, 0, 4, false }, "Mov64AI", "[!0r+!1r<<!2d+!3d],!4d" },
+ { kX86Mov64TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, REX_W, 0xC7, 0, 0, 0, 0, 4, false }, "Mov64TI", "fs:[!0d],!1d" },
+
+ { kX86Lea64RM, kRegMem, IS_TERTIARY_OP | IS_LOAD | REG_DEF0_USE1, { REX_W, 0, 0x8D, 0, 0, 0, 0, 0, false }, "Lea64RM", "!0r,[!1r+!2d]" },
+ { kX86Lea64RA, kRegArray, IS_QUIN_OP | REG_DEF0_USE12, { REX_W, 0, 0x8D, 0, 0, 0, 0, 0, false }, "Lea64RA", "!0r,[!1r+!2r<<!3d+!4d]" },
+
+ { kX86Cmov32RRC, kRegRegCond, IS_TERTIARY_OP | REG_DEF0_USE01 | USES_CCODES, { 0, 0, 0x0F, 0x40, 0, 0, 0, 0, false }, "Cmovcc32RR", "!2c !0r,!1r" },
+ { kX86Cmov64RRC, kRegRegCond, IS_TERTIARY_OP | REG_DEF0_USE01 | USES_CCODES, { REX_W, 0, 0x0F, 0x40, 0, 0, 0, 0, false }, "Cmovcc64RR", "!2c !0r,!1r" },
+
+ { kX86Cmov32RMC, kRegMemCond, IS_QUAD_OP | IS_LOAD | REG_DEF0_USE01 | USES_CCODES, { 0, 0, 0x0F, 0x40, 0, 0, 0, 0, false }, "Cmovcc32RM", "!3c !0r,[!1r+!2d]" },
+ { kX86Cmov64RMC, kRegMemCond, IS_QUAD_OP | IS_LOAD | REG_DEF0_USE01 | USES_CCODES, { REX_W, 0, 0x0F, 0x40, 0, 0, 0, 0, false }, "Cmovcc64RM", "!3c !0r,[!1r+!2d]" },
#define SHIFT_ENCODING_MAP(opname, modrm_opcode) \
-{ kX86 ## opname ## 8RI, kShiftRegImm, IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8RI", "!0r,!1d" }, \
-{ kX86 ## opname ## 8MI, kShiftMemImm, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8MI", "[!0r+!1d],!2d" }, \
-{ kX86 ## opname ## 8AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
-{ kX86 ## opname ## 8RC, kShiftRegCl, IS_BINARY_OP | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1 }, #opname "8RC", "!0r,cl" }, \
-{ kX86 ## opname ## 8MC, kShiftMemCl, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1 }, #opname "8MC", "[!0r+!1d],cl" }, \
-{ kX86 ## opname ## 8AC, kShiftArrayCl, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | REG_USEC | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1 }, #opname "8AC", "[!0r+!1r<<!2d+!3d],cl" }, \
+{ kX86 ## opname ## 8RI, kShiftRegImm, IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1, true }, #opname "8RI", "!0r,!1d" }, \
+{ kX86 ## opname ## 8MI, kShiftMemImm, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1, true }, #opname "8MI", "[!0r+!1d],!2d" }, \
+{ kX86 ## opname ## 8AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1, true }, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
+{ kX86 ## opname ## 8RC, kShiftRegCl, IS_BINARY_OP | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1, true }, #opname "8RC", "!0r,cl" }, \
+{ kX86 ## opname ## 8MC, kShiftMemCl, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1, true }, #opname "8MC", "[!0r+!1d],cl" }, \
+{ kX86 ## opname ## 8AC, kShiftArrayCl, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | REG_USEC | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1, true }, #opname "8AC", "[!0r+!1r<<!2d+!3d],cl" }, \
\
-{ kX86 ## opname ## 16RI, kShiftRegImm, IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16RI", "!0r,!1d" }, \
-{ kX86 ## opname ## 16MI, kShiftMemImm, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16MI", "[!0r+!1d],!2d" }, \
-{ kX86 ## opname ## 16AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
-{ kX86 ## opname ## 16RC, kShiftRegCl, IS_BINARY_OP | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1 }, #opname "16RC", "!0r,cl" }, \
-{ kX86 ## opname ## 16MC, kShiftMemCl, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1 }, #opname "16MC", "[!0r+!1d],cl" }, \
-{ kX86 ## opname ## 16AC, kShiftArrayCl, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1 }, #opname "16AC", "[!0r+!1r<<!2d+!3d],cl" }, \
+{ kX86 ## opname ## 16RI, kShiftRegImm, IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "16RI", "!0r,!1d" }, \
+{ kX86 ## opname ## 16MI, kShiftMemImm, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "16MI", "[!0r+!1d],!2d" }, \
+{ kX86 ## opname ## 16AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
+{ kX86 ## opname ## 16RC, kShiftRegCl, IS_BINARY_OP | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1, false }, #opname "16RC", "!0r,cl" }, \
+{ kX86 ## opname ## 16MC, kShiftMemCl, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1, false }, #opname "16MC", "[!0r+!1d],cl" }, \
+{ kX86 ## opname ## 16AC, kShiftArrayCl, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1, false }, #opname "16AC", "[!0r+!1r<<!2d+!3d],cl" }, \
\
-{ kX86 ## opname ## 32RI, kShiftRegImm, IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32RI", "!0r,!1d" }, \
-{ kX86 ## opname ## 32MI, kShiftMemImm, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32MI", "[!0r+!1d],!2d" }, \
-{ kX86 ## opname ## 32AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
-{ kX86 ## opname ## 32RC, kShiftRegCl, IS_BINARY_OP | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 0 }, #opname "32RC", "!0r,cl" }, \
-{ kX86 ## opname ## 32MC, kShiftMemCl, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 0 }, #opname "32MC", "[!0r+!1d],cl" }, \
-{ kX86 ## opname ## 32AC, kShiftArrayCl, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | REG_USEC | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 0 }, #opname "32AC", "[!0r+!1r<<!2d+!3d],cl" }, \
+{ kX86 ## opname ## 32RI, kShiftRegImm, IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "32RI", "!0r,!1d" }, \
+{ kX86 ## opname ## 32MI, kShiftMemImm, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "32MI", "[!0r+!1d],!2d" }, \
+{ kX86 ## opname ## 32AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
+{ kX86 ## opname ## 32RC, kShiftRegCl, IS_BINARY_OP | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 0, false }, #opname "32RC", "!0r,cl" }, \
+{ kX86 ## opname ## 32MC, kShiftMemCl, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 0, false }, #opname "32MC", "[!0r+!1d],cl" }, \
+{ kX86 ## opname ## 32AC, kShiftArrayCl, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | REG_USEC | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 0, false }, #opname "32AC", "[!0r+!1r<<!2d+!3d],cl" }, \
\
-{ kX86 ## opname ## 64RI, kShiftRegImm, IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, { REX_W, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "64RI", "!0r,!1d" }, \
-{ kX86 ## opname ## 64MI, kShiftMemImm, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { REX_W, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "64MI", "[!0r+!1d],!2d" }, \
-{ kX86 ## opname ## 64AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { REX_W, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "64AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
-{ kX86 ## opname ## 64RC, kShiftRegCl, IS_BINARY_OP | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { REX_W, 0, 0xD3, 0, 0, modrm_opcode, 0, 0 }, #opname "64RC", "!0r,cl" }, \
-{ kX86 ## opname ## 64MC, kShiftMemCl, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | REG_USEC | SETS_CCODES, { REX_W, 0, 0xD3, 0, 0, modrm_opcode, 0, 0 }, #opname "64MC", "[!0r+!1d],cl" }, \
-{ kX86 ## opname ## 64AC, kShiftArrayCl, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | REG_USEC | SETS_CCODES, { REX_W, 0, 0xD3, 0, 0, modrm_opcode, 0, 0 }, #opname "64AC", "[!0r+!1r<<!2d+!3d],cl" }
+{ kX86 ## opname ## 64RI, kShiftRegImm, IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, { REX_W, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "64RI", "!0r,!1d" }, \
+{ kX86 ## opname ## 64MI, kShiftMemImm, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { REX_W, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "64MI", "[!0r+!1d],!2d" }, \
+{ kX86 ## opname ## 64AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { REX_W, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1, false }, #opname "64AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
+{ kX86 ## opname ## 64RC, kShiftRegCl, IS_BINARY_OP | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { REX_W, 0, 0xD3, 0, 0, modrm_opcode, 0, 0, false }, #opname "64RC", "!0r,cl" }, \
+{ kX86 ## opname ## 64MC, kShiftMemCl, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | REG_USEC | SETS_CCODES, { REX_W, 0, 0xD3, 0, 0, modrm_opcode, 0, 0, false }, #opname "64MC", "[!0r+!1d],cl" }, \
+{ kX86 ## opname ## 64AC, kShiftArrayCl, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | REG_USEC | SETS_CCODES, { REX_W, 0, 0xD3, 0, 0, modrm_opcode, 0, 0, false }, #opname "64AC", "[!0r+!1r<<!2d+!3d],cl" }
SHIFT_ENCODING_MAP(Rol, 0x0),
SHIFT_ENCODING_MAP(Ror, 0x1),
@@ -262,31 +260,31 @@ ENCODING_MAP(Cmp, IS_LOAD, 0, 0,
SHIFT_ENCODING_MAP(Sar, 0x7),
#undef SHIFT_ENCODING_MAP
- { kX86Cmc, kNullary, NO_OPERAND, { 0, 0, 0xF5, 0, 0, 0, 0, 0}, "Cmc", "" },
- { kX86Shld32RRI, kRegRegImmRev, IS_TERTIARY_OP | REG_DEF0_USE01 | SETS_CCODES, { 0, 0, 0x0F, 0xA4, 0, 0, 0, 1}, "Shld32RRI", "!0r,!1r,!2d" },
- { kX86Shld32MRI, kMemRegImm, IS_QUAD_OP | REG_USE02 | IS_LOAD | IS_STORE | SETS_CCODES, { 0, 0, 0x0F, 0xA4, 0, 0, 0, 1}, "Shld32MRI", "[!0r+!1d],!2r,!3d" },
- { kX86Shrd32RRI, kRegRegImmRev, IS_TERTIARY_OP | REG_DEF0_USE01 | SETS_CCODES, { 0, 0, 0x0F, 0xAC, 0, 0, 0, 1}, "Shrd32RRI", "!0r,!1r,!2d" },
- { kX86Shrd32MRI, kMemRegImm, IS_QUAD_OP | REG_USE02 | IS_LOAD | IS_STORE | SETS_CCODES, { 0, 0, 0x0F, 0xAC, 0, 0, 0, 1}, "Shrd32MRI", "[!0r+!1d],!2r,!3d" },
- { kX86Shld64RRI, kRegRegImmRev, IS_TERTIARY_OP | REG_DEF0_USE01 | SETS_CCODES, { REX_W, 0, 0x0F, 0xA4, 0, 0, 0, 1}, "Shld64RRI", "!0r,!1r,!2d" },
- { kX86Shld64MRI, kMemRegImm, IS_QUAD_OP | REG_USE02 | IS_LOAD | IS_STORE | SETS_CCODES, { REX_W, 0, 0x0F, 0xA4, 0, 0, 0, 1}, "Shld64MRI", "[!0r+!1d],!2r,!3d" },
- { kX86Shrd64RRI, kRegRegImmRev, IS_TERTIARY_OP | REG_DEF0_USE01 | SETS_CCODES, { REX_W, 0, 0x0F, 0xAC, 0, 0, 0, 1}, "Shrd64RRI", "!0r,!1r,!2d" },
- { kX86Shrd64MRI, kMemRegImm, IS_QUAD_OP | REG_USE02 | IS_LOAD | IS_STORE | SETS_CCODES, { REX_W, 0, 0x0F, 0xAC, 0, 0, 0, 1}, "Shrd64MRI", "[!0r+!1d],!2r,!3d" },
-
- { kX86Test8RI, kRegImm, IS_BINARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF6, 0, 0, 0, 0, 1}, "Test8RI", "!0r,!1d" },
- { kX86Test8MI, kMemImm, IS_LOAD | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF6, 0, 0, 0, 0, 1}, "Test8MI", "[!0r+!1d],!2d" },
- { kX86Test8AI, kArrayImm, IS_LOAD | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xF6, 0, 0, 0, 0, 1}, "Test8AI", "[!0r+!1r<<!2d+!3d],!4d" },
- { kX86Test16RI, kRegImm, IS_BINARY_OP | REG_USE0 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16RI", "!0r,!1d" },
- { kX86Test16MI, kMemImm, IS_LOAD | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16MI", "[!0r+!1d],!2d" },
- { kX86Test16AI, kArrayImm, IS_LOAD | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16AI", "[!0r+!1r<<!2d+!3d],!4d" },
- { kX86Test32RI, kRegImm, IS_BINARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF7, 0, 0, 0, 0, 4}, "Test32RI", "!0r,!1d" },
- { kX86Test32MI, kMemImm, IS_LOAD | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF7, 0, 0, 0, 0, 4}, "Test32MI", "[!0r+!1d],!2d" },
- { kX86Test32AI, kArrayImm, IS_LOAD | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xF7, 0, 0, 0, 0, 4}, "Test32AI", "[!0r+!1r<<!2d+!3d],!4d" },
- { kX86Test64RI, kRegImm, IS_BINARY_OP | REG_USE0 | SETS_CCODES, { REX_W, 0, 0xF7, 0, 0, 0, 0, 8}, "Test64RI", "!0r,!1d" },
- { kX86Test64MI, kMemImm, IS_LOAD | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { REX_W, 0, 0xF7, 0, 0, 0, 0, 8}, "Test64MI", "[!0r+!1d],!2d" },
- { kX86Test64AI, kArrayImm, IS_LOAD | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { REX_W, 0, 0xF7, 0, 0, 0, 0, 8}, "Test64AI", "[!0r+!1r<<!2d+!3d],!4d" },
-
- { kX86Test32RR, kRegReg, IS_BINARY_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0x85, 0, 0, 0, 0, 0}, "Test32RR", "!0r,!1r" },
- { kX86Test64RR, kRegReg, IS_BINARY_OP | REG_USE01 | SETS_CCODES, { REX_W, 0, 0x85, 0, 0, 0, 0, 0}, "Test64RR", "!0r,!1r" },
+ { kX86Cmc, kNullary, NO_OPERAND, { 0, 0, 0xF5, 0, 0, 0, 0, 0, false }, "Cmc", "" },
+ { kX86Shld32RRI, kRegRegImmStore, IS_TERTIARY_OP | REG_DEF0_USE01 | SETS_CCODES, { 0, 0, 0x0F, 0xA4, 0, 0, 0, 1, false }, "Shld32RRI", "!0r,!1r,!2d" },
+ { kX86Shld32MRI, kMemRegImm, IS_QUAD_OP | REG_USE02 | IS_LOAD | IS_STORE | SETS_CCODES, { 0, 0, 0x0F, 0xA4, 0, 0, 0, 1, false }, "Shld32MRI", "[!0r+!1d],!2r,!3d" },
+ { kX86Shrd32RRI, kRegRegImmStore, IS_TERTIARY_OP | REG_DEF0_USE01 | SETS_CCODES, { 0, 0, 0x0F, 0xAC, 0, 0, 0, 1, false }, "Shrd32RRI", "!0r,!1r,!2d" },
+ { kX86Shrd32MRI, kMemRegImm, IS_QUAD_OP | REG_USE02 | IS_LOAD | IS_STORE | SETS_CCODES, { 0, 0, 0x0F, 0xAC, 0, 0, 0, 1, false }, "Shrd32MRI", "[!0r+!1d],!2r,!3d" },
+ { kX86Shld64RRI, kRegRegImmStore, IS_TERTIARY_OP | REG_DEF0_USE01 | SETS_CCODES, { REX_W, 0, 0x0F, 0xA4, 0, 0, 0, 1, false }, "Shld64RRI", "!0r,!1r,!2d" },
+ { kX86Shld64MRI, kMemRegImm, IS_QUAD_OP | REG_USE02 | IS_LOAD | IS_STORE | SETS_CCODES, { REX_W, 0, 0x0F, 0xA4, 0, 0, 0, 1, false }, "Shld64MRI", "[!0r+!1d],!2r,!3d" },
+ { kX86Shrd64RRI, kRegRegImmStore, IS_TERTIARY_OP | REG_DEF0_USE01 | SETS_CCODES, { REX_W, 0, 0x0F, 0xAC, 0, 0, 0, 1, false }, "Shrd64RRI", "!0r,!1r,!2d" },
+ { kX86Shrd64MRI, kMemRegImm, IS_QUAD_OP | REG_USE02 | IS_LOAD | IS_STORE | SETS_CCODES, { REX_W, 0, 0x0F, 0xAC, 0, 0, 0, 1, false }, "Shrd64MRI", "[!0r+!1d],!2r,!3d" },
+
+ { kX86Test8RI, kRegImm, IS_BINARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF6, 0, 0, 0, 0, 1, true }, "Test8RI", "!0r,!1d" },
+ { kX86Test8MI, kMemImm, IS_LOAD | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF6, 0, 0, 0, 0, 1, true }, "Test8MI", "[!0r+!1d],!2d" },
+ { kX86Test8AI, kArrayImm, IS_LOAD | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xF6, 0, 0, 0, 0, 1, true }, "Test8AI", "[!0r+!1r<<!2d+!3d],!4d" },
+ { kX86Test16RI, kRegImm, IS_BINARY_OP | REG_USE0 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2, false }, "Test16RI", "!0r,!1d" },
+ { kX86Test16MI, kMemImm, IS_LOAD | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2, false }, "Test16MI", "[!0r+!1d],!2d" },
+ { kX86Test16AI, kArrayImm, IS_LOAD | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2, false }, "Test16AI", "[!0r+!1r<<!2d+!3d],!4d" },
+ { kX86Test32RI, kRegImm, IS_BINARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF7, 0, 0, 0, 0, 4, false }, "Test32RI", "!0r,!1d" },
+ { kX86Test32MI, kMemImm, IS_LOAD | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF7, 0, 0, 0, 0, 4, false }, "Test32MI", "[!0r+!1d],!2d" },
+ { kX86Test32AI, kArrayImm, IS_LOAD | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xF7, 0, 0, 0, 0, 4, false }, "Test32AI", "[!0r+!1r<<!2d+!3d],!4d" },
+ { kX86Test64RI, kRegImm, IS_BINARY_OP | REG_USE0 | SETS_CCODES, { REX_W, 0, 0xF7, 0, 0, 0, 0, 4, false }, "Test64RI", "!0r,!1d" },
+ { kX86Test64MI, kMemImm, IS_LOAD | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { REX_W, 0, 0xF7, 0, 0, 0, 0, 4, false }, "Test64MI", "[!0r+!1d],!2d" },
+ { kX86Test64AI, kArrayImm, IS_LOAD | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { REX_W, 0, 0xF7, 0, 0, 0, 0, 4, false }, "Test64AI", "[!0r+!1r<<!2d+!3d],!4d" },
+
+ { kX86Test32RR, kRegReg, IS_BINARY_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0x85, 0, 0, 0, 0, 0, false }, "Test32RR", "!0r,!1r" },
+ { kX86Test64RR, kRegReg, IS_BINARY_OP | REG_USE01 | SETS_CCODES, { REX_W, 0, 0x85, 0, 0, 0, 0, 0, false }, "Test64RR", "!0r,!1r" },
#define UNARY_ENCODING_MAP(opname, modrm, is_store, sets_ccodes, \
reg, reg_kind, reg_flags, \
@@ -294,18 +292,18 @@ ENCODING_MAP(Cmp, IS_LOAD, 0, 0,
arr, arr_kind, arr_flags, imm, \
b_flags, hw_flags, w_flags, \
b_format, hw_format, w_format) \
-{ kX86 ## opname ## 8 ## reg, reg_kind, reg_flags | b_flags | sets_ccodes, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #reg, b_format "!0r" }, \
-{ kX86 ## opname ## 8 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | b_flags | sets_ccodes, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #mem, b_format "[!0r+!1d]" }, \
-{ kX86 ## opname ## 8 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | b_flags | sets_ccodes, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #arr, b_format "[!0r+!1r<<!2d+!3d]" }, \
-{ kX86 ## opname ## 16 ## reg, reg_kind, reg_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #reg, hw_format "!0r" }, \
-{ kX86 ## opname ## 16 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #mem, hw_format "[!0r+!1d]" }, \
-{ kX86 ## opname ## 16 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #arr, hw_format "[!0r+!1r<<!2d+!3d]" }, \
-{ kX86 ## opname ## 32 ## reg, reg_kind, reg_flags | w_flags | sets_ccodes, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #reg, w_format "!0r" }, \
-{ kX86 ## opname ## 32 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | w_flags | sets_ccodes, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #mem, w_format "[!0r+!1d]" }, \
-{ kX86 ## opname ## 32 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | w_flags | sets_ccodes, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #arr, w_format "[!0r+!1r<<!2d+!3d]" }, \
-{ kX86 ## opname ## 64 ## reg, reg_kind, reg_flags | w_flags | sets_ccodes, { REX_W, 0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "64" #reg, w_format "!0r" }, \
-{ kX86 ## opname ## 64 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | w_flags | sets_ccodes, { REX_W, 0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "64" #mem, w_format "[!0r+!1d]" }, \
-{ kX86 ## opname ## 64 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | w_flags | sets_ccodes, { REX_W, 0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "64" #arr, w_format "[!0r+!1r<<!2d+!3d]" }
+{ kX86 ## opname ## 8 ## reg, reg_kind, reg_flags | b_flags | sets_ccodes, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0, true }, #opname "8" #reg, b_format "!0r" }, \
+{ kX86 ## opname ## 8 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | b_flags | sets_ccodes, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0, true }, #opname "8" #mem, b_format "[!0r+!1d]" }, \
+{ kX86 ## opname ## 8 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | b_flags | sets_ccodes, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0, true }, #opname "8" #arr, b_format "[!0r+!1r<<!2d+!3d]" }, \
+{ kX86 ## opname ## 16 ## reg, reg_kind, reg_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1, false }, #opname "16" #reg, hw_format "!0r" }, \
+{ kX86 ## opname ## 16 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1, false }, #opname "16" #mem, hw_format "[!0r+!1d]" }, \
+{ kX86 ## opname ## 16 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1, false }, #opname "16" #arr, hw_format "[!0r+!1r<<!2d+!3d]" }, \
+{ kX86 ## opname ## 32 ## reg, reg_kind, reg_flags | w_flags | sets_ccodes, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2, false }, #opname "32" #reg, w_format "!0r" }, \
+{ kX86 ## opname ## 32 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | w_flags | sets_ccodes, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2, false }, #opname "32" #mem, w_format "[!0r+!1d]" }, \
+{ kX86 ## opname ## 32 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | w_flags | sets_ccodes, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2, false }, #opname "32" #arr, w_format "[!0r+!1r<<!2d+!3d]" }, \
+{ kX86 ## opname ## 64 ## reg, reg_kind, reg_flags | w_flags | sets_ccodes, { REX_W, 0, 0xF7, 0, 0, modrm, 0, imm << 2, false }, #opname "64" #reg, w_format "!0r" }, \
+{ kX86 ## opname ## 64 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | w_flags | sets_ccodes, { REX_W, 0, 0xF7, 0, 0, modrm, 0, imm << 2, false }, #opname "64" #mem, w_format "[!0r+!1d]" }, \
+{ kX86 ## opname ## 64 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | w_flags | sets_ccodes, { REX_W, 0, 0xF7, 0, 0, modrm, 0, imm << 2, false }, #opname "64" #arr, w_format "[!0r+!1r<<!2d+!3d]" }
UNARY_ENCODING_MAP(Not, 0x2, IS_STORE, 0, R, kReg, IS_UNARY_OP | REG_DEF0_USE0, M, kMem, IS_BINARY_OP | REG_USE0, A, kArray, IS_QUAD_OP | REG_USE01, 0, 0, 0, 0, "", "", ""),
UNARY_ENCODING_MAP(Neg, 0x3, IS_STORE, SETS_CCODES, R, kReg, IS_UNARY_OP | REG_DEF0_USE0, M, kMem, IS_BINARY_OP | REG_USE0, A, kArray, IS_QUAD_OP | REG_USE01, 0, 0, 0, 0, "", "", ""),
@@ -316,33 +314,43 @@ ENCODING_MAP(Cmp, IS_LOAD, 0, 0,
UNARY_ENCODING_MAP(Idivmod, 0x7, 0, SETS_CCODES, DaR, kReg, IS_UNARY_OP | REG_USE0, DaM, kMem, IS_BINARY_OP | REG_USE0, DaA, kArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEAD, REG_DEFAD_USEAD, "ah:al,ax,", "dx:ax,dx:ax,", "edx:eax,edx:eax,"),
#undef UNARY_ENCODING_MAP
- { kx86Cdq32Da, kRegOpcode, NO_OPERAND | REG_DEFAD_USEA, { 0, 0, 0x99, 0, 0, 0, 0, 0 }, "Cdq", "" },
- { kX86Bswap32R, kRegOpcode, IS_UNARY_OP | REG_DEF0_USE0, { 0, 0, 0x0F, 0xC8, 0, 0, 0, 0 }, "Bswap32R", "!0r" },
- { kX86Push32R, kRegOpcode, IS_UNARY_OP | REG_USE0 | REG_USE_SP | REG_DEF_SP | IS_STORE, { 0, 0, 0x50, 0, 0, 0, 0, 0 }, "Push32R", "!0r" },
- { kX86Pop32R, kRegOpcode, IS_UNARY_OP | REG_DEF0 | REG_USE_SP | REG_DEF_SP | IS_LOAD, { 0, 0, 0x58, 0, 0, 0, 0, 0 }, "Pop32R", "!0r" },
+ { kx86Cdq32Da, kRegOpcode, NO_OPERAND | REG_DEFAD_USEA, { 0, 0, 0x99, 0, 0, 0, 0, 0, false }, "Cdq", "" },
+ { kx86Cqo64Da, kRegOpcode, NO_OPERAND | REG_DEFAD_USEA, { REX_W, 0, 0x99, 0, 0, 0, 0, 0, false }, "Cqo", "" },
+ { kX86Bswap32R, kRegOpcode, IS_UNARY_OP | REG_DEF0_USE0, { 0, 0, 0x0F, 0xC8, 0, 0, 0, 0, false }, "Bswap32R", "!0r" },
+ { kX86Push32R, kRegOpcode, IS_UNARY_OP | REG_USE0 | REG_USE_SP | REG_DEF_SP | IS_STORE, { 0, 0, 0x50, 0, 0, 0, 0, 0, false }, "Push32R", "!0r" },
+ { kX86Pop32R, kRegOpcode, IS_UNARY_OP | REG_DEF0 | REG_USE_SP | REG_DEF_SP | IS_LOAD, { 0, 0, 0x58, 0, 0, 0, 0, 0, false }, "Pop32R", "!0r" },
#define EXT_0F_ENCODING_MAP(opname, prefix, opcode, reg_def) \
-{ kX86 ## opname ## RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE1, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RR", "!0r,!1r" }, \
-{ kX86 ## opname ## RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE1, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RM", "!0r,[!1r+!2d]" }, \
-{ kX86 ## opname ## RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE12, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RA", "!0r,[!1r+!2r<<!3d+!4d]" }
+{ kX86 ## opname ## RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE1, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0, false }, #opname "RR", "!0r,!1r" }, \
+{ kX86 ## opname ## RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE1, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0, false }, #opname "RM", "!0r,[!1r+!2d]" }, \
+{ kX86 ## opname ## RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE12, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0, false }, #opname "RA", "!0r,[!1r+!2r<<!3d+!4d]" }
+
+#define EXT_0F_REX_W_ENCODING_MAP(opname, prefix, opcode, reg_def) \
+{ kX86 ## opname ## RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE1, { prefix, REX_W, 0x0F, opcode, 0, 0, 0, 0, false }, #opname "RR", "!0r,!1r" }, \
+{ kX86 ## opname ## RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE1, { prefix, REX_W, 0x0F, opcode, 0, 0, 0, 0, false }, #opname "RM", "!0r,[!1r+!2d]" }, \
+{ kX86 ## opname ## RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE12, { prefix, REX_W, 0x0F, opcode, 0, 0, 0, 0, false }, #opname "RA", "!0r,[!1r+!2r<<!3d+!4d]" }
#define EXT_0F_ENCODING2_MAP(opname, prefix, opcode, opcode2, reg_def) \
-{ kX86 ## opname ## RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE1, { prefix, 0, 0x0F, opcode, opcode2, 0, 0, 0 }, #opname "RR", "!0r,!1r" }, \
-{ kX86 ## opname ## RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE1, { prefix, 0, 0x0F, opcode, opcode2, 0, 0, 0 }, #opname "RM", "!0r,[!1r+!2d]" }, \
-{ kX86 ## opname ## RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE12, { prefix, 0, 0x0F, opcode, opcode2, 0, 0, 0 }, #opname "RA", "!0r,[!1r+!2r<<!3d+!4d]" }
+{ kX86 ## opname ## RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE1, { prefix, 0, 0x0F, opcode, opcode2, 0, 0, 0, false }, #opname "RR", "!0r,!1r" }, \
+{ kX86 ## opname ## RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE1, { prefix, 0, 0x0F, opcode, opcode2, 0, 0, 0, false }, #opname "RM", "!0r,[!1r+!2d]" }, \
+{ kX86 ## opname ## RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE12, { prefix, 0, 0x0F, opcode, opcode2, 0, 0, 0, false }, #opname "RA", "!0r,[!1r+!2r<<!3d+!4d]" }
EXT_0F_ENCODING_MAP(Movsd, 0xF2, 0x10, REG_DEF0),
- { kX86MovsdMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovsdMR", "[!0r+!1d],!2r" },
- { kX86MovsdAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovsdAR", "[!0r+!1r<<!2d+!3d],!4r" },
+ { kX86MovsdMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0, false }, "MovsdMR", "[!0r+!1d],!2r" },
+ { kX86MovsdAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0, false }, "MovsdAR", "[!0r+!1r<<!2d+!3d],!4r" },
EXT_0F_ENCODING_MAP(Movss, 0xF3, 0x10, REG_DEF0),
- { kX86MovssMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovssMR", "[!0r+!1d],!2r" },
- { kX86MovssAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovssAR", "[!0r+!1r<<!2d+!3d],!4r" },
+ { kX86MovssMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0, false }, "MovssMR", "[!0r+!1d],!2r" },
+ { kX86MovssAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0, false }, "MovssAR", "[!0r+!1r<<!2d+!3d],!4r" },
EXT_0F_ENCODING_MAP(Cvtsi2sd, 0xF2, 0x2A, REG_DEF0),
EXT_0F_ENCODING_MAP(Cvtsi2ss, 0xF3, 0x2A, REG_DEF0),
+ EXT_0F_REX_W_ENCODING_MAP(Cvtsqi2sd, 0xF2, 0x2A, REG_DEF0),
+ EXT_0F_REX_W_ENCODING_MAP(Cvtsqi2ss, 0xF3, 0x2A, REG_DEF0),
EXT_0F_ENCODING_MAP(Cvttsd2si, 0xF2, 0x2C, REG_DEF0),
EXT_0F_ENCODING_MAP(Cvttss2si, 0xF3, 0x2C, REG_DEF0),
+ EXT_0F_REX_W_ENCODING_MAP(Cvttsd2sqi, 0xF2, 0x2C, REG_DEF0),
+ EXT_0F_REX_W_ENCODING_MAP(Cvttss2sqi, 0xF3, 0x2C, REG_DEF0),
EXT_0F_ENCODING_MAP(Cvtsd2si, 0xF2, 0x2D, REG_DEF0),
EXT_0F_ENCODING_MAP(Cvtss2si, 0xF3, 0x2D, REG_DEF0),
EXT_0F_ENCODING_MAP(Ucomisd, 0x66, 0x2E, SETS_CCODES|REG_USE0),
@@ -383,74 +391,84 @@ ENCODING_MAP(Cmp, IS_LOAD, 0, 0,
EXT_0F_ENCODING2_MAP(Phaddw, 0x66, 0x38, 0x01, REG_DEF0_USE0),
EXT_0F_ENCODING2_MAP(Phaddd, 0x66, 0x38, 0x02, REG_DEF0_USE0),
- { kX86PextrbRRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0 | REG_USE1, { 0x66, 0, 0x0F, 0x3A, 0x14, 0, 0, 1 }, "PextbRRI", "!0r,!1r,!2d" },
- { kX86PextrwRRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0 | REG_USE1, { 0x66, 0, 0x0F, 0xC5, 0x00, 0, 0, 1 }, "PextwRRI", "!0r,!1r,!2d" },
- { kX86PextrdRRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0 | REG_USE1, { 0x66, 0, 0x0F, 0x3A, 0x16, 0, 0, 1 }, "PextdRRI", "!0r,!1r,!2d" },
+ { kX86PextrbRRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0 | REG_USE1, { 0x66, 0, 0x0F, 0x3A, 0x14, 0, 0, 1, false }, "PextbRRI", "!0r,!1r,!2d" },
+ { kX86PextrwRRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0 | REG_USE1, { 0x66, 0, 0x0F, 0xC5, 0x00, 0, 0, 1, false }, "PextwRRI", "!0r,!1r,!2d" },
+ { kX86PextrdRRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0 | REG_USE1, { 0x66, 0, 0x0F, 0x3A, 0x16, 0, 0, 1, false }, "PextdRRI", "!0r,!1r,!2d" },
- { kX86PshuflwRRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0 | REG_USE1, { 0xF2, 0, 0x0F, 0x70, 0, 0, 0, 1 }, "PshuflwRRI", "!0r,!1r,!2d" },
- { kX86PshufdRRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0 | REG_USE1, { 0x66, 0, 0x0F, 0x70, 0, 0, 0, 1 }, "PshuffRRI", "!0r,!1r,!2d" },
+ { kX86PshuflwRRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0 | REG_USE1, { 0xF2, 0, 0x0F, 0x70, 0, 0, 0, 1, false }, "PshuflwRRI", "!0r,!1r,!2d" },
+ { kX86PshufdRRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0 | REG_USE1, { 0x66, 0, 0x0F, 0x70, 0, 0, 0, 1, false }, "PshuffRRI", "!0r,!1r,!2d" },
- { kX86PsrawRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x71, 0, 4, 0, 1 }, "PsrawRI", "!0r,!1d" },
- { kX86PsradRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x72, 0, 4, 0, 1 }, "PsradRI", "!0r,!1d" },
- { kX86PsrlwRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x71, 0, 2, 0, 1 }, "PsrlwRI", "!0r,!1d" },
- { kX86PsrldRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x72, 0, 2, 0, 1 }, "PsrldRI", "!0r,!1d" },
- { kX86PsrlqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 2, 0, 1 }, "PsrlqRI", "!0r,!1d" },
- { kX86PsllwRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x71, 0, 6, 0, 1 }, "PsllwRI", "!0r,!1d" },
- { kX86PslldRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x72, 0, 6, 0, 1 }, "PslldRI", "!0r,!1d" },
- { kX86PsllqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 6, 0, 1 }, "PsllqRI", "!0r,!1d" },
+ { kX86PsrawRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x71, 0, 4, 0, 1, false }, "PsrawRI", "!0r,!1d" },
+ { kX86PsradRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x72, 0, 4, 0, 1, false }, "PsradRI", "!0r,!1d" },
+ { kX86PsrlwRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x71, 0, 2, 0, 1, false }, "PsrlwRI", "!0r,!1d" },
+ { kX86PsrldRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x72, 0, 2, 0, 1, false }, "PsrldRI", "!0r,!1d" },
+ { kX86PsrlqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 2, 0, 1, false }, "PsrlqRI", "!0r,!1d" },
+ { kX86PsllwRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x71, 0, 6, 0, 1, false }, "PsllwRI", "!0r,!1d" },
+ { kX86PslldRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x72, 0, 6, 0, 1, false }, "PslldRI", "!0r,!1d" },
+ { kX86PsllqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 6, 0, 1, false }, "PsllqRI", "!0r,!1d" },
- { kX86Fild32M, kMem, IS_LOAD | IS_UNARY_OP | REG_USE0 | USE_FP_STACK, { 0x0, 0, 0xDB, 0x00, 0, 0, 0, 0 }, "Fild32M", "[!0r,!1d]" },
- { kX86Fild64M, kMem, IS_LOAD | IS_UNARY_OP | REG_USE0 | USE_FP_STACK, { 0x0, 0, 0xDF, 0x00, 0, 5, 0, 0 }, "Fild64M", "[!0r,!1d]" },
- { kX86Fstp32M, kMem, IS_STORE | IS_UNARY_OP | REG_USE0 | USE_FP_STACK, { 0x0, 0, 0xD9, 0x00, 0, 3, 0, 0 }, "FstpsM", "[!0r,!1d]" },
- { kX86Fstp64M, kMem, IS_STORE | IS_UNARY_OP | REG_USE0 | USE_FP_STACK, { 0x0, 0, 0xDD, 0x00, 0, 3, 0, 0 }, "FstpdM", "[!0r,!1d]" },
+ { kX86Fild32M, kMem, IS_LOAD | IS_UNARY_OP | REG_USE0 | USE_FP_STACK, { 0x0, 0, 0xDB, 0x00, 0, 0, 0, 0, false }, "Fild32M", "[!0r,!1d]" },
+ { kX86Fild64M, kMem, IS_LOAD | IS_UNARY_OP | REG_USE0 | USE_FP_STACK, { 0x0, 0, 0xDF, 0x00, 0, 5, 0, 0, false }, "Fild64M", "[!0r,!1d]" },
+ { kX86Fstp32M, kMem, IS_STORE | IS_UNARY_OP | REG_USE0 | USE_FP_STACK, { 0x0, 0, 0xD9, 0x00, 0, 3, 0, 0, false }, "FstpsM", "[!0r,!1d]" },
+ { kX86Fstp64M, kMem, IS_STORE | IS_UNARY_OP | REG_USE0 | USE_FP_STACK, { 0x0, 0, 0xDD, 0x00, 0, 3, 0, 0, false }, "FstpdM", "[!0r,!1d]" },
EXT_0F_ENCODING_MAP(Mova128, 0x66, 0x6F, REG_DEF0),
- { kX86Mova128MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x66, 0, 0x0F, 0x6F, 0, 0, 0, 0 }, "Mova128MR", "[!0r+!1d],!2r" },
- { kX86Mova128AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x66, 0, 0x0F, 0x6F, 0, 0, 0, 0 }, "Mova128AR", "[!0r+!1r<<!2d+!3d],!4r" },
+ { kX86Mova128MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x66, 0, 0x0F, 0x6F, 0, 0, 0, 0, false }, "Mova128MR", "[!0r+!1d],!2r" },
+ { kX86Mova128AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x66, 0, 0x0F, 0x6F, 0, 0, 0, 0, false }, "Mova128AR", "[!0r+!1r<<!2d+!3d],!4r" },
EXT_0F_ENCODING_MAP(Movups, 0x0, 0x10, REG_DEF0),
- { kX86MovupsMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x0, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovupsMR", "[!0r+!1d],!2r" },
- { kX86MovupsAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x0, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovupsAR", "[!0r+!1r<<!2d+!3d],!4r" },
+ { kX86MovupsMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x0, 0, 0x0F, 0x11, 0, 0, 0, 0, false }, "MovupsMR", "[!0r+!1d],!2r" },
+ { kX86MovupsAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x0, 0, 0x0F, 0x11, 0, 0, 0, 0, false }, "MovupsAR", "[!0r+!1r<<!2d+!3d],!4r" },
EXT_0F_ENCODING_MAP(Movaps, 0x0, 0x28, REG_DEF0),
- { kX86MovapsMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x0, 0, 0x0F, 0x29, 0, 0, 0, 0 }, "MovapsMR", "[!0r+!1d],!2r" },
- { kX86MovapsAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x0, 0, 0x0F, 0x29, 0, 0, 0, 0 }, "MovapsAR", "[!0r+!1r<<!2d+!3d],!4r" },
+ { kX86MovapsMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x0, 0, 0x0F, 0x29, 0, 0, 0, 0, false }, "MovapsMR", "[!0r+!1d],!2r" },
+ { kX86MovapsAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x0, 0, 0x0F, 0x29, 0, 0, 0, 0, false }, "MovapsAR", "[!0r+!1r<<!2d+!3d],!4r" },
- { kX86MovlpsRM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0 | REG_USE01, { 0x0, 0, 0x0F, 0x12, 0, 0, 0, 0 }, "MovlpsRM", "!0r,[!1r+!2d]" },
- { kX86MovlpsRA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0 | REG_USE012, { 0x0, 0, 0x0F, 0x12, 0, 0, 0, 0 }, "MovlpsRA", "!0r,[!1r+!2r<<!3d+!4d]" },
- { kX86MovlpsMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x0, 0, 0x0F, 0x13, 0, 0, 0, 0 }, "MovlpsMR", "[!0r+!1d],!2r" },
- { kX86MovlpsAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x0, 0, 0x0F, 0x13, 0, 0, 0, 0 }, "MovlpsAR", "[!0r+!1r<<!2d+!3d],!4r" },
+ { kX86MovlpsRM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0 | REG_USE01, { 0x0, 0, 0x0F, 0x12, 0, 0, 0, 0, false }, "MovlpsRM", "!0r,[!1r+!2d]" },
+ { kX86MovlpsRA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0 | REG_USE012, { 0x0, 0, 0x0F, 0x12, 0, 0, 0, 0, false }, "MovlpsRA", "!0r,[!1r+!2r<<!3d+!4d]" },
+ { kX86MovlpsMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x0, 0, 0x0F, 0x13, 0, 0, 0, 0, false }, "MovlpsMR", "[!0r+!1d],!2r" },
+ { kX86MovlpsAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x0, 0, 0x0F, 0x13, 0, 0, 0, 0, false }, "MovlpsAR", "[!0r+!1r<<!2d+!3d],!4r" },
- { kX86MovhpsRM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0 | REG_USE01, { 0x0, 0, 0x0F, 0x16, 0, 0, 0, 0 }, "MovhpsRM", "!0r,[!1r+!2d]" },
- { kX86MovhpsRA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0 | REG_USE012, { 0x0, 0, 0x0F, 0x16, 0, 0, 0, 0 }, "MovhpsRA", "!0r,[!1r+!2r<<!3d+!4d]" },
- { kX86MovhpsMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x0, 0, 0x0F, 0x17, 0, 0, 0, 0 }, "MovhpsMR", "[!0r+!1d],!2r" },
- { kX86MovhpsAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x0, 0, 0x0F, 0x17, 0, 0, 0, 0 }, "MovhpsAR", "[!0r+!1r<<!2d+!3d],!4r" },
+ { kX86MovhpsRM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0 | REG_USE01, { 0x0, 0, 0x0F, 0x16, 0, 0, 0, 0, false }, "MovhpsRM", "!0r,[!1r+!2d]" },
+ { kX86MovhpsRA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0 | REG_USE012, { 0x0, 0, 0x0F, 0x16, 0, 0, 0, 0, false }, "MovhpsRA", "!0r,[!1r+!2r<<!3d+!4d]" },
+ { kX86MovhpsMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x0, 0, 0x0F, 0x17, 0, 0, 0, 0, false }, "MovhpsMR", "[!0r+!1d],!2r" },
+ { kX86MovhpsAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x0, 0, 0x0F, 0x17, 0, 0, 0, 0, false }, "MovhpsAR", "[!0r+!1r<<!2d+!3d],!4r" },
EXT_0F_ENCODING_MAP(Movdxr, 0x66, 0x6E, REG_DEF0),
- { kX86MovdrxRR, kRegRegStore, IS_BINARY_OP | REG_DEF0 | REG_USE1, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxRR", "!0r,!1r" },
- { kX86MovdrxMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxMR", "[!0r+!1d],!2r" },
- { kX86MovdrxAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxAR", "[!0r+!1r<<!2d+!3d],!4r" },
+ EXT_0F_REX_W_ENCODING_MAP(Movqxr, 0x66, 0x6E, REG_DEF0),
+ { kX86MovqrxRR, kRegRegStore, IS_BINARY_OP | REG_DEF0 | REG_USE1, { 0x66, REX_W, 0x0F, 0x7E, 0, 0, 0, 0, false }, "MovqrxRR", "!0r,!1r" },
+ { kX86MovqrxMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x66, REX_W, 0x0F, 0x7E, 0, 0, 0, 0, false }, "MovqrxMR", "[!0r+!1d],!2r" },
+ { kX86MovqrxAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x66, REX_W, 0x0F, 0x7E, 0, 0, 0, 0, false }, "MovqrxAR", "[!0r+!1r<<!2d+!3d],!4r" },
+
+ { kX86MovdrxRR, kRegRegStore, IS_BINARY_OP | REG_DEF0 | REG_USE1, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0, false }, "MovdrxRR", "!0r,!1r" },
+ { kX86MovdrxMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0, false }, "MovdrxMR", "[!0r+!1d],!2r" },
+ { kX86MovdrxAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0, false }, "MovdrxAR", "[!0r+!1r<<!2d+!3d],!4r" },
+
+ { kX86MovsxdRR, kRegReg, IS_BINARY_OP | REG_DEF0 | REG_USE1, { REX_W, 0, 0x63, 0, 0, 0, 0, 0, false }, "MovsxdRR", "!0r,!1r" },
+ { kX86MovsxdRM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0 | REG_USE1, { REX_W, 0, 0x63, 0, 0, 0, 0, 0, false }, "MovsxdRM", "!0r,[!1r+!2d]" },
+ { kX86MovsxdRA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0 | REG_USE12, { REX_W, 0, 0x63, 0, 0, 0, 0, 0, false }, "MovsxdRA", "!0r,[!1r+!2r<<!3d+!4d]" },
- { kX86Set8R, kRegCond, IS_BINARY_OP | REG_DEF0 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8R", "!1c !0r" },
- { kX86Set8M, kMemCond, IS_STORE | IS_TERTIARY_OP | REG_USE0 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8M", "!2c [!0r+!1d]" },
- { kX86Set8A, kArrayCond, IS_STORE | IS_QUIN_OP | REG_USE01 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8A", "!4c [!0r+!1r<<!2d+!3d]" },
+ { kX86Set8R, kRegCond, IS_BINARY_OP | REG_DEF0 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0, true }, "Set8R", "!1c !0r" },
+ { kX86Set8M, kMemCond, IS_STORE | IS_TERTIARY_OP | REG_USE0 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0, false }, "Set8M", "!2c [!0r+!1d]" },
+ { kX86Set8A, kArrayCond, IS_STORE | IS_QUIN_OP | REG_USE01 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0, false }, "Set8A", "!4c [!0r+!1r<<!2d+!3d]" },
// TODO: load/store?
// Encode the modrm opcode as an extra opcode byte to avoid computation during assembly.
- { kX86Mfence, kReg, NO_OPERAND, { 0, 0, 0x0F, 0xAE, 0, 6, 0, 0 }, "Mfence", "" },
+ { kX86Mfence, kReg, NO_OPERAND, { 0, 0, 0x0F, 0xAE, 0, 6, 0, 0, false }, "Mfence", "" },
EXT_0F_ENCODING_MAP(Imul16, 0x66, 0xAF, REG_USE0 | REG_DEF0 | SETS_CCODES),
EXT_0F_ENCODING_MAP(Imul32, 0x00, 0xAF, REG_USE0 | REG_DEF0 | SETS_CCODES),
+ EXT_0F_ENCODING_MAP(Imul64, REX_W, 0xAF, REG_USE0 | REG_DEF0 | SETS_CCODES),
- { kX86CmpxchgRR, kRegRegStore, IS_BINARY_OP | REG_DEF0 | REG_USE01 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "!0r,!1r" },
- { kX86CmpxchgMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "[!0r+!1d],!2r" },
- { kX86CmpxchgAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" },
- { kX86LockCmpxchgMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Lock Cmpxchg", "[!0r+!1d],!2r" },
- { kX86LockCmpxchgAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Lock Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" },
- { kX86LockCmpxchg8bM, kMem, IS_STORE | IS_BINARY_OP | REG_USE0 | REG_DEFAD_USEAD | REG_USEC | REG_USEB | SETS_CCODES, { 0xF0, 0, 0x0F, 0xC7, 0, 1, 0, 0 }, "Lock Cmpxchg8b", "[!0r+!1d]" },
- { kX86LockCmpxchg8bA, kArray, IS_STORE | IS_QUAD_OP | REG_USE01 | REG_DEFAD_USEAD | REG_USEC | REG_USEB | SETS_CCODES, { 0xF0, 0, 0x0F, 0xC7, 0, 1, 0, 0 }, "Lock Cmpxchg8b", "[!0r+!1r<<!2d+!3d]" },
- { kX86XchgMR, kMemReg, IS_STORE | IS_LOAD | IS_TERTIARY_OP | REG_DEF2 | REG_USE02, { 0, 0, 0x87, 0, 0, 0, 0, 0 }, "Xchg", "[!0r+!1d],!2r" },
+ { kX86CmpxchgRR, kRegRegStore, IS_BINARY_OP | REG_DEF0 | REG_USE01 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0, false }, "Cmpxchg", "!0r,!1r" },
+ { kX86CmpxchgMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0, false }, "Cmpxchg", "[!0r+!1d],!2r" },
+ { kX86CmpxchgAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0, false }, "Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" },
+ { kX86LockCmpxchgMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0, false }, "Lock Cmpxchg", "[!0r+!1d],!2r" },
+ { kX86LockCmpxchgAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0, false }, "Lock Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" },
+ { kX86LockCmpxchg64M, kMem, IS_STORE | IS_BINARY_OP | REG_USE0 | REG_DEFAD_USEAD | REG_USEC | REG_USEB | SETS_CCODES, { 0xF0, 0, 0x0F, 0xC7, 0, 1, 0, 0, false }, "Lock Cmpxchg8b", "[!0r+!1d]" },
+ { kX86LockCmpxchg64A, kArray, IS_STORE | IS_QUAD_OP | REG_USE01 | REG_DEFAD_USEAD | REG_USEC | REG_USEB | SETS_CCODES, { 0xF0, 0, 0x0F, 0xC7, 0, 1, 0, 0, false }, "Lock Cmpxchg8b", "[!0r+!1r<<!2d+!3d]" },
+ { kX86XchgMR, kMemReg, IS_STORE | IS_LOAD | IS_TERTIARY_OP | REG_DEF2 | REG_USE02, { 0, 0, 0x87, 0, 0, 0, 0, 0, false }, "Xchg", "[!0r+!1d],!2r" },
EXT_0F_ENCODING_MAP(Movzx8, 0x00, 0xB6, REG_DEF0),
EXT_0F_ENCODING_MAP(Movzx16, 0x00, 0xB7, REG_DEF0),
@@ -458,28 +476,39 @@ ENCODING_MAP(Cmp, IS_LOAD, 0, 0,
EXT_0F_ENCODING_MAP(Movsx16, 0x00, 0xBF, REG_DEF0),
#undef EXT_0F_ENCODING_MAP
- { kX86Jcc8, kJcc, IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP | USES_CCODES, { 0, 0, 0x70, 0, 0, 0, 0, 0 }, "Jcc8", "!1c !0t" },
- { kX86Jcc32, kJcc, IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP | USES_CCODES, { 0, 0, 0x0F, 0x80, 0, 0, 0, 0 }, "Jcc32", "!1c !0t" },
- { kX86Jmp8, kJmp, IS_UNARY_OP | IS_BRANCH | NEEDS_FIXUP, { 0, 0, 0xEB, 0, 0, 0, 0, 0 }, "Jmp8", "!0t" },
- { kX86Jmp32, kJmp, IS_UNARY_OP | IS_BRANCH | NEEDS_FIXUP, { 0, 0, 0xE9, 0, 0, 0, 0, 0 }, "Jmp32", "!0t" },
- { kX86JmpR, kJmp, IS_UNARY_OP | IS_BRANCH | REG_USE0, { 0, 0, 0xFF, 0, 0, 4, 0, 0 }, "JmpR", "!0r" },
- { kX86Jecxz8, kJmp, NO_OPERAND | IS_BRANCH | NEEDS_FIXUP | REG_USEC, { 0, 0, 0xE3, 0, 0, 0, 0, 0 }, "Jecxz", "!0t" },
- { kX86JmpT, kJmp, IS_UNARY_OP | IS_BRANCH | IS_LOAD, { THREAD_PREFIX, 0, 0xFF, 0, 0, 4, 0, 0 }, "JmpT", "fs:[!0d]" },
- { kX86CallR, kCall, IS_UNARY_OP | IS_BRANCH | REG_USE0, { 0, 0, 0xE8, 0, 0, 0, 0, 0 }, "CallR", "!0r" },
- { kX86CallM, kCall, IS_BINARY_OP | IS_BRANCH | IS_LOAD | REG_USE0, { 0, 0, 0xFF, 0, 0, 2, 0, 0 }, "CallM", "[!0r+!1d]" },
- { kX86CallA, kCall, IS_QUAD_OP | IS_BRANCH | IS_LOAD | REG_USE01, { 0, 0, 0xFF, 0, 0, 2, 0, 0 }, "CallA", "[!0r+!1r<<!2d+!3d]" },
- { kX86CallT, kCall, IS_UNARY_OP | IS_BRANCH | IS_LOAD, { THREAD_PREFIX, 0, 0xFF, 0, 0, 2, 0, 0 }, "CallT", "fs:[!0d]" },
- { kX86CallI, kCall, IS_UNARY_OP | IS_BRANCH, { 0, 0, 0xE8, 0, 0, 0, 0, 4 }, "CallI", "!0d" },
- { kX86Ret, kNullary, NO_OPERAND | IS_BRANCH, { 0, 0, 0xC3, 0, 0, 0, 0, 0 }, "Ret", "" },
-
- { kX86StartOfMethod, kMacro, IS_UNARY_OP | SETS_CCODES, { 0, 0, 0, 0, 0, 0, 0, 0 }, "StartOfMethod", "!0r" },
- { kX86PcRelLoadRA, kPcRel, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "PcRelLoadRA", "!0r,[!1r+!2r<<!3d+!4p]" },
- { kX86PcRelAdr, kPcRel, IS_LOAD | IS_BINARY_OP | REG_DEF0, { 0, 0, 0xB8, 0, 0, 0, 0, 4 }, "PcRelAdr", "!0r,!1d" },
- { kX86RepneScasw, kPrefix2Nullary, NO_OPERAND | REG_USEA | REG_USEC | SETS_CCODES, { 0x66, 0xF2, 0xAF, 0, 0, 0, 0, 0 }, "RepNE ScasW", "" },
+ { kX86Jcc8, kJcc, IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP | USES_CCODES, { 0, 0, 0x70, 0, 0, 0, 0, 0, false }, "Jcc8", "!1c !0t" },
+ { kX86Jcc32, kJcc, IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP | USES_CCODES, { 0, 0, 0x0F, 0x80, 0, 0, 0, 0, false }, "Jcc32", "!1c !0t" },
+ { kX86Jmp8, kJmp, IS_UNARY_OP | IS_BRANCH | NEEDS_FIXUP, { 0, 0, 0xEB, 0, 0, 0, 0, 0, false }, "Jmp8", "!0t" },
+ { kX86Jmp32, kJmp, IS_UNARY_OP | IS_BRANCH | NEEDS_FIXUP, { 0, 0, 0xE9, 0, 0, 0, 0, 0, false }, "Jmp32", "!0t" },
+ { kX86JmpR, kJmp, IS_UNARY_OP | IS_BRANCH | REG_USE0, { 0, 0, 0xFF, 0, 0, 4, 0, 0, false }, "JmpR", "!0r" },
+ { kX86Jecxz8, kJmp, NO_OPERAND | IS_BRANCH | NEEDS_FIXUP | REG_USEC, { 0, 0, 0xE3, 0, 0, 0, 0, 0, false }, "Jecxz", "!0t" },
+ { kX86JmpT, kJmp, IS_UNARY_OP | IS_BRANCH | IS_LOAD, { THREAD_PREFIX, 0, 0xFF, 0, 0, 4, 0, 0, false }, "JmpT", "fs:[!0d]" },
+ { kX86CallR, kCall, IS_UNARY_OP | IS_BRANCH | REG_USE0, { 0, 0, 0xE8, 0, 0, 0, 0, 0, false }, "CallR", "!0r" },
+ { kX86CallM, kCall, IS_BINARY_OP | IS_BRANCH | IS_LOAD | REG_USE0, { 0, 0, 0xFF, 0, 0, 2, 0, 0, false }, "CallM", "[!0r+!1d]" },
+ { kX86CallA, kCall, IS_QUAD_OP | IS_BRANCH | IS_LOAD | REG_USE01, { 0, 0, 0xFF, 0, 0, 2, 0, 0, false }, "CallA", "[!0r+!1r<<!2d+!3d]" },
+ { kX86CallT, kCall, IS_UNARY_OP | IS_BRANCH | IS_LOAD, { THREAD_PREFIX, 0, 0xFF, 0, 0, 2, 0, 0, false }, "CallT", "fs:[!0d]" },
+ { kX86CallI, kCall, IS_UNARY_OP | IS_BRANCH, { 0, 0, 0xE8, 0, 0, 0, 0, 4, false }, "CallI", "!0d" },
+ { kX86Ret, kNullary, NO_OPERAND | IS_BRANCH, { 0, 0, 0xC3, 0, 0, 0, 0, 0, false }, "Ret", "" },
+
+ { kX86StartOfMethod, kMacro, IS_UNARY_OP | SETS_CCODES, { 0, 0, 0, 0, 0, 0, 0, 0, false }, "StartOfMethod", "!0r" },
+ { kX86PcRelLoadRA, kPcRel, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8B, 0, 0, 0, 0, 0, false }, "PcRelLoadRA", "!0r,[!1r+!2r<<!3d+!4p]" },
+ { kX86PcRelAdr, kPcRel, IS_LOAD | IS_BINARY_OP | REG_DEF0, { 0, 0, 0xB8, 0, 0, 0, 0, 4, false }, "PcRelAdr", "!0r,!1d" },
+ { kX86RepneScasw, kNullary, NO_OPERAND | REG_USEA | REG_USEC | SETS_CCODES, { 0x66, 0xF2, 0xAF, 0, 0, 0, 0, 0, false }, "RepNE ScasW", "" },
};
-size_t X86Mir2Lir::ComputeSize(const X86EncodingMap* entry, int base, int displacement,
- int reg_r, int reg_x, bool has_sib) {
+static bool NeedsRex(int32_t raw_reg) {
+ return RegStorage::RegNum(raw_reg) > 7;
+}
+
+static uint8_t LowRegisterBits(int32_t raw_reg) {
+ uint8_t low_reg = RegStorage::RegNum(raw_reg) & kRegNumMask32; // 3 bits
+ DCHECK_LT(low_reg, 8);
+ return low_reg;
+}
+
+size_t X86Mir2Lir::ComputeSize(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_index,
+ int32_t raw_base, bool has_sib, bool r8_form, bool r8_reg_reg_form,
+ int32_t displacement) {
size_t size = 0;
if (entry->skeleton.prefix1 > 0) {
++size;
@@ -487,9 +516,17 @@ size_t X86Mir2Lir::ComputeSize(const X86EncodingMap* entry, int base, int displa
++size;
}
}
- if ((NeedsRex(base) || NeedsRex(reg_r) || NeedsRex(reg_x)) &&
- entry->skeleton.prefix1 != REX_W && entry->skeleton.prefix2 != REX_W) {
- ++size; // REX_R
+ if (Gen64Bit() || kIsDebugBuild) {
+ bool registers_need_rex_prefix =
+ NeedsRex(raw_reg) || NeedsRex(raw_index) || NeedsRex(raw_base) ||
+ (r8_form && RegStorage::RegNum(raw_reg) > 4) ||
+ (r8_reg_reg_form && RegStorage::RegNum(raw_base) > 4);
+ if (registers_need_rex_prefix &&
+ entry->skeleton.prefix1 != REX_W && entry->skeleton.prefix2 != REX_W) {
+ DCHECK(Gen64Bit()) << "Attempt to use " << entry->name << " on a non-byte register "
+ << RegStorage::RegNum(raw_reg);
+ ++size; // rex
+ }
}
++size; // opcode
if (entry->skeleton.opcode == 0x0F) {
@@ -499,16 +536,16 @@ size_t X86Mir2Lir::ComputeSize(const X86EncodingMap* entry, int base, int displa
}
}
++size; // modrm
- if (has_sib || LowRegisterBits(RegStorage::RegNum(base)) == rs_rX86_SP.GetRegNum()
+ if (has_sib || LowRegisterBits(raw_base) == rs_rX86_SP.GetRegNum()
|| (Gen64Bit() && entry->skeleton.prefix1 == THREAD_PREFIX)) {
// SP requires a SIB byte.
// GS access also needs a SIB byte for absolute adressing in 64-bit mode.
++size;
}
- if (displacement != 0 || LowRegisterBits(RegStorage::RegNum(base)) == rs_rBP.GetRegNum()) {
+ if (displacement != 0 || LowRegisterBits(raw_base) == rs_rBP.GetRegNum()) {
// BP requires an explicit displacement, even when it's 0.
- if (entry->opcode != kX86Lea32RA) {
- DCHECK_NE(entry->flags & (IS_LOAD | IS_STORE), 0ULL) << entry->name;
+ if (entry->opcode != kX86Lea32RA && entry->opcode != kX86Lea64RA) {
+ DCHECK_NE(entry->flags & (IS_LOAD | IS_STORE), UINT64_C(0)) << entry->name;
}
size += IS_SIMM8(displacement) ? 1 : 4;
}
@@ -519,112 +556,153 @@ size_t X86Mir2Lir::ComputeSize(const X86EncodingMap* entry, int base, int displa
int X86Mir2Lir::GetInsnSize(LIR* lir) {
DCHECK(!IsPseudoLirOp(lir->opcode));
const X86EncodingMap* entry = &X86Mir2Lir::EncodingMap[lir->opcode];
+ DCHECK_EQ(entry->opcode, lir->opcode) << entry->name;
switch (entry->kind) {
case kData:
- return 4; // 4 bytes of data
+ return 4; // 4 bytes of data.
case kNop:
- return lir->operands[0]; // length of nop is sole operand
+ return lir->operands[0]; // Length of nop is sole operand.
case kNullary:
- return 1; // 1 byte of opcode
- case kPrefix2Nullary:
- return 3; // 1 byte of opcode + 2 prefixes
+ // Substract 1 for modrm which isn't used.
+ DCHECK_EQ(false, entry->skeleton.r8_form);
+ return ComputeSize(entry, NO_REG, NO_REG, NO_REG, false, false, false, 0) - 1;
case kRegOpcode: // lir operands - 0: reg
- // substract 1 for modrm
- return ComputeSize(entry, 0, 0, lir->operands[0], NO_REG, false) - 1;
+ // Substract 1 for modrm which isn't used.
+ DCHECK_EQ(false, entry->skeleton.r8_form);
+ // Note: RegOpcode form passes reg as REX_R but encodes it as REX_B.
+ return ComputeSize(entry, lir->operands[0], NO_REG, NO_REG, false, false, false, 0) - 1;
case kReg: // lir operands - 0: reg
- return ComputeSize(entry, 0, 0, lir->operands[0], NO_REG, false);
+ // Note: Reg form passes reg as REX_R but encodes it as REX_B.
+ return ComputeSize(entry, lir->operands[0], NO_REG, NO_REG,
+ false, entry->skeleton.r8_form, false, 0);
case kMem: // lir operands - 0: base, 1: disp
- return ComputeSize(entry, lir->operands[0], lir->operands[1], NO_REG, NO_REG, false);
+ DCHECK_EQ(false, entry->skeleton.r8_form);
+ return ComputeSize(entry, NO_REG, NO_REG, lir->operands[0], false, false, false,
+ lir->operands[1]);
case kArray: // lir operands - 0: base, 1: index, 2: scale, 3: disp
- return ComputeSize(entry, lir->operands[0], lir->operands[3],
- NO_REG, lir->operands[1], true);
+ return ComputeSize(entry, NO_REG, lir->operands[1], lir->operands[0], true, false, false,
+ lir->operands[3]);
case kMemReg: // lir operands - 0: base, 1: disp, 2: reg
- return ComputeSize(entry, lir->operands[0], lir->operands[1],
- lir->operands[2], NO_REG, false);
+ return ComputeSize(entry, lir->operands[2], NO_REG, lir->operands[0],
+ false, entry->skeleton.r8_form, false, lir->operands[1]);
case kMemRegImm: // lir operands - 0: base, 1: disp, 2: reg 3: immediate
- return ComputeSize(entry, lir->operands[0], lir->operands[1],
- lir->operands[2], NO_REG, false);
+ return ComputeSize(entry, lir->operands[2], NO_REG, lir->operands[0],
+ false, entry->skeleton.r8_form, false, lir->operands[1]);
case kArrayReg: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
- return ComputeSize(entry, lir->operands[0], lir->operands[3],
- lir->operands[4], lir->operands[1], true);
+ return ComputeSize(entry, lir->operands[4], lir->operands[1], lir->operands[0],
+ true, entry->skeleton.r8_form, false, lir->operands[3]);
case kThreadReg: // lir operands - 0: disp, 1: reg
- return ComputeSize(entry, 0, lir->operands[0], lir->operands[1], NO_REG, false);
+ DCHECK_EQ(false, entry->skeleton.r8_form);
+ // Thread displacement size is always 32bit.
+ return ComputeSize(entry, lir->operands[1], NO_REG, NO_REG, false, false, false,
+ 0x12345678);
case kRegReg: // lir operands - 0: reg1, 1: reg2
- return ComputeSize(entry, 0, 0, lir->operands[0], lir->operands[1], false);
+ // Note: RegReg form passes reg2 as index but encodes it using base.
+ return ComputeSize(entry, lir->operands[0], lir->operands[1], NO_REG,
+ false, entry->skeleton.r8_form, entry->skeleton.r8_form, 0);
case kRegRegStore: // lir operands - 0: reg2, 1: reg1
- return ComputeSize(entry, 0, 0, lir->operands[1], lir->operands[0], false);
+ // Note: RegRegStore form passes reg1 as index but encodes it using base.
+ return ComputeSize(entry, lir->operands[1], lir->operands[0], NO_REG,
+ false, entry->skeleton.r8_form, entry->skeleton.r8_form, 0);
case kRegMem: // lir operands - 0: reg, 1: base, 2: disp
- return ComputeSize(entry, lir->operands[1], lir->operands[2],
- lir->operands[0], NO_REG, false);
+ return ComputeSize(entry, lir->operands[0], NO_REG, lir->operands[1],
+ false, entry->skeleton.r8_form, false, lir->operands[2]);
case kRegArray: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp
- return ComputeSize(entry, lir->operands[1], lir->operands[4],
- lir->operands[0], lir->operands[2], true);
+ return ComputeSize(entry, lir->operands[0], lir->operands[2], lir->operands[1],
+ true, entry->skeleton.r8_form, false, lir->operands[4]);
case kRegThread: // lir operands - 0: reg, 1: disp
- // displacement size is always 32bit
- return ComputeSize(entry, 0, 0x12345678, lir->operands[0], NO_REG, false);
+ // Thread displacement size is always 32bit.
+ DCHECK_EQ(false, entry->skeleton.r8_form);
+ return ComputeSize(entry, lir->operands[0], NO_REG, NO_REG, false, false, false,
+ 0x12345678);
case kRegImm: { // lir operands - 0: reg, 1: immediate
- size_t size = ComputeSize(entry, 0, 0, lir->operands[0], NO_REG, false);
+ size_t size = ComputeSize(entry, lir->operands[0], NO_REG, NO_REG,
+ false, entry->skeleton.r8_form, false, 0);
+ // AX opcodes don't require the modrm byte.
if (entry->skeleton.ax_opcode == 0) {
return size;
} else {
- // AX opcodes don't require the modrm byte.
- int reg = lir->operands[0];
- return size - (RegStorage::RegNum(reg) == rs_rAX.GetRegNum() ? 1 : 0);
+ return size - (RegStorage::RegNum(lir->operands[0]) == rs_rAX.GetRegNum() ? 1 : 0);
}
}
case kMemImm: // lir operands - 0: base, 1: disp, 2: immediate
- return ComputeSize(entry, lir->operands[0], lir->operands[1],
- NO_REG, lir->operands[0], false);
+ DCHECK_EQ(false, entry->skeleton.r8_form);
+ return ComputeSize(entry, NO_REG, NO_REG, lir->operands[0],
+ false, false, false, lir->operands[1]);
case kArrayImm: // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate
- return ComputeSize(entry, lir->operands[0], lir->operands[3],
- NO_REG, lir->operands[1], true);
+ DCHECK_EQ(false, entry->skeleton.r8_form);
+ return ComputeSize(entry, NO_REG, lir->operands[1], lir->operands[0],
+ true, false, false, lir->operands[3]);
case kThreadImm: // lir operands - 0: disp, 1: imm
- // displacement size is always 32bit
- return ComputeSize(entry, 0, 0x12345678, NO_REG, NO_REG, false);
- case kRegRegImm: // lir operands - 0: reg, 1: reg, 2: imm
- case kRegRegImmRev:
- return ComputeSize(entry, 0, 0, lir->operands[0], lir->operands[1], false);
+ // Thread displacement size is always 32bit.
+ DCHECK_EQ(false, entry->skeleton.r8_form);
+ return ComputeSize(entry, NO_REG, NO_REG, NO_REG, false, false, false, 0x12345678);
+ case kRegRegImm: // lir operands - 0: reg1, 1: reg2, 2: imm
+ // Note: RegRegImm form passes reg2 as index but encodes it using base.
+ return ComputeSize(entry, lir->operands[0], lir->operands[1], NO_REG,
+ false, entry->skeleton.r8_form, entry->skeleton.r8_form, 0);
+ case kRegRegImmStore: // lir operands - 0: reg2, 1: reg1, 2: imm
+ // Note: RegRegImmStore form passes reg1 as index but encodes it using base.
+ return ComputeSize(entry, lir->operands[1], lir->operands[0], NO_REG,
+ false, entry->skeleton.r8_form, entry->skeleton.r8_form, 0);
case kRegMemImm: // lir operands - 0: reg, 1: base, 2: disp, 3: imm
- return ComputeSize(entry, lir->operands[1], lir->operands[2],
- lir->operands[0], NO_REG, false);
+ return ComputeSize(entry, lir->operands[0], NO_REG, lir->operands[1],
+ false, entry->skeleton.r8_form, false, lir->operands[2]);
case kRegArrayImm: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp, 5: imm
- return ComputeSize(entry, lir->operands[1], lir->operands[4],
- lir->operands[0], lir->operands[2], true);
+ return ComputeSize(entry, lir->operands[0], lir->operands[2], lir->operands[1],
+ true, entry->skeleton.r8_form, false, lir->operands[4]);
case kMovRegImm: // lir operands - 0: reg, 1: immediate
- return (entry->skeleton.prefix1 != 0 || NeedsRex(lir->operands[0])?1:0) +
- 1 + entry->skeleton.immediate_bytes;
+ return ((entry->skeleton.prefix1 != 0 || NeedsRex(lir->operands[0])) ? 1 : 0) + 1 +
+ entry->skeleton.immediate_bytes;
case kShiftRegImm: // lir operands - 0: reg, 1: immediate
// Shift by immediate one has a shorter opcode.
- return ComputeSize(entry, 0, 0, lir->operands[0], NO_REG, false) -
- (lir->operands[1] == 1 ? 1 : 0);
+ return ComputeSize(entry, lir->operands[0], NO_REG, NO_REG,
+ false, entry->skeleton.r8_form, false, 0) -
+ (lir->operands[1] == 1 ? 1 : 0);
case kShiftMemImm: // lir operands - 0: base, 1: disp, 2: immediate
// Shift by immediate one has a shorter opcode.
- return ComputeSize(entry, lir->operands[0], lir->operands[1], NO_REG, NO_REG, false) -
- (lir->operands[2] == 1 ? 1 : 0);
+ return ComputeSize(entry, NO_REG, NO_REG, lir->operands[0],
+ false, entry->skeleton.r8_form, false, lir->operands[1]) -
+ (lir->operands[2] == 1 ? 1 : 0);
case kShiftArrayImm: // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate
// Shift by immediate one has a shorter opcode.
- return ComputeSize(entry, lir->operands[0], lir->operands[3],
- NO_REG, lir->operands[1], true) -
- (lir->operands[4] == 1 ? 1 : 0);
+ return ComputeSize(entry, NO_REG, lir->operands[1], lir->operands[0],
+ true, entry->skeleton.r8_form, false, lir->operands[3]) -
+ (lir->operands[4] == 1 ? 1 : 0);
case kShiftRegCl: // lir operands - 0: reg, 1: cl
- return ComputeSize(entry, 0, 0, lir->operands[0], NO_REG, false);
+ DCHECK_EQ(rs_rCX.GetRegNum(), RegStorage::RegNum(lir->operands[1]));
+ // Note: ShiftRegCl form passes reg as reg but encodes it using base.
+ return ComputeSize(entry, lir->operands[0], NO_REG, NO_REG,
+ false, entry->skeleton.r8_form, false, 0);
case kShiftMemCl: // lir operands - 0: base, 1: disp, 2: cl
- return ComputeSize(entry, lir->operands[0], lir->operands[1], NO_REG, NO_REG, false);
- case kShiftArrayCl: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
- return ComputeSize(entry, lir->operands[0], lir->operands[3],
- lir->operands[4], lir->operands[1], true);
+ DCHECK_EQ(false, entry->skeleton.r8_form);
+ DCHECK_EQ(rs_rCX.GetRegNum(), RegStorage::RegNum(lir->operands[2]));
+ return ComputeSize(entry, NO_REG, NO_REG, lir->operands[0],
+ false, false, false, lir->operands[1]);
+ case kShiftArrayCl: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: cl
+ DCHECK_EQ(false, entry->skeleton.r8_form);
+ DCHECK_EQ(rs_rCX.GetRegNum(), RegStorage::RegNum(lir->operands[4]));
+ return ComputeSize(entry, lir->operands[4], lir->operands[1], lir->operands[0],
+ true, false, false, lir->operands[3]);
case kRegCond: // lir operands - 0: reg, 1: cond
- return ComputeSize(entry, 0, 0, lir->operands[0], NO_REG, false);
+ return ComputeSize(entry, lir->operands[0], NO_REG, NO_REG,
+ false, entry->skeleton.r8_form, false, 0);
case kMemCond: // lir operands - 0: base, 1: disp, 2: cond
- return ComputeSize(entry, lir->operands[0], lir->operands[1], NO_REG, NO_REG, false);
+ DCHECK_EQ(false, entry->skeleton.r8_form);
+ return ComputeSize(entry, NO_REG, NO_REG, lir->operands[0], false, false, false,
+ lir->operands[1]);
case kArrayCond: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: cond
- return ComputeSize(entry, lir->operands[0], lir->operands[3],
- NO_REG, lir->operands[1], true);
- case kRegRegCond: // lir operands - 0: reg, 1: reg, 2: cond
- return ComputeSize(entry, 0, 0, lir->operands[0], lir->operands[1], false);
- case kRegMemCond: // lir operands - 0: reg, 1: reg, 2: disp, 3:cond
- return ComputeSize(entry, lir->operands[1], lir->operands[2],
- lir->operands[0], lir->operands[1], false);
+ DCHECK_EQ(false, entry->skeleton.r8_form);
+ return ComputeSize(entry, NO_REG, lir->operands[1], lir->operands[0], true, false, false,
+ lir->operands[3]);
+ case kRegRegCond: // lir operands - 0: reg1, 1: reg2, 2: cond
+ // Note: RegRegCond form passes reg2 as index but encodes it using base.
+ DCHECK_EQ(false, entry->skeleton.r8_form);
+ return ComputeSize(entry, lir->operands[0], lir->operands[1], NO_REG, false, false, false, 0);
+ case kRegMemCond: // lir operands - 0: reg, 1: base, 2: disp, 3:cond
+ DCHECK_EQ(false, entry->skeleton.r8_form);
+ return ComputeSize(entry, lir->operands[0], NO_REG, lir->operands[1], false, false, false,
+ lir->operands[2]);
case kJcc:
if (lir->opcode == kX86Jcc8) {
return 2; // opcode + rel8
@@ -638,8 +716,8 @@ int X86Mir2Lir::GetInsnSize(LIR* lir) {
} else if (lir->opcode == kX86Jmp32) {
return 5; // opcode + rel32
} else if (lir->opcode == kX86JmpT) {
- // displacement size is always 32bit
- return ComputeSize(entry, 0, 0x12345678, NO_REG, NO_REG, false);
+ // Thread displacement size is always 32bit.
+ return ComputeSize(entry, NO_REG, NO_REG, NO_REG, false, false, false, 0x12345678);
} else {
DCHECK(lir->opcode == kX86JmpR);
if (NeedsRex(lir->operands[0])) {
@@ -653,13 +731,14 @@ int X86Mir2Lir::GetInsnSize(LIR* lir) {
case kX86CallI: return 5; // opcode 0:disp
case kX86CallR: return 2; // opcode modrm
case kX86CallM: // lir operands - 0: base, 1: disp
- return ComputeSize(entry, lir->operands[0], lir->operands[1], NO_REG, NO_REG, false);
+ return ComputeSize(entry, NO_REG, NO_REG, lir->operands[0], false, false, false,
+ lir->operands[1]);
case kX86CallA: // lir operands - 0: base, 1: index, 2: scale, 3: disp
- return ComputeSize(entry, lir->operands[0], lir->operands[3],
- NO_REG, lir->operands[1], true);
+ return ComputeSize(entry, NO_REG, lir->operands[1], lir->operands[0], true, false, false,
+ lir->operands[3]);
case kX86CallT: // lir operands - 0: disp
- // displacement size is always 32bit
- return ComputeSize(entry, 0, 0x12345678, NO_REG, NO_REG, false);
+ // Thread displacement size is always 32bit.
+ return ComputeSize(entry, NO_REG, NO_REG, NO_REG, false, false, false, 0x12345678);
default:
break;
}
@@ -667,43 +746,76 @@ int X86Mir2Lir::GetInsnSize(LIR* lir) {
case kPcRel:
if (entry->opcode == kX86PcRelLoadRA) {
// lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: table
- return ComputeSize(entry, lir->operands[1], 0x12345678,
- lir->operands[0], lir->operands[2], true);
+ // Force the displacement size to 32bit, it will hold a computed offset later.
+ return ComputeSize(entry, lir->operands[0], lir->operands[2], lir->operands[1],
+ true, false, false, 0x12345678);
} else {
- DCHECK(entry->opcode == kX86PcRelAdr);
+ DCHECK_EQ(entry->opcode, kX86PcRelAdr);
return 5; // opcode with reg + 4 byte immediate
}
case kMacro: // lir operands - 0: reg
DCHECK_EQ(lir->opcode, static_cast<int>(kX86StartOfMethod));
return 5 /* call opcode + 4 byte displacement */ + 1 /* pop reg */ +
- ComputeSize(&X86Mir2Lir::EncodingMap[kX86Sub32RI], 0, 0,
- lir->operands[0], NO_REG, false) -
- // shorter ax encoding
- (RegStorage::RegNum(lir->operands[0]) == rs_rAX.GetRegNum() ? 1 : 0);
- default:
+ ComputeSize(&X86Mir2Lir::EncodingMap[Gen64Bit() ? kX86Sub64RI : kX86Sub32RI],
+ lir->operands[0], NO_REG, NO_REG, false, false, false, 0) -
+ // Shorter ax encoding.
+ (RegStorage::RegNum(lir->operands[0]) == rs_rAX.GetRegNum() ? 1 : 0);
+ case kUnimplemented:
break;
}
UNIMPLEMENTED(FATAL) << "Unimplemented size encoding for: " << entry->name;
return 0;
}
-void X86Mir2Lir::EmitPrefix(const X86EncodingMap* entry) {
- EmitPrefix(entry, NO_REG, NO_REG, NO_REG);
+static uint8_t ModrmForDisp(int base, int disp) {
+ // BP requires an explicit disp, so do not omit it in the 0 case
+ if (disp == 0 && RegStorage::RegNum(base) != rs_rBP.GetRegNum()) {
+ return 0;
+ } else if (IS_SIMM8(disp)) {
+ return 1;
+ } else {
+ return 2;
+ }
+}
+
+void X86Mir2Lir::CheckValidByteRegister(const X86EncodingMap* entry, int32_t raw_reg) {
+ if (kIsDebugBuild) {
+ // Sanity check r8_form is correctly specified.
+ if (entry->skeleton.r8_form) {
+ CHECK(strchr(entry->name, '8') != nullptr) << entry->name;
+ } else {
+ if (entry->skeleton.immediate_bytes != 1) { // Ignore ...I8 instructions.
+ if (!StartsWith(entry->name, "Movzx8") && !StartsWith(entry->name, "Movsx8")) {
+ CHECK(strchr(entry->name, '8') == nullptr) << entry->name;
+ }
+ }
+ }
+ if (RegStorage::RegNum(raw_reg) >= 4) {
+ // ah, bh, ch and dh are not valid registers in 32-bit.
+ CHECK(Gen64Bit() || !entry->skeleton.r8_form)
+ << "Invalid register " << static_cast<int>(RegStorage::RegNum(raw_reg))
+ << " for instruction " << entry->name << " in "
+ << PrettyMethod(cu_->method_idx, *cu_->dex_file);
+ }
+ }
}
void X86Mir2Lir::EmitPrefix(const X86EncodingMap* entry,
- uint8_t reg_r, uint8_t reg_x, uint8_t reg_b) {
+ int32_t raw_reg_r, int32_t raw_reg_x, int32_t raw_reg_b,
+ bool r8_form) {
// REX.WRXB
// W - 64-bit operand
// R - MODRM.reg
// X - SIB.index
// B - MODRM.rm/SIB.base
- bool force = false;
bool w = (entry->skeleton.prefix1 == REX_W) || (entry->skeleton.prefix2 == REX_W);
- bool r = NeedsRex(reg_r);
- bool x = NeedsRex(reg_x);
- bool b = NeedsRex(reg_b);
- uint8_t rex = force ? 0x40 : 0;
+ bool r = NeedsRex(raw_reg_r);
+ bool x = NeedsRex(raw_reg_x);
+ bool b = NeedsRex(raw_reg_b);
+ uint8_t rex = 0;
+ if (r8_form && RegStorage::RegNum(raw_reg_r) > 4) {
+ rex |= 0x40; // REX.0000
+ }
if (w) {
rex |= 0x48; // REX.W000
}
@@ -718,7 +830,7 @@ void X86Mir2Lir::EmitPrefix(const X86EncodingMap* entry,
}
if (entry->skeleton.prefix1 != 0) {
if (Gen64Bit() && entry->skeleton.prefix1 == THREAD_PREFIX) {
- // 64 bit adresses by GS, not FS
+ // 64 bit addresses by GS, not FS.
code_buffer_.push_back(THREAD_PREFIX_GS);
} else {
if (entry->skeleton.prefix1 == REX_W) {
@@ -742,6 +854,7 @@ void X86Mir2Lir::EmitPrefix(const X86EncodingMap* entry,
DCHECK_EQ(0, entry->skeleton.prefix2);
}
if (rex != 0) {
+ DCHECK(Gen64Bit());
code_buffer_.push_back(rex);
}
}
@@ -761,28 +874,14 @@ void X86Mir2Lir::EmitOpcode(const X86EncodingMap* entry) {
}
}
-void X86Mir2Lir::EmitPrefixAndOpcode(const X86EncodingMap* entry) {
- EmitPrefixAndOpcode(entry, NO_REG, NO_REG, NO_REG);
-}
-
void X86Mir2Lir::EmitPrefixAndOpcode(const X86EncodingMap* entry,
- uint8_t reg_r, uint8_t reg_x, uint8_t reg_b) {
- EmitPrefix(entry, reg_r, reg_x, reg_b);
+ int32_t raw_reg_r, int32_t raw_reg_x, int32_t raw_reg_b,
+ bool r8_form) {
+ EmitPrefix(entry, raw_reg_r, raw_reg_x, raw_reg_b, r8_form);
EmitOpcode(entry);
}
-static uint8_t ModrmForDisp(int base, int disp) {
- // BP requires an explicit disp, so do not omit it in the 0 case
- if (disp == 0 && RegStorage::RegNum(base) != rs_rBP.GetRegNum()) {
- return 0;
- } else if (IS_SIMM8(disp)) {
- return 1;
- } else {
- return 2;
- }
-}
-
-void X86Mir2Lir::EmitDisp(uint8_t base, int disp) {
+void X86Mir2Lir::EmitDisp(uint8_t base, int32_t disp) {
// BP requires an explicit disp, so do not omit it in the 0 case
if (disp == 0 && RegStorage::RegNum(base) != rs_rBP.GetRegNum()) {
return;
@@ -809,13 +908,12 @@ void X86Mir2Lir::EmitModrmThread(uint8_t reg_or_opcode) {
}
}
-void X86Mir2Lir::EmitModrmDisp(uint8_t reg_or_opcode, uint8_t base, int disp) {
- DCHECK_LT(RegStorage::RegNum(reg_or_opcode), 8);
- DCHECK_LT(RegStorage::RegNum(base), 8);
- uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (RegStorage::RegNum(reg_or_opcode) << 3) |
- RegStorage::RegNum(base);
+void X86Mir2Lir::EmitModrmDisp(uint8_t reg_or_opcode, uint8_t base, int32_t disp) {
+ DCHECK_LT(reg_or_opcode, 8);
+ DCHECK_LT(base, 8);
+ uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (reg_or_opcode << 3) | base;
code_buffer_.push_back(modrm);
- if (RegStorage::RegNum(base) == rs_rX86_SP.GetRegNum()) {
+ if (base == rs_rX86_SP.GetRegNum()) {
// Special SIB for SP base
code_buffer_.push_back(0 << 6 | rs_rX86_SP.GetRegNum() << 3 | rs_rX86_SP.GetRegNum());
}
@@ -823,7 +921,7 @@ void X86Mir2Lir::EmitModrmDisp(uint8_t reg_or_opcode, uint8_t base, int disp) {
}
void X86Mir2Lir::EmitModrmSibDisp(uint8_t reg_or_opcode, uint8_t base, uint8_t index,
- int scale, int disp) {
+ int scale, int32_t disp) {
DCHECK_LT(RegStorage::RegNum(reg_or_opcode), 8);
uint8_t modrm = (ModrmForDisp(base, disp) << 6) | RegStorage::RegNum(reg_or_opcode) << 3 |
rs_rX86_SP.GetRegNum();
@@ -848,11 +946,7 @@ void X86Mir2Lir::EmitImm(const X86EncodingMap* entry, int64_t imm) {
code_buffer_.push_back((imm >> 8) & 0xFF);
break;
case 4:
- if (imm <0) {
- CHECK_EQ((-imm) & 0x0FFFFFFFFl, -imm);
- } else {
- CHECK_EQ(imm & 0x0FFFFFFFFl, imm);
- }
+ DCHECK(IS_SIMM32(imm));
code_buffer_.push_back(imm & 0xFF);
code_buffer_.push_back((imm >> 8) & 0xFF);
code_buffer_.push_back((imm >> 16) & 0xFF);
@@ -875,128 +969,126 @@ void X86Mir2Lir::EmitImm(const X86EncodingMap* entry, int64_t imm) {
}
}
-void X86Mir2Lir::EmitOpRegOpcode(const X86EncodingMap* entry, uint8_t reg) {
- EmitPrefixAndOpcode(entry, reg, NO_REG, NO_REG);
- reg = LowRegisterBits(reg);
+void X86Mir2Lir::EmitNullary(const X86EncodingMap* entry) {
+ DCHECK_EQ(false, entry->skeleton.r8_form);
+ EmitPrefixAndOpcode(entry, NO_REG, NO_REG, NO_REG, false);
+ DCHECK_EQ(0, entry->skeleton.modrm_opcode);
+ DCHECK_EQ(0, entry->skeleton.ax_opcode);
+ DCHECK_EQ(0, entry->skeleton.immediate_bytes);
+}
+
+void X86Mir2Lir::EmitOpRegOpcode(const X86EncodingMap* entry, int32_t raw_reg) {
+ DCHECK_EQ(false, entry->skeleton.r8_form);
+ EmitPrefixAndOpcode(entry, NO_REG, NO_REG, raw_reg, false);
// There's no 3-byte instruction with +rd
DCHECK(entry->skeleton.opcode != 0x0F ||
(entry->skeleton.extra_opcode1 != 0x38 && entry->skeleton.extra_opcode1 != 0x3A));
- DCHECK(!RegStorage::IsFloat(reg));
- DCHECK_LT(RegStorage::RegNum(reg), 8);
- code_buffer_.back() += RegStorage::RegNum(reg);
+ DCHECK(!RegStorage::IsFloat(raw_reg));
+ uint8_t low_reg = LowRegisterBits(raw_reg);
+ code_buffer_.back() += low_reg;
DCHECK_EQ(0, entry->skeleton.ax_opcode);
DCHECK_EQ(0, entry->skeleton.immediate_bytes);
}
-void X86Mir2Lir::EmitOpReg(const X86EncodingMap* entry, uint8_t reg) {
- EmitPrefixAndOpcode(entry, reg, NO_REG, NO_REG);
- reg = LowRegisterBits(reg);
- if (RegStorage::RegNum(reg) >= 4) {
- DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " "
- << static_cast<int>(RegStorage::RegNum(reg))
- << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
- }
- DCHECK_LT(RegStorage::RegNum(reg), 8);
- uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | RegStorage::RegNum(reg);
+void X86Mir2Lir::EmitOpReg(const X86EncodingMap* entry, int32_t raw_reg) {
+ CheckValidByteRegister(entry, raw_reg);
+ EmitPrefixAndOpcode(entry, NO_REG, NO_REG, raw_reg, entry->skeleton.r8_form);
+ uint8_t low_reg = LowRegisterBits(raw_reg);
+ uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | low_reg;
code_buffer_.push_back(modrm);
DCHECK_EQ(0, entry->skeleton.ax_opcode);
DCHECK_EQ(0, entry->skeleton.immediate_bytes);
}
-void X86Mir2Lir::EmitOpMem(const X86EncodingMap* entry, uint8_t base, int disp) {
- EmitPrefix(entry, NO_REG, NO_REG, base);
- base = LowRegisterBits(base);
+void X86Mir2Lir::EmitOpMem(const X86EncodingMap* entry, int32_t raw_base, int32_t disp) {
+ DCHECK_EQ(false, entry->skeleton.r8_form);
+ EmitPrefix(entry, NO_REG, NO_REG, raw_base, false);
code_buffer_.push_back(entry->skeleton.opcode);
DCHECK_NE(0x0F, entry->skeleton.opcode);
DCHECK_EQ(0, entry->skeleton.extra_opcode1);
DCHECK_EQ(0, entry->skeleton.extra_opcode2);
- EmitModrmDisp(entry->skeleton.modrm_opcode, base, disp);
+ uint8_t low_base = LowRegisterBits(raw_base);
+ EmitModrmDisp(entry->skeleton.modrm_opcode, low_base, disp);
DCHECK_EQ(0, entry->skeleton.ax_opcode);
DCHECK_EQ(0, entry->skeleton.immediate_bytes);
}
-void X86Mir2Lir::EmitOpArray(const X86EncodingMap* entry, uint8_t base, uint8_t index,
- int scale, int disp) {
- EmitPrefixAndOpcode(entry, NO_REG, index, base);
- index = LowRegisterBits(index);
- base = LowRegisterBits(base);
- EmitModrmSibDisp(entry->skeleton.modrm_opcode, base, index, scale, disp);
+void X86Mir2Lir::EmitOpArray(const X86EncodingMap* entry, int32_t raw_base, int32_t raw_index,
+ int scale, int32_t disp) {
+ DCHECK_EQ(false, entry->skeleton.r8_form);
+ EmitPrefixAndOpcode(entry, NO_REG, raw_index, raw_base, false);
+ uint8_t low_index = LowRegisterBits(raw_index);
+ uint8_t low_base = LowRegisterBits(raw_base);
+ EmitModrmSibDisp(entry->skeleton.modrm_opcode, low_base, low_index, scale, disp);
DCHECK_EQ(0, entry->skeleton.ax_opcode);
DCHECK_EQ(0, entry->skeleton.immediate_bytes);
}
-uint8_t X86Mir2Lir::LowRegisterBits(uint8_t reg) {
- uint8_t res = reg;
- res = reg & kRegNumMask32; // 3 bits
- return res;
-}
-
-bool X86Mir2Lir::NeedsRex(uint8_t reg) {
- return RegStorage::RegNum(reg) > 7;
-}
-
-void X86Mir2Lir::EmitMemReg(const X86EncodingMap* entry,
- uint8_t base, int disp, uint8_t reg) {
- EmitPrefixAndOpcode(entry, reg, NO_REG, base);
- reg = LowRegisterBits(reg);
- base = LowRegisterBits(base);
- if (RegStorage::RegNum(reg) >= 4) {
- DCHECK(strchr(entry->name, '8') == NULL ||
- entry->opcode == kX86Movzx8RM || entry->opcode == kX86Movsx8RM)
- << entry->name << " " << static_cast<int>(RegStorage::RegNum(reg))
- << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
- }
- EmitModrmDisp(reg, base, disp);
+void X86Mir2Lir::EmitMemReg(const X86EncodingMap* entry, int32_t raw_base, int32_t disp,
+ int32_t raw_reg) {
+ CheckValidByteRegister(entry, raw_reg);
+ EmitPrefixAndOpcode(entry, raw_reg, NO_REG, raw_base, entry->skeleton.r8_form);
+ uint8_t low_reg = LowRegisterBits(raw_reg);
+ uint8_t low_base = LowRegisterBits(raw_base);
+ EmitModrmDisp(low_reg, low_base, disp);
DCHECK_EQ(0, entry->skeleton.modrm_opcode);
DCHECK_EQ(0, entry->skeleton.ax_opcode);
DCHECK_EQ(0, entry->skeleton.immediate_bytes);
}
-void X86Mir2Lir::EmitRegMem(const X86EncodingMap* entry,
- uint8_t reg, uint8_t base, int disp) {
+void X86Mir2Lir::EmitRegMem(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_base,
+ int32_t disp) {
// Opcode will flip operands.
- EmitMemReg(entry, base, disp, reg);
+ EmitMemReg(entry, raw_base, disp, raw_reg);
}
-void X86Mir2Lir::EmitRegArray(const X86EncodingMap* entry, uint8_t reg, uint8_t base,
- uint8_t index, int scale, int disp) {
- EmitPrefixAndOpcode(entry, reg, index, base);
- reg = LowRegisterBits(reg);
- index = LowRegisterBits(index);
- base = LowRegisterBits(base);
- EmitModrmSibDisp(reg, base, index, scale, disp);
+void X86Mir2Lir::EmitRegArray(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_base,
+ int32_t raw_index, int scale, int32_t disp) {
+ CheckValidByteRegister(entry, raw_reg);
+ EmitPrefixAndOpcode(entry, raw_reg, raw_index, raw_base, entry->skeleton.r8_form);
+ uint8_t low_reg = LowRegisterBits(raw_reg);
+ uint8_t low_index = LowRegisterBits(raw_index);
+ uint8_t low_base = LowRegisterBits(raw_base);
+ EmitModrmSibDisp(low_reg, low_base, low_index, scale, disp);
DCHECK_EQ(0, entry->skeleton.modrm_opcode);
DCHECK_EQ(0, entry->skeleton.ax_opcode);
DCHECK_EQ(0, entry->skeleton.immediate_bytes);
}
-void X86Mir2Lir::EmitArrayReg(const X86EncodingMap* entry, uint8_t base, uint8_t index, int scale,
- int disp, uint8_t reg) {
+void X86Mir2Lir::EmitArrayReg(const X86EncodingMap* entry, int32_t raw_base, int32_t raw_index,
+ int scale, int32_t disp, int32_t raw_reg) {
// Opcode will flip operands.
- EmitRegArray(entry, reg, base, index, scale, disp);
+ EmitRegArray(entry, raw_reg, raw_base, raw_index, scale, disp);
+}
+
+void X86Mir2Lir::EmitMemImm(const X86EncodingMap* entry, int32_t raw_base, int32_t disp,
+ int32_t imm) {
+ DCHECK_EQ(false, entry->skeleton.r8_form);
+ EmitPrefixAndOpcode(entry, NO_REG, NO_REG, raw_base, false);
+ uint8_t low_base = LowRegisterBits(raw_base);
+ EmitModrmDisp(entry->skeleton.modrm_opcode, low_base, disp);
+ DCHECK_EQ(0, entry->skeleton.ax_opcode);
+ EmitImm(entry, imm);
}
-void X86Mir2Lir::EmitArrayImm(const X86EncodingMap* entry, uint8_t base, uint8_t index, int scale,
- int disp, int32_t imm) {
- EmitPrefixAndOpcode(entry, NO_REG, index, base);
- index = LowRegisterBits(index);
- base = LowRegisterBits(base);
- EmitModrmSibDisp(entry->skeleton.modrm_opcode, base, index, scale, disp);
+void X86Mir2Lir::EmitArrayImm(const X86EncodingMap* entry,
+ int32_t raw_base, int32_t raw_index, int scale, int32_t disp,
+ int32_t imm) {
+ DCHECK_EQ(false, entry->skeleton.r8_form);
+ EmitPrefixAndOpcode(entry, NO_REG, raw_index, raw_base, false);
+ uint8_t low_index = LowRegisterBits(raw_index);
+ uint8_t low_base = LowRegisterBits(raw_base);
+ EmitModrmSibDisp(entry->skeleton.modrm_opcode, low_base, low_index, scale, disp);
DCHECK_EQ(0, entry->skeleton.ax_opcode);
EmitImm(entry, imm);
}
-void X86Mir2Lir::EmitRegThread(const X86EncodingMap* entry, uint8_t reg, int disp) {
+void X86Mir2Lir::EmitRegThread(const X86EncodingMap* entry, int32_t raw_reg, int32_t disp) {
+ DCHECK_EQ(false, entry->skeleton.r8_form);
DCHECK_NE(entry->skeleton.prefix1, 0);
- EmitPrefixAndOpcode(entry, reg, NO_REG, NO_REG);
- reg = LowRegisterBits(reg);
- if (RegStorage::RegNum(reg) >= 4) {
- DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " "
- << static_cast<int>(RegStorage::RegNum(reg))
- << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
- }
- DCHECK_LT(RegStorage::RegNum(reg), 8);
- EmitModrmThread(RegStorage::RegNum(reg));
+ EmitPrefixAndOpcode(entry, raw_reg, NO_REG, NO_REG, false);
+ uint8_t low_reg = LowRegisterBits(raw_reg);
+ EmitModrmThread(low_reg);
code_buffer_.push_back(disp & 0xFF);
code_buffer_.push_back((disp >> 8) & 0xFF);
code_buffer_.push_back((disp >> 16) & 0xFF);
@@ -1006,79 +1098,67 @@ void X86Mir2Lir::EmitRegThread(const X86EncodingMap* entry, uint8_t reg, int dis
DCHECK_EQ(0, entry->skeleton.immediate_bytes);
}
-void X86Mir2Lir::EmitRegReg(const X86EncodingMap* entry, uint8_t reg1, uint8_t reg2) {
- EmitPrefixAndOpcode(entry, reg1, NO_REG, reg2);
- reg1 = LowRegisterBits(reg1);
- reg2 = LowRegisterBits(reg2);
- DCHECK_LT(RegStorage::RegNum(reg1), 8);
- DCHECK_LT(RegStorage::RegNum(reg2), 8);
- uint8_t modrm = (3 << 6) | (RegStorage::RegNum(reg1) << 3) | RegStorage::RegNum(reg2);
+void X86Mir2Lir::EmitRegReg(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2) {
+ CheckValidByteRegister(entry, raw_reg1);
+ CheckValidByteRegister(entry, raw_reg2);
+ EmitPrefixAndOpcode(entry, raw_reg1, NO_REG, raw_reg2, entry->skeleton.r8_form);
+ uint8_t low_reg1 = LowRegisterBits(raw_reg1);
+ uint8_t low_reg2 = LowRegisterBits(raw_reg2);
+ uint8_t modrm = (3 << 6) | (low_reg1 << 3) | low_reg2;
code_buffer_.push_back(modrm);
DCHECK_EQ(0, entry->skeleton.modrm_opcode);
DCHECK_EQ(0, entry->skeleton.ax_opcode);
DCHECK_EQ(0, entry->skeleton.immediate_bytes);
}
-void X86Mir2Lir::EmitRegRegImm(const X86EncodingMap* entry,
- uint8_t reg1, uint8_t reg2, int32_t imm) {
- EmitPrefixAndOpcode(entry, reg1, NO_REG, reg2);
- reg1 = LowRegisterBits(reg1);
- reg2 = LowRegisterBits(reg2);
- DCHECK_LT(RegStorage::RegNum(reg1), 8);
- DCHECK_LT(RegStorage::RegNum(reg2), 8);
- uint8_t modrm = (3 << 6) | (RegStorage::RegNum(reg1) << 3) | RegStorage::RegNum(reg2);
+void X86Mir2Lir::EmitRegRegImm(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2,
+ int32_t imm) {
+ DCHECK_EQ(false, entry->skeleton.r8_form);
+ EmitPrefixAndOpcode(entry, raw_reg1, NO_REG, raw_reg2, false);
+ uint8_t low_reg1 = LowRegisterBits(raw_reg1);
+ uint8_t low_reg2 = LowRegisterBits(raw_reg2);
+ uint8_t modrm = (3 << 6) | (low_reg1 << 3) | low_reg2;
code_buffer_.push_back(modrm);
DCHECK_EQ(0, entry->skeleton.modrm_opcode);
DCHECK_EQ(0, entry->skeleton.ax_opcode);
EmitImm(entry, imm);
}
-void X86Mir2Lir::EmitRegRegImmRev(const X86EncodingMap* entry,
- uint8_t reg1, uint8_t reg2, int32_t imm) {
- EmitRegRegImm(entry, reg2, reg1, imm);
-}
-
void X86Mir2Lir::EmitRegMemImm(const X86EncodingMap* entry,
- uint8_t reg, uint8_t base, int disp, int32_t imm) {
- EmitPrefixAndOpcode(entry, reg, NO_REG, base);
- reg = LowRegisterBits(reg);
- base = LowRegisterBits(base);
- DCHECK(!RegStorage::IsFloat(reg));
- DCHECK_LT(RegStorage::RegNum(reg), 8);
- EmitModrmDisp(reg, base, disp);
+ int32_t raw_reg, int32_t raw_base, int disp, int32_t imm) {
+ DCHECK(!RegStorage::IsFloat(raw_reg));
+ CheckValidByteRegister(entry, raw_reg);
+ EmitPrefixAndOpcode(entry, raw_reg, NO_REG, raw_base, entry->skeleton.r8_form);
+ uint8_t low_reg = LowRegisterBits(raw_reg);
+ uint8_t low_base = LowRegisterBits(raw_base);
+ EmitModrmDisp(low_reg, low_base, disp);
DCHECK_EQ(0, entry->skeleton.modrm_opcode);
DCHECK_EQ(0, entry->skeleton.ax_opcode);
EmitImm(entry, imm);
}
void X86Mir2Lir::EmitMemRegImm(const X86EncodingMap* entry,
- uint8_t base, int disp, uint8_t reg, int32_t imm) {
- EmitRegMemImm(entry, reg, base, disp, imm);
+ int32_t raw_base, int32_t disp, int32_t raw_reg, int32_t imm) {
+ // Opcode will flip operands.
+ EmitRegMemImm(entry, raw_reg, raw_base, disp, imm);
}
-void X86Mir2Lir::EmitRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) {
- EmitPrefix(entry, NO_REG, NO_REG, reg);
- if (RegStorage::RegNum(reg) == rs_rAX.GetRegNum() && entry->skeleton.ax_opcode != 0) {
+void X86Mir2Lir::EmitRegImm(const X86EncodingMap* entry, int32_t raw_reg, int32_t imm) {
+ CheckValidByteRegister(entry, raw_reg);
+ EmitPrefix(entry, NO_REG, NO_REG, raw_reg, entry->skeleton.r8_form);
+ if (RegStorage::RegNum(raw_reg) == rs_rAX.GetRegNum() && entry->skeleton.ax_opcode != 0) {
code_buffer_.push_back(entry->skeleton.ax_opcode);
} else {
- reg = LowRegisterBits(reg);
+ uint8_t low_reg = LowRegisterBits(raw_reg);
EmitOpcode(entry);
- uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | RegStorage::RegNum(reg);
+ uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | low_reg;
code_buffer_.push_back(modrm);
}
EmitImm(entry, imm);
}
-void X86Mir2Lir::EmitMemImm(const X86EncodingMap* entry, uint8_t base, int disp, int32_t imm) {
- EmitPrefixAndOpcode(entry, NO_REG, NO_REG, base);
- base = LowRegisterBits(base);
- EmitModrmDisp(entry->skeleton.modrm_opcode, base, disp);
- DCHECK_EQ(0, entry->skeleton.ax_opcode);
- EmitImm(entry, imm);
-}
-
-void X86Mir2Lir::EmitThreadImm(const X86EncodingMap* entry, int disp, int imm) {
- EmitPrefixAndOpcode(entry);
+void X86Mir2Lir::EmitThreadImm(const X86EncodingMap* entry, int32_t disp, int32_t imm) {
+ EmitPrefixAndOpcode(entry, NO_REG, NO_REG, NO_REG, false);
EmitModrmThread(entry->skeleton.modrm_opcode);
code_buffer_.push_back(disp & 0xFF);
code_buffer_.push_back((disp >> 8) & 0xFF);
@@ -1088,11 +1168,11 @@ void X86Mir2Lir::EmitThreadImm(const X86EncodingMap* entry, int disp, int imm) {
DCHECK_EQ(entry->skeleton.ax_opcode, 0);
}
-void X86Mir2Lir::EmitMovRegImm(const X86EncodingMap* entry, uint8_t reg, int64_t imm) {
- EmitPrefix(entry, NO_REG, NO_REG, reg);
- reg = LowRegisterBits(reg);
- DCHECK_LT(RegStorage::RegNum(reg), 8);
- code_buffer_.push_back(0xB8 + RegStorage::RegNum(reg));
+void X86Mir2Lir::EmitMovRegImm(const X86EncodingMap* entry, int32_t raw_reg, int64_t imm) {
+ DCHECK_EQ(false, entry->skeleton.r8_form);
+ EmitPrefix(entry, NO_REG, NO_REG, raw_reg, false);
+ uint8_t low_reg = LowRegisterBits(raw_reg);
+ code_buffer_.push_back(0xB8 + low_reg);
switch (entry->skeleton.immediate_bytes) {
case 4:
code_buffer_.push_back(imm & 0xFF);
@@ -1116,9 +1196,9 @@ void X86Mir2Lir::EmitMovRegImm(const X86EncodingMap* entry, uint8_t reg, int64_t
}
}
-void X86Mir2Lir::EmitShiftRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) {
- EmitPrefix(entry, NO_REG, NO_REG, reg);
- reg = LowRegisterBits(reg);
+void X86Mir2Lir::EmitShiftRegImm(const X86EncodingMap* entry, int32_t raw_reg, int32_t imm) {
+ CheckValidByteRegister(entry, raw_reg);
+ EmitPrefix(entry, NO_REG, NO_REG, raw_reg, entry->skeleton.r8_form);
if (imm != 1) {
code_buffer_.push_back(entry->skeleton.opcode);
} else {
@@ -1128,13 +1208,8 @@ void X86Mir2Lir::EmitShiftRegImm(const X86EncodingMap* entry, uint8_t reg, int i
DCHECK_NE(0x0F, entry->skeleton.opcode);
DCHECK_EQ(0, entry->skeleton.extra_opcode1);
DCHECK_EQ(0, entry->skeleton.extra_opcode2);
- if (RegStorage::RegNum(reg) >= 4) {
- DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " "
- << static_cast<int>(RegStorage::RegNum(reg))
- << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
- }
- DCHECK_LT(RegStorage::RegNum(reg), 8);
- uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | RegStorage::RegNum(reg);
+ uint8_t low_reg = LowRegisterBits(raw_reg);
+ uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | low_reg;
code_buffer_.push_back(modrm);
if (imm != 1) {
DCHECK_EQ(entry->skeleton.immediate_bytes, 1);
@@ -1143,40 +1218,40 @@ void X86Mir2Lir::EmitShiftRegImm(const X86EncodingMap* entry, uint8_t reg, int i
}
}
-void X86Mir2Lir::EmitShiftRegCl(const X86EncodingMap* entry, uint8_t reg, uint8_t cl) {
- DCHECK_EQ(cl, static_cast<uint8_t>(rs_rCX.GetReg()));
- EmitPrefix(entry, reg, NO_REG, NO_REG);
- reg = LowRegisterBits(reg);
+void X86Mir2Lir::EmitShiftRegCl(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_cl) {
+ CheckValidByteRegister(entry, raw_reg);
+ DCHECK_EQ(rs_rCX.GetRegNum(), RegStorage::RegNum(raw_cl));
+ EmitPrefix(entry, NO_REG, NO_REG, raw_reg, entry->skeleton.r8_form);
code_buffer_.push_back(entry->skeleton.opcode);
DCHECK_NE(0x0F, entry->skeleton.opcode);
DCHECK_EQ(0, entry->skeleton.extra_opcode1);
DCHECK_EQ(0, entry->skeleton.extra_opcode2);
- DCHECK_LT(RegStorage::RegNum(reg), 8);
- uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | RegStorage::RegNum(reg);
+ uint8_t low_reg = LowRegisterBits(raw_reg);
+ uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | low_reg;
code_buffer_.push_back(modrm);
DCHECK_EQ(0, entry->skeleton.ax_opcode);
DCHECK_EQ(0, entry->skeleton.immediate_bytes);
}
-void X86Mir2Lir::EmitShiftMemCl(const X86EncodingMap* entry, uint8_t base,
- int displacement, uint8_t cl) {
- DCHECK_EQ(cl, static_cast<uint8_t>(rs_rCX.GetReg()));
- EmitPrefix(entry, NO_REG, NO_REG, base);
- base = LowRegisterBits(base);
+void X86Mir2Lir::EmitShiftMemCl(const X86EncodingMap* entry, int32_t raw_base,
+ int32_t displacement, int32_t raw_cl) {
+ DCHECK_EQ(false, entry->skeleton.r8_form);
+ DCHECK_EQ(rs_rCX.GetRegNum(), RegStorage::RegNum(raw_cl));
+ EmitPrefix(entry, NO_REG, NO_REG, raw_base, false);
code_buffer_.push_back(entry->skeleton.opcode);
DCHECK_NE(0x0F, entry->skeleton.opcode);
DCHECK_EQ(0, entry->skeleton.extra_opcode1);
DCHECK_EQ(0, entry->skeleton.extra_opcode2);
- DCHECK_LT(RegStorage::RegNum(base), 8);
- EmitModrmDisp(entry->skeleton.modrm_opcode, base, displacement);
+ uint8_t low_base = LowRegisterBits(raw_base);
+ EmitModrmDisp(entry->skeleton.modrm_opcode, low_base, displacement);
DCHECK_EQ(0, entry->skeleton.ax_opcode);
DCHECK_EQ(0, entry->skeleton.immediate_bytes);
}
-void X86Mir2Lir::EmitShiftMemImm(const X86EncodingMap* entry, uint8_t base,
- int displacement, int imm) {
- EmitPrefix(entry, NO_REG, NO_REG, base);
- base = LowRegisterBits(base);
+void X86Mir2Lir::EmitShiftMemImm(const X86EncodingMap* entry, int32_t raw_base, int32_t disp,
+ int32_t imm) {
+ DCHECK_EQ(false, entry->skeleton.r8_form);
+ EmitPrefix(entry, NO_REG, NO_REG, raw_base, false);
if (imm != 1) {
code_buffer_.push_back(entry->skeleton.opcode);
} else {
@@ -1186,7 +1261,8 @@ void X86Mir2Lir::EmitShiftMemImm(const X86EncodingMap* entry, uint8_t base,
DCHECK_NE(0x0F, entry->skeleton.opcode);
DCHECK_EQ(0, entry->skeleton.extra_opcode1);
DCHECK_EQ(0, entry->skeleton.extra_opcode2);
- EmitModrmDisp(entry->skeleton.modrm_opcode, base, displacement);
+ uint8_t low_base = LowRegisterBits(raw_base);
+ EmitModrmDisp(entry->skeleton.modrm_opcode, low_base, disp);
if (imm != 1) {
DCHECK_EQ(entry->skeleton.immediate_bytes, 1);
DCHECK(IS_SIMM8(imm));
@@ -1194,23 +1270,26 @@ void X86Mir2Lir::EmitShiftMemImm(const X86EncodingMap* entry, uint8_t base,
}
}
-void X86Mir2Lir::EmitRegCond(const X86EncodingMap* entry, uint8_t reg, uint8_t condition) {
- EmitPrefix(entry, reg, NO_REG, NO_REG);
- reg = LowRegisterBits(reg);
+void X86Mir2Lir::EmitRegCond(const X86EncodingMap* entry, int32_t raw_reg, int32_t cc) {
+ CheckValidByteRegister(entry, raw_reg);
+ EmitPrefix(entry, raw_reg, NO_REG, NO_REG, entry->skeleton.r8_form);
DCHECK_EQ(0, entry->skeleton.ax_opcode);
DCHECK_EQ(0x0F, entry->skeleton.opcode);
code_buffer_.push_back(0x0F);
DCHECK_EQ(0x90, entry->skeleton.extra_opcode1);
- code_buffer_.push_back(0x90 | condition);
+ DCHECK_GE(cc, 0);
+ DCHECK_LT(cc, 16);
+ code_buffer_.push_back(0x90 | cc);
DCHECK_EQ(0, entry->skeleton.extra_opcode2);
- DCHECK_LT(RegStorage::RegNum(reg), 8);
- uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | RegStorage::RegNum(reg);
+ uint8_t low_reg = LowRegisterBits(raw_reg);
+ uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | low_reg;
code_buffer_.push_back(modrm);
DCHECK_EQ(entry->skeleton.immediate_bytes, 0);
}
-void X86Mir2Lir::EmitMemCond(const X86EncodingMap* entry, uint8_t base, int displacement,
- uint8_t condition) {
+void X86Mir2Lir::EmitMemCond(const X86EncodingMap* entry, int32_t raw_base, int32_t disp,
+ int32_t cc) {
+ DCHECK_EQ(false, entry->skeleton.r8_form);
if (entry->skeleton.prefix1 != 0) {
code_buffer_.push_back(entry->skeleton.prefix1);
if (entry->skeleton.prefix2 != 0) {
@@ -1223,61 +1302,63 @@ void X86Mir2Lir::EmitMemCond(const X86EncodingMap* entry, uint8_t base, int disp
DCHECK_EQ(0x0F, entry->skeleton.opcode);
code_buffer_.push_back(0x0F);
DCHECK_EQ(0x90, entry->skeleton.extra_opcode1);
- code_buffer_.push_back(0x90 | condition);
+ DCHECK_GE(cc, 0);
+ DCHECK_LT(cc, 16);
+ code_buffer_.push_back(0x90 | cc);
DCHECK_EQ(0, entry->skeleton.extra_opcode2);
- EmitModrmDisp(entry->skeleton.modrm_opcode, base, displacement);
+ uint8_t low_base = LowRegisterBits(raw_base);
+ EmitModrmDisp(entry->skeleton.modrm_opcode, low_base, disp);
DCHECK_EQ(entry->skeleton.immediate_bytes, 0);
}
-void X86Mir2Lir::EmitRegRegCond(const X86EncodingMap* entry, uint8_t reg1, uint8_t reg2,
- uint8_t condition) {
- // Generate prefix and opcode without the condition
- EmitPrefixAndOpcode(entry, reg1, NO_REG, reg2);
- reg1 = LowRegisterBits(reg1);
- reg2 = LowRegisterBits(reg2);
+void X86Mir2Lir::EmitRegRegCond(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2,
+ int32_t cc) {
+ // Generate prefix and opcode without the condition.
+ DCHECK_EQ(false, entry->skeleton.r8_form);
+ EmitPrefixAndOpcode(entry, raw_reg1, NO_REG, raw_reg2, false);
// Now add the condition. The last byte of opcode is the one that receives it.
- DCHECK_LE(condition, 0xF);
- code_buffer_.back() += condition;
+ DCHECK_GE(cc, 0);
+ DCHECK_LT(cc, 16);
+ code_buffer_.back() += cc;
- // Not expecting to have to encode immediate or do anything special for ModR/M since there are two registers.
+ // Not expecting to have to encode immediate or do anything special for ModR/M since there are
+ // two registers.
DCHECK_EQ(0, entry->skeleton.immediate_bytes);
DCHECK_EQ(0, entry->skeleton.modrm_opcode);
- // Check that registers requested for encoding are sane.
- DCHECK_LT(RegStorage::RegNum(reg1), 8);
- DCHECK_LT(RegStorage::RegNum(reg2), 8);
-
// For register to register encoding, the mod is 3.
const uint8_t mod = (3 << 6);
// Encode the ModR/M byte now.
- const uint8_t modrm = mod | (RegStorage::RegNum(reg1) << 3) | RegStorage::RegNum(reg2);
+ uint8_t low_reg1 = LowRegisterBits(raw_reg1);
+ uint8_t low_reg2 = LowRegisterBits(raw_reg2);
+ const uint8_t modrm = mod | (low_reg1 << 3) | low_reg2;
code_buffer_.push_back(modrm);
}
-void X86Mir2Lir::EmitRegMemCond(const X86EncodingMap* entry, uint8_t reg1, uint8_t base,
- int displacement, uint8_t condition) {
- // Generate prefix and opcode without the condition
- EmitPrefixAndOpcode(entry, reg1, NO_REG, base);
- reg1 = LowRegisterBits(reg1);
- base = LowRegisterBits(base);
+void X86Mir2Lir::EmitRegMemCond(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_base,
+ int32_t disp, int32_t cc) {
+ // Generate prefix and opcode without the condition.
+ DCHECK_EQ(false, entry->skeleton.r8_form);
+ EmitPrefixAndOpcode(entry, raw_reg1, NO_REG, raw_base, false);
// Now add the condition. The last byte of opcode is the one that receives it.
- DCHECK_LE(condition, 0xF);
- code_buffer_.back() += condition;
+ DCHECK_GE(cc, 0);
+ DCHECK_LT(cc, 16);
+ code_buffer_.back() += cc;
+ // Not expecting to have to encode immediate or do anything special for ModR/M since there are
+ // two registers.
DCHECK_EQ(0, entry->skeleton.immediate_bytes);
DCHECK_EQ(0, entry->skeleton.modrm_opcode);
- // Check that registers requested for encoding are sane.
- DCHECK_LT(reg1, 8);
- DCHECK_LT(base, 8);
-
- EmitModrmDisp(reg1, base, displacement);
+ uint8_t low_reg1 = LowRegisterBits(raw_reg1);
+ uint8_t low_base = LowRegisterBits(raw_base);
+ EmitModrmDisp(low_reg1, low_base, disp);
}
-void X86Mir2Lir::EmitJmp(const X86EncodingMap* entry, int rel) {
+void X86Mir2Lir::EmitJmp(const X86EncodingMap* entry, int32_t rel) {
if (entry->opcode == kX86Jmp8) {
DCHECK(IS_SIMM8(rel));
code_buffer_.push_back(0xEB);
@@ -1294,17 +1375,17 @@ void X86Mir2Lir::EmitJmp(const X86EncodingMap* entry, int rel) {
code_buffer_.push_back(rel & 0xFF);
} else {
DCHECK(entry->opcode == kX86JmpR);
- uint8_t reg = static_cast<uint8_t>(rel);
- EmitPrefix(entry, NO_REG, NO_REG, reg);
+ DCHECK_EQ(false, entry->skeleton.r8_form);
+ EmitPrefix(entry, NO_REG, NO_REG, rel, false);
code_buffer_.push_back(entry->skeleton.opcode);
- reg = LowRegisterBits(reg);
- DCHECK_LT(RegStorage::RegNum(reg), 8);
- uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | RegStorage::RegNum(reg);
+ uint8_t low_reg = LowRegisterBits(rel);
+ uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | low_reg;
code_buffer_.push_back(modrm);
}
}
-void X86Mir2Lir::EmitJcc(const X86EncodingMap* entry, int rel, uint8_t cc) {
+void X86Mir2Lir::EmitJcc(const X86EncodingMap* entry, int32_t rel, int32_t cc) {
+ DCHECK_GE(cc, 0);
DCHECK_LT(cc, 16);
if (entry->opcode == kX86Jcc8) {
DCHECK(IS_SIMM8(rel));
@@ -1321,16 +1402,18 @@ void X86Mir2Lir::EmitJcc(const X86EncodingMap* entry, int rel, uint8_t cc) {
}
}
-void X86Mir2Lir::EmitCallMem(const X86EncodingMap* entry, uint8_t base, int disp) {
- EmitPrefixAndOpcode(entry, NO_REG, NO_REG, base);
- base = LowRegisterBits(base);
- EmitModrmDisp(entry->skeleton.modrm_opcode, base, disp);
+void X86Mir2Lir::EmitCallMem(const X86EncodingMap* entry, int32_t raw_base, int32_t disp) {
+ DCHECK_EQ(false, entry->skeleton.r8_form);
+ EmitPrefixAndOpcode(entry, NO_REG, NO_REG, raw_base, false);
+ uint8_t low_base = LowRegisterBits(raw_base);
+ EmitModrmDisp(entry->skeleton.modrm_opcode, low_base, disp);
DCHECK_EQ(0, entry->skeleton.ax_opcode);
DCHECK_EQ(0, entry->skeleton.immediate_bytes);
}
-void X86Mir2Lir::EmitCallImmediate(const X86EncodingMap* entry, int disp) {
- EmitPrefixAndOpcode(entry);
+void X86Mir2Lir::EmitCallImmediate(const X86EncodingMap* entry, int32_t disp) {
+ DCHECK_EQ(false, entry->skeleton.r8_form);
+ EmitPrefixAndOpcode(entry, NO_REG, NO_REG, NO_REG, false);
DCHECK_EQ(4, entry->skeleton.immediate_bytes);
code_buffer_.push_back(disp & 0xFF);
code_buffer_.push_back((disp >> 8) & 0xFF);
@@ -1339,9 +1422,10 @@ void X86Mir2Lir::EmitCallImmediate(const X86EncodingMap* entry, int disp) {
DCHECK_EQ(0, entry->skeleton.ax_opcode);
}
-void X86Mir2Lir::EmitCallThread(const X86EncodingMap* entry, int disp) {
+void X86Mir2Lir::EmitCallThread(const X86EncodingMap* entry, int32_t disp) {
+ DCHECK_EQ(false, entry->skeleton.r8_form);
DCHECK_NE(entry->skeleton.prefix1, 0);
- EmitPrefixAndOpcode(entry);
+ EmitPrefixAndOpcode(entry, NO_REG, NO_REG, NO_REG, false);
EmitModrmThread(entry->skeleton.modrm_opcode);
code_buffer_.push_back(disp & 0xFF);
code_buffer_.push_back((disp >> 8) & 0xFF);
@@ -1351,8 +1435,8 @@ void X86Mir2Lir::EmitCallThread(const X86EncodingMap* entry, int disp) {
DCHECK_EQ(0, entry->skeleton.immediate_bytes);
}
-void X86Mir2Lir::EmitPcRel(const X86EncodingMap* entry, uint8_t reg,
- int base_or_table, uint8_t index, int scale, int table_or_disp) {
+void X86Mir2Lir::EmitPcRel(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_base_or_table,
+ int32_t raw_index, int scale, int32_t table_or_disp) {
int disp;
if (entry->opcode == kX86PcRelLoadRA) {
Mir2Lir::EmbeddedData *tab_rec =
@@ -1361,31 +1445,28 @@ void X86Mir2Lir::EmitPcRel(const X86EncodingMap* entry, uint8_t reg,
} else {
DCHECK(entry->opcode == kX86PcRelAdr);
Mir2Lir::EmbeddedData *tab_rec =
- reinterpret_cast<Mir2Lir::EmbeddedData*>(UnwrapPointer(base_or_table));
+ reinterpret_cast<Mir2Lir::EmbeddedData*>(UnwrapPointer(raw_base_or_table));
disp = tab_rec->offset;
}
if (entry->opcode == kX86PcRelLoadRA) {
- EmitPrefix(entry, reg, index, base_or_table);
- reg = LowRegisterBits(reg);
- base_or_table = LowRegisterBits(base_or_table);
- index = LowRegisterBits(index);
- DCHECK_LT(RegStorage::RegNum(reg), 8);
+ DCHECK_EQ(false, entry->skeleton.r8_form);
+ EmitPrefix(entry, raw_reg, raw_index, raw_base_or_table, false);
code_buffer_.push_back(entry->skeleton.opcode);
DCHECK_NE(0x0F, entry->skeleton.opcode);
DCHECK_EQ(0, entry->skeleton.extra_opcode1);
DCHECK_EQ(0, entry->skeleton.extra_opcode2);
- uint8_t modrm = (2 << 6) | (RegStorage::RegNum(reg) << 3) | rs_rX86_SP.GetRegNum();
+ uint8_t low_reg = LowRegisterBits(raw_reg);
+ uint8_t modrm = (2 << 6) | (low_reg << 3) | rs_rX86_SP.GetRegNum();
code_buffer_.push_back(modrm);
DCHECK_LT(scale, 4);
- DCHECK_LT(RegStorage::RegNum(index), 8);
- DCHECK_LT(RegStorage::RegNum(base_or_table), 8);
- uint8_t base = static_cast<uint8_t>(base_or_table);
- uint8_t sib = (scale << 6) | (RegStorage::RegNum(index) << 3) | RegStorage::RegNum(base);
+ uint8_t low_base_or_table = LowRegisterBits(raw_base_or_table);
+ uint8_t low_index = LowRegisterBits(raw_index);
+ uint8_t sib = (scale << 6) | (low_index << 3) | low_base_or_table;
code_buffer_.push_back(sib);
DCHECK_EQ(0, entry->skeleton.immediate_bytes);
} else {
- DCHECK_LT(RegStorage::RegNum(reg), 8);
- code_buffer_.push_back(entry->skeleton.opcode + RegStorage::RegNum(reg));
+ uint8_t low_reg = LowRegisterBits(raw_reg);
+ code_buffer_.push_back(entry->skeleton.opcode + low_reg);
}
code_buffer_.push_back(disp & 0xFF);
code_buffer_.push_back((disp >> 8) & 0xFF);
@@ -1395,21 +1476,21 @@ void X86Mir2Lir::EmitPcRel(const X86EncodingMap* entry, uint8_t reg,
DCHECK_EQ(0, entry->skeleton.ax_opcode);
}
-void X86Mir2Lir::EmitMacro(const X86EncodingMap* entry, uint8_t reg, int offset) {
- DCHECK(entry->opcode == kX86StartOfMethod) << entry->name;
- EmitPrefix(entry, reg, NO_REG, NO_REG);
- reg = LowRegisterBits(reg);
+void X86Mir2Lir::EmitMacro(const X86EncodingMap* entry, int32_t raw_reg, int32_t offset) {
+ DCHECK_EQ(entry->opcode, kX86StartOfMethod) << entry->name;
+ DCHECK_EQ(false, entry->skeleton.r8_form);
+ EmitPrefix(entry, raw_reg, NO_REG, NO_REG, false);
code_buffer_.push_back(0xE8); // call +0
code_buffer_.push_back(0);
code_buffer_.push_back(0);
code_buffer_.push_back(0);
code_buffer_.push_back(0);
- DCHECK_LT(RegStorage::RegNum(reg), 8);
- code_buffer_.push_back(0x58 + RegStorage::RegNum(reg)); // pop reg
+ uint8_t low_reg = LowRegisterBits(raw_reg);
+ code_buffer_.push_back(0x58 + low_reg); // pop reg
- EmitRegImm(&X86Mir2Lir::EncodingMap[kX86Sub32RI], RegStorage::RegNum(reg),
- offset + 5 /* size of call +0 */);
+ EmitRegImm(&X86Mir2Lir::EncodingMap[Gen64Bit() ? kX86Sub64RI : kX86Sub32RI],
+ raw_reg, offset + 5 /* size of call +0 */);
}
void X86Mir2Lir::EmitUnimplemented(const X86EncodingMap* entry, LIR* lir) {
@@ -1570,21 +1651,8 @@ AssemblerStatus X86Mir2Lir::AssembleInstructions(CodeOffset start_addr) {
case kData: // 4 bytes of data
code_buffer_.push_back(lir->operands[0]);
break;
- case kNullary: // 1 byte of opcode
- DCHECK_EQ(0, entry->skeleton.prefix1);
- DCHECK_EQ(0, entry->skeleton.prefix2);
- EmitOpcode(entry);
- DCHECK_EQ(0, entry->skeleton.modrm_opcode);
- DCHECK_EQ(0, entry->skeleton.ax_opcode);
- DCHECK_EQ(0, entry->skeleton.immediate_bytes);
- break;
- case kPrefix2Nullary: // 1 byte of opcode + 2 prefixes.
- DCHECK_NE(0, entry->skeleton.prefix1);
- DCHECK_NE(0, entry->skeleton.prefix2);
- EmitPrefixAndOpcode(entry);
- DCHECK_EQ(0, entry->skeleton.modrm_opcode);
- DCHECK_EQ(0, entry->skeleton.ax_opcode);
- DCHECK_EQ(0, entry->skeleton.immediate_bytes);
+ case kNullary: // 1 byte of opcode and possible prefixes.
+ EmitNullary(entry);
break;
case kRegOpcode: // lir operands - 0: reg
EmitOpRegOpcode(entry, lir->operands[0]);
@@ -1628,17 +1696,17 @@ AssemblerStatus X86Mir2Lir::AssembleInstructions(CodeOffset start_addr) {
case kRegRegStore: // lir operands - 0: reg2, 1: reg1
EmitRegReg(entry, lir->operands[1], lir->operands[0]);
break;
- case kRegRegImmRev:
- EmitRegRegImmRev(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
- break;
- case kMemRegImm:
+ case kMemRegImm: // lir operands - 0: base, 1: disp, 2: reg 3: immediate
EmitMemRegImm(entry, lir->operands[0], lir->operands[1], lir->operands[2],
lir->operands[3]);
break;
- case kRegRegImm:
+ case kRegRegImm: // lir operands - 0: reg1, 1: reg2, 2: imm
EmitRegRegImm(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
break;
- case kRegMemImm:
+ case kRegRegImmStore: // lir operands - 0: reg2, 1: reg1, 2: imm
+ EmitRegRegImm(entry, lir->operands[1], lir->operands[0], lir->operands[2]);
+ break;
+ case kRegMemImm: // lir operands - 0: reg, 1: base, 2: disp, 3: imm
EmitRegMemImm(entry, lir->operands[0], lir->operands[1], lir->operands[2],
lir->operands[3]);
break;
@@ -1711,7 +1779,13 @@ AssemblerStatus X86Mir2Lir::AssembleInstructions(CodeOffset start_addr) {
case kMacro: // lir operands - 0: reg
EmitMacro(entry, lir->operands[0], lir->offset);
break;
- default:
+ case kNop: // TODO: these instruction kinds are missing implementations.
+ case kThreadReg:
+ case kRegArrayImm:
+ case kShiftArrayImm:
+ case kShiftArrayCl:
+ case kArrayCond:
+ case kUnimplemented:
EmitUnimplemented(entry, lir);
break;
}
diff --git a/compiler/dex/quick/x86/call_x86.cc b/compiler/dex/quick/x86/call_x86.cc
index fc0b305..f5fce34 100644
--- a/compiler/dex/quick/x86/call_x86.cc
+++ b/compiler/dex/quick/x86/call_x86.cc
@@ -86,11 +86,19 @@ void X86Mir2Lir::GenPackedSwitch(MIR* mir, DexOffset table_offset,
if (base_of_code_ != nullptr) {
// We can use the saved value.
RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
- rl_method = LoadValue(rl_method, kCoreReg);
+ if (rl_method.wide) {
+ rl_method = LoadValueWide(rl_method, kCoreReg);
+ } else {
+ rl_method = LoadValue(rl_method, kCoreReg);
+ }
start_of_method_reg = rl_method.reg;
store_method_addr_used_ = true;
} else {
- start_of_method_reg = AllocTemp();
+ if (Gen64Bit()) {
+ start_of_method_reg = AllocTempWide();
+ } else {
+ start_of_method_reg = AllocTemp();
+ }
NewLIR1(kX86StartOfMethod, start_of_method_reg.GetReg());
}
int low_key = s4FromSwitchData(&table[2]);
@@ -108,9 +116,14 @@ void X86Mir2Lir::GenPackedSwitch(MIR* mir, DexOffset table_offset,
// Load the displacement from the switch table
RegStorage disp_reg = AllocTemp();
- NewLIR5(kX86PcRelLoadRA, disp_reg.GetReg(), start_of_method_reg.GetReg(), keyReg.GetReg(), 2, WrapPointer(tab_rec));
+ NewLIR5(kX86PcRelLoadRA, disp_reg.GetReg(), start_of_method_reg.GetReg(), keyReg.GetReg(),
+ 2, WrapPointer(tab_rec));
// Add displacement to start of method
- OpRegReg(kOpAdd, start_of_method_reg, disp_reg);
+ if (Gen64Bit()) {
+ NewLIR2(kX86Add64RR, start_of_method_reg.GetReg(), disp_reg.GetReg());
+ } else {
+ OpRegReg(kOpAdd, start_of_method_reg, disp_reg);
+ }
// ..and go!
LIR* switch_branch = NewLIR1(kX86JmpR, start_of_method_reg.GetReg());
tab_rec->anchor = switch_branch;
@@ -150,13 +163,18 @@ void X86Mir2Lir::GenFillArrayData(DexOffset table_offset, RegLocation rl_src) {
if (base_of_code_ != nullptr) {
// We can use the saved value.
RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
- LoadValueDirect(rl_method, rs_rX86_ARG2);
+ if (rl_method.wide) {
+ LoadValueDirectWide(rl_method, rs_rX86_ARG2);
+ } else {
+ LoadValueDirect(rl_method, rs_rX86_ARG2);
+ }
store_method_addr_used_ = true;
} else {
+ // TODO(64) force to be 64-bit
NewLIR1(kX86StartOfMethod, rs_rX86_ARG2.GetReg());
}
NewLIR2(kX86PcRelAdr, rs_rX86_ARG1.GetReg(), WrapPointer(tab_rec));
- NewLIR2(kX86Add32RR, rs_rX86_ARG1.GetReg(), rs_rX86_ARG2.GetReg());
+ NewLIR2(Gen64Bit() ? kX86Add64RR : kX86Add32RR, rs_rX86_ARG1.GetReg(), rs_rX86_ARG2.GetReg());
if (Is64BitInstructionSet(cu_->instruction_set)) {
CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(8, pHandleFillArrayData), rs_rX86_ARG0,
rs_rX86_ARG1, true);
@@ -264,9 +282,10 @@ void X86Mir2Lir::GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method) {
OpRegThreadMem(kOpCmp, rs_rX86_SP, Thread::StackEndOffset<4>());
}
LIR* branch = OpCondBranch(kCondUlt, nullptr);
- AddSlowPath(new(arena_)StackOverflowSlowPath(this, branch,
- frame_size_ -
- GetInstructionSetPointerSize(cu_->instruction_set)));
+ AddSlowPath(
+ new(arena_)StackOverflowSlowPath(this, branch,
+ frame_size_ -
+ GetInstructionSetPointerSize(cu_->instruction_set)));
}
FlushIns(ArgLocs, rl_method);
@@ -276,7 +295,7 @@ void X86Mir2Lir::GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method) {
setup_method_address_[0] = NewLIR1(kX86StartOfMethod, rs_rX86_ARG0.GetReg());
int displacement = SRegOffset(base_of_code_->s_reg_low);
// Native pointer - must be natural word size.
- setup_method_address_[1] = StoreWordDisp(rs_rX86_SP, displacement, rs_rX86_ARG0);
+ setup_method_address_[1] = StoreBaseDisp(rs_rX86_SP, displacement, rs_rX86_ARG0, Gen64Bit() ? k64 : k32);
}
FreeTemp(rs_rX86_ARG0);
diff --git a/compiler/dex/quick/x86/codegen_x86.h b/compiler/dex/quick/x86/codegen_x86.h
index 648c148..61c9f4f 100644
--- a/compiler/dex/quick/x86/codegen_x86.h
+++ b/compiler/dex/quick/x86/codegen_x86.h
@@ -20,780 +20,827 @@
#include "dex/compiler_internals.h"
#include "x86_lir.h"
+#include <map>
+
namespace art {
class X86Mir2Lir : public Mir2Lir {
- public:
- X86Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena, bool gen64bit);
-
- // Required for target - codegen helpers.
- bool SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div, RegLocation rl_src,
- RegLocation rl_dest, int lit);
- bool EasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) OVERRIDE;
- LIR* CheckSuspendUsingLoad() OVERRIDE;
- RegStorage LoadHelper(ThreadOffset<4> offset) OVERRIDE;
- RegStorage LoadHelper(ThreadOffset<8> offset) OVERRIDE;
- LIR* LoadBaseDispVolatile(RegStorage r_base, int displacement, RegStorage r_dest,
- OpSize size) OVERRIDE;
- LIR* LoadBaseDisp(RegStorage r_base, int displacement, RegStorage r_dest,
- OpSize size) OVERRIDE;
- LIR* LoadBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest, int scale,
- OpSize size) OVERRIDE;
- LIR* LoadBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale, int displacement,
- RegStorage r_dest, OpSize size) OVERRIDE;
- LIR* LoadConstantNoClobber(RegStorage r_dest, int value);
- LIR* LoadConstantWide(RegStorage r_dest, int64_t value);
- LIR* StoreBaseDispVolatile(RegStorage r_base, int displacement, RegStorage r_src,
- OpSize size) OVERRIDE;
- LIR* StoreBaseDisp(RegStorage r_base, int displacement, RegStorage r_src,
+ protected:
+ class InToRegStorageMapper {
+ public:
+ virtual RegStorage GetNextReg(bool is_double_or_float, bool is_wide) = 0;
+ virtual ~InToRegStorageMapper() {}
+ };
+
+ class InToRegStorageX86_64Mapper : public InToRegStorageMapper {
+ public:
+ InToRegStorageX86_64Mapper() : cur_core_reg_(0), cur_fp_reg_(0) {}
+ virtual ~InToRegStorageX86_64Mapper() {}
+ virtual RegStorage GetNextReg(bool is_double_or_float, bool is_wide);
+ private:
+ int cur_core_reg_;
+ int cur_fp_reg_;
+ };
+
+ class InToRegStorageMapping {
+ public:
+ InToRegStorageMapping() : max_mapped_in_(0), is_there_stack_mapped_(false),
+ initialized_(false) {}
+ void Initialize(RegLocation* arg_locs, int count, InToRegStorageMapper* mapper);
+ int GetMaxMappedIn() { return max_mapped_in_; }
+ bool IsThereStackMapped() { return is_there_stack_mapped_; }
+ RegStorage Get(int in_position);
+ bool IsInitialized() { return initialized_; }
+ private:
+ std::map<int, RegStorage> mapping_;
+ int max_mapped_in_;
+ bool is_there_stack_mapped_;
+ bool initialized_;
+ };
+
+ public:
+ X86Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena, bool gen64bit);
+
+ // Required for target - codegen helpers.
+ bool SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div, RegLocation rl_src,
+ RegLocation rl_dest, int lit);
+ bool EasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) OVERRIDE;
+ LIR* CheckSuspendUsingLoad() OVERRIDE;
+ RegStorage LoadHelper(ThreadOffset<4> offset) OVERRIDE;
+ RegStorage LoadHelper(ThreadOffset<8> offset) OVERRIDE;
+ LIR* LoadBaseDispVolatile(RegStorage r_base, int displacement, RegStorage r_dest,
+ OpSize size) OVERRIDE;
+ LIR* LoadBaseDisp(RegStorage r_base, int displacement, RegStorage r_dest,
+ OpSize size) OVERRIDE;
+ LIR* LoadBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest, int scale,
OpSize size) OVERRIDE;
- LIR* StoreBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src, int scale,
- OpSize size) OVERRIDE;
- LIR* StoreBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale, int displacement,
- RegStorage r_src, OpSize size) OVERRIDE;
- void MarkGCCard(RegStorage val_reg, RegStorage tgt_addr_reg);
-
- // Required for target - register utilities.
- RegStorage TargetReg(SpecialTargetRegister reg);
- RegStorage GetArgMappingToPhysicalReg(int arg_num);
- RegLocation GetReturnAlt();
- RegLocation GetReturnWideAlt();
- RegLocation LocCReturn();
- RegLocation LocCReturnRef();
- RegLocation LocCReturnDouble();
- RegLocation LocCReturnFloat();
- RegLocation LocCReturnWide();
- uint64_t GetRegMaskCommon(RegStorage reg);
- void AdjustSpillMask();
- void ClobberCallerSave();
- void FreeCallTemps();
- void LockCallTemps();
- void MarkPreservedSingle(int v_reg, RegStorage reg);
- void MarkPreservedDouble(int v_reg, RegStorage reg);
- void CompilerInitializeRegAlloc();
-
- // Required for target - miscellaneous.
- void AssembleLIR();
- int AssignInsnOffsets();
- void AssignOffsets();
- AssemblerStatus AssembleInstructions(CodeOffset start_addr);
- void DumpResourceMask(LIR* lir, uint64_t mask, const char* prefix);
- void SetupTargetResourceMasks(LIR* lir, uint64_t flags);
- const char* GetTargetInstFmt(int opcode);
- const char* GetTargetInstName(int opcode);
- std::string BuildInsnString(const char* fmt, LIR* lir, unsigned char* base_addr);
- uint64_t GetPCUseDefEncoding();
- uint64_t GetTargetInstFlags(int opcode);
- int GetInsnSize(LIR* lir);
- bool IsUnconditionalBranch(LIR* lir);
-
- // Check support for volatile load/store of a given size.
- bool SupportsVolatileLoadStore(OpSize size) OVERRIDE;
- // Get the register class for load/store of a field.
- RegisterClass RegClassForFieldLoadStore(OpSize size, bool is_volatile) OVERRIDE;
-
- // Required for target - Dalvik-level generators.
- void GenArithImmOpLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
- RegLocation rl_src2);
- void GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array, RegLocation rl_index,
- RegLocation rl_dest, int scale);
- void GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
- RegLocation rl_index, RegLocation rl_src, int scale, bool card_mark);
- void GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
- RegLocation rl_src1, RegLocation rl_shift);
- void GenMulLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
- RegLocation rl_src2);
- void GenAddLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
- RegLocation rl_src2);
- void GenAndLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
- RegLocation rl_src2);
- void GenArithOpDouble(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
- RegLocation rl_src2);
- void GenArithOpFloat(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
+ LIR* LoadBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale, int displacement,
+ RegStorage r_dest, OpSize size) OVERRIDE;
+ LIR* LoadConstantNoClobber(RegStorage r_dest, int value);
+ LIR* LoadConstantWide(RegStorage r_dest, int64_t value);
+ LIR* StoreBaseDispVolatile(RegStorage r_base, int displacement, RegStorage r_src,
+ OpSize size) OVERRIDE;
+ LIR* StoreBaseDisp(RegStorage r_base, int displacement, RegStorage r_src,
+ OpSize size) OVERRIDE;
+ LIR* StoreBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src, int scale,
+ OpSize size) OVERRIDE;
+ LIR* StoreBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale, int displacement,
+ RegStorage r_src, OpSize size) OVERRIDE;
+ void MarkGCCard(RegStorage val_reg, RegStorage tgt_addr_reg);
+
+ // Required for target - register utilities.
+ RegStorage TargetReg(SpecialTargetRegister reg);
+ RegStorage GetArgMappingToPhysicalReg(int arg_num);
+ RegStorage GetCoreArgMappingToPhysicalReg(int core_arg_num);
+ RegLocation GetReturnAlt();
+ RegLocation GetReturnWideAlt();
+ RegLocation LocCReturn();
+ RegLocation LocCReturnRef();
+ RegLocation LocCReturnDouble();
+ RegLocation LocCReturnFloat();
+ RegLocation LocCReturnWide();
+ uint64_t GetRegMaskCommon(RegStorage reg);
+ void AdjustSpillMask();
+ void ClobberCallerSave();
+ void FreeCallTemps();
+ void LockCallTemps();
+ void MarkPreservedSingle(int v_reg, RegStorage reg);
+ void MarkPreservedDouble(int v_reg, RegStorage reg);
+ void CompilerInitializeRegAlloc();
+
+ // Required for target - miscellaneous.
+ void AssembleLIR();
+ int AssignInsnOffsets();
+ void AssignOffsets();
+ AssemblerStatus AssembleInstructions(CodeOffset start_addr);
+ void DumpResourceMask(LIR* lir, uint64_t mask, const char* prefix);
+ void SetupTargetResourceMasks(LIR* lir, uint64_t flags);
+ const char* GetTargetInstFmt(int opcode);
+ const char* GetTargetInstName(int opcode);
+ std::string BuildInsnString(const char* fmt, LIR* lir, unsigned char* base_addr);
+ uint64_t GetPCUseDefEncoding();
+ uint64_t GetTargetInstFlags(int opcode);
+ int GetInsnSize(LIR* lir);
+ bool IsUnconditionalBranch(LIR* lir);
+
+ // Check support for volatile load/store of a given size.
+ bool SupportsVolatileLoadStore(OpSize size) OVERRIDE;
+ // Get the register class for load/store of a field.
+ RegisterClass RegClassForFieldLoadStore(OpSize size, bool is_volatile) OVERRIDE;
+
+ // Required for target - Dalvik-level generators.
+ void GenArithImmOpLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_src2);
- void GenCmpFP(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
+ void GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array, RegLocation rl_index,
+ RegLocation rl_dest, int scale);
+ void GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
+ RegLocation rl_index, RegLocation rl_src, int scale, bool card_mark);
+ void GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
+ RegLocation rl_src1, RegLocation rl_shift);
+ void GenMulLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
+ RegLocation rl_src2);
+ void GenAddLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
+ RegLocation rl_src2);
+ void GenAndLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
+ RegLocation rl_src2);
+ void GenArithOpDouble(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
+ RegLocation rl_src2);
+ void GenArithOpFloat(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
+ RegLocation rl_src2);
+ void GenCmpFP(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
+ RegLocation rl_src2);
+ void GenConversion(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src);
+ bool GenInlinedCas(CallInfo* info, bool is_long, bool is_object);
+ bool GenInlinedMinMaxInt(CallInfo* info, bool is_min);
+ bool GenInlinedSqrt(CallInfo* info);
+ bool GenInlinedPeek(CallInfo* info, OpSize size);
+ bool GenInlinedPoke(CallInfo* info, OpSize size);
+ void GenNotLong(RegLocation rl_dest, RegLocation rl_src);
+ void GenNegLong(RegLocation rl_dest, RegLocation rl_src);
+ void GenOrLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
+ RegLocation rl_src2);
+ void GenSubLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
+ RegLocation rl_src2);
+ void GenXorLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_src2);
- void GenConversion(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src);
- bool GenInlinedCas(CallInfo* info, bool is_long, bool is_object);
- bool GenInlinedMinMaxInt(CallInfo* info, bool is_min);
- bool GenInlinedSqrt(CallInfo* info);
- bool GenInlinedPeek(CallInfo* info, OpSize size);
- bool GenInlinedPoke(CallInfo* info, OpSize size);
- void GenNotLong(RegLocation rl_dest, RegLocation rl_src);
- void GenNegLong(RegLocation rl_dest, RegLocation rl_src);
- void GenOrLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
- RegLocation rl_src2);
- void GenSubLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
- RegLocation rl_src2);
- void GenXorLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
- RegLocation rl_src2);
- void GenDivRemLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
- RegLocation rl_src2, bool is_div);
- // TODO: collapse reg_lo, reg_hi
- RegLocation GenDivRem(RegLocation rl_dest, RegStorage reg_lo, RegStorage reg_hi, bool is_div);
- RegLocation GenDivRemLit(RegLocation rl_dest, RegStorage reg_lo, int lit, bool is_div);
- void GenCmpLong(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2);
- void GenDivZeroCheckWide(RegStorage reg);
- void GenArrayBoundsCheck(RegStorage index, RegStorage array_base, int32_t len_offset);
- void GenArrayBoundsCheck(int32_t index, RegStorage array_base, int32_t len_offset);
- void GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method);
- void GenExitSequence();
- void GenSpecialExitSequence();
- void GenFillArrayData(DexOffset table_offset, RegLocation rl_src);
- void GenFusedFPCmpBranch(BasicBlock* bb, MIR* mir, bool gt_bias, bool is_double);
- void GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir);
- void GenSelect(BasicBlock* bb, MIR* mir);
- bool GenMemBarrier(MemBarrierKind barrier_kind);
- void GenMoveException(RegLocation rl_dest);
- void GenMultiplyByTwoBitMultiplier(RegLocation rl_src, RegLocation rl_result, int lit,
- int first_bit, int second_bit);
- void GenNegDouble(RegLocation rl_dest, RegLocation rl_src);
- void GenNegFloat(RegLocation rl_dest, RegLocation rl_src);
- void GenPackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src);
- void GenSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src);
-
- /*
- * @brief Generate a two address long operation with a constant value
- * @param rl_dest location of result
- * @param rl_src constant source operand
- * @param op Opcode to be generated
- */
- void GenLongImm(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op);
- /*
- * @brief Generate a three address long operation with a constant value
- * @param rl_dest location of result
- * @param rl_src1 source operand
- * @param rl_src2 constant source operand
- * @param op Opcode to be generated
- */
- void GenLongLongImm(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2,
- Instruction::Code op);
-
- /**
- * @brief Generate a long arithmetic operation.
- * @param rl_dest The destination.
- * @param rl_src1 First operand.
- * @param rl_src2 Second operand.
- * @param op The DEX opcode for the operation.
- * @param is_commutative The sources can be swapped if needed.
- */
- virtual void GenLongArith(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2,
- Instruction::Code op, bool is_commutative);
-
- /**
- * @brief Generate a two operand long arithmetic operation.
- * @param rl_dest The destination.
- * @param rl_src Second operand.
- * @param op The DEX opcode for the operation.
- */
- void GenLongArith(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op);
-
- /**
- * @brief Generate a long operation.
- * @param rl_dest The destination. Must be in a register
- * @param rl_src The other operand. May be in a register or in memory.
- * @param op The DEX opcode for the operation.
- */
- virtual void GenLongRegOrMemOp(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op);
-
- /**
- * @brief Implement instanceof a final class with x86 specific code.
- * @param use_declaring_class 'true' if we can use the class itself.
- * @param type_idx Type index to use if use_declaring_class is 'false'.
- * @param rl_dest Result to be set to 0 or 1.
- * @param rl_src Object to be tested.
- */
- void GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx, RegLocation rl_dest,
- RegLocation rl_src);
- /*
- *
- * @brief Implement Set up instanceof a class with x86 specific code.
- * @param needs_access_check 'true' if we must check the access.
- * @param type_known_final 'true' if the type is known to be a final class.
- * @param type_known_abstract 'true' if the type is known to be an abstract class.
- * @param use_declaring_class 'true' if the type can be loaded off the current Method*.
- * @param can_assume_type_is_in_dex_cache 'true' if the type is known to be in the cache.
- * @param type_idx Type index to use if use_declaring_class is 'false'.
- * @param rl_dest Result to be set to 0 or 1.
- * @param rl_src Object to be tested.
- */
- void GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
- bool type_known_abstract, bool use_declaring_class,
- bool can_assume_type_is_in_dex_cache,
- uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src);
-
- // Single operation generators.
- LIR* OpUnconditionalBranch(LIR* target);
- LIR* OpCmpBranch(ConditionCode cond, RegStorage src1, RegStorage src2, LIR* target);
- LIR* OpCmpImmBranch(ConditionCode cond, RegStorage reg, int check_value, LIR* target);
- LIR* OpCondBranch(ConditionCode cc, LIR* target);
- LIR* OpDecAndBranch(ConditionCode c_code, RegStorage reg, LIR* target);
- LIR* OpFpRegCopy(RegStorage r_dest, RegStorage r_src);
- LIR* OpIT(ConditionCode cond, const char* guide);
- void OpEndIT(LIR* it);
- LIR* OpMem(OpKind op, RegStorage r_base, int disp);
- LIR* OpPcRelLoad(RegStorage reg, LIR* target);
- LIR* OpReg(OpKind op, RegStorage r_dest_src);
- void OpRegCopy(RegStorage r_dest, RegStorage r_src);
- LIR* OpRegCopyNoInsert(RegStorage r_dest, RegStorage r_src);
- LIR* OpRegImm(OpKind op, RegStorage r_dest_src1, int value);
- LIR* OpRegMem(OpKind op, RegStorage r_dest, RegStorage r_base, int offset);
- LIR* OpRegMem(OpKind op, RegStorage r_dest, RegLocation value);
- LIR* OpMemReg(OpKind op, RegLocation rl_dest, int value);
- LIR* OpRegReg(OpKind op, RegStorage r_dest_src1, RegStorage r_src2);
- LIR* OpMovRegMem(RegStorage r_dest, RegStorage r_base, int offset, MoveType move_type);
- LIR* OpMovMemReg(RegStorage r_base, int offset, RegStorage r_src, MoveType move_type);
- LIR* OpCondRegReg(OpKind op, ConditionCode cc, RegStorage r_dest, RegStorage r_src);
- LIR* OpRegRegImm(OpKind op, RegStorage r_dest, RegStorage r_src1, int value);
- LIR* OpRegRegReg(OpKind op, RegStorage r_dest, RegStorage r_src1, RegStorage r_src2);
- LIR* OpTestSuspend(LIR* target);
- LIR* OpThreadMem(OpKind op, ThreadOffset<4> thread_offset) OVERRIDE;
- LIR* OpThreadMem(OpKind op, ThreadOffset<8> thread_offset) OVERRIDE;
- LIR* OpVldm(RegStorage r_base, int count);
- LIR* OpVstm(RegStorage r_base, int count);
- void OpLea(RegStorage r_base, RegStorage reg1, RegStorage reg2, int scale, int offset);
- void OpRegCopyWide(RegStorage dest, RegStorage src);
- void OpTlsCmp(ThreadOffset<4> offset, int val) OVERRIDE;
- void OpTlsCmp(ThreadOffset<8> offset, int val) OVERRIDE;
-
- void OpRegThreadMem(OpKind op, RegStorage r_dest, ThreadOffset<4> thread_offset);
- void OpRegThreadMem(OpKind op, RegStorage r_dest, ThreadOffset<8> thread_offset);
- void SpillCoreRegs();
- void UnSpillCoreRegs();
- static const X86EncodingMap EncodingMap[kX86Last];
- bool InexpensiveConstantInt(int32_t value);
- bool InexpensiveConstantFloat(int32_t value);
- bool InexpensiveConstantLong(int64_t value);
- bool InexpensiveConstantDouble(int64_t value);
-
- /*
- * @brief Should try to optimize for two address instructions?
- * @return true if we try to avoid generating three operand instructions.
- */
- virtual bool GenerateTwoOperandInstructions() const { return true; }
-
- /*
- * @brief x86 specific codegen for int operations.
- * @param opcode Operation to perform.
- * @param rl_dest Destination for the result.
- * @param rl_lhs Left hand operand.
- * @param rl_rhs Right hand operand.
- */
- void GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_lhs,
- RegLocation rl_rhs);
-
- /*
- * @brief Dump a RegLocation using printf
- * @param loc Register location to dump
- */
- static void DumpRegLocation(RegLocation loc);
-
- /*
- * @brief Load the Method* of a dex method into the register.
- * @param target_method The MethodReference of the method to be invoked.
- * @param type How the method will be invoked.
- * @param register that will contain the code address.
- * @note register will be passed to TargetReg to get physical register.
- */
- void LoadMethodAddress(const MethodReference& target_method, InvokeType type,
- SpecialTargetRegister symbolic_reg);
-
- /*
- * @brief Load the Class* of a Dex Class type into the register.
- * @param type How the method will be invoked.
- * @param register that will contain the code address.
- * @note register will be passed to TargetReg to get physical register.
- */
- void LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg);
-
- /*
- * @brief Generate a relative call to the method that will be patched at link time.
- * @param target_method The MethodReference of the method to be invoked.
- * @param type How the method will be invoked.
- * @returns Call instruction
- */
- virtual LIR * CallWithLinkerFixup(const MethodReference& target_method, InvokeType type);
-
- /*
- * @brief Handle x86 specific literals
- */
- void InstallLiteralPools();
-
- /*
- * @brief Generate the debug_frame CFI information.
- * @returns pointer to vector containing CFE information
- */
- static std::vector<uint8_t>* ReturnCommonCallFrameInformation();
-
- /*
- * @brief Generate the debug_frame FDE information.
- * @returns pointer to vector containing CFE information
- */
- std::vector<uint8_t>* ReturnCallFrameInformation();
-
- protected:
- size_t ComputeSize(const X86EncodingMap* entry, int base, int displacement,
- int reg_r, int reg_x, bool has_sib);
- uint8_t LowRegisterBits(uint8_t reg);
- bool NeedsRex(uint8_t reg);
- void EmitPrefix(const X86EncodingMap* entry);
- void EmitPrefix(const X86EncodingMap* entry, uint8_t reg_r, uint8_t reg_x, uint8_t reg_b);
- void EmitOpcode(const X86EncodingMap* entry);
- void EmitPrefixAndOpcode(const X86EncodingMap* entry);
- void EmitPrefixAndOpcode(const X86EncodingMap* entry,
- uint8_t reg_r, uint8_t reg_x, uint8_t reg_b);
- void EmitDisp(uint8_t base, int disp);
- void EmitModrmThread(uint8_t reg_or_opcode);
- void EmitModrmDisp(uint8_t reg_or_opcode, uint8_t base, int disp);
- void EmitModrmSibDisp(uint8_t reg_or_opcode, uint8_t base, uint8_t index, int scale, int disp);
- void EmitImm(const X86EncodingMap* entry, int64_t imm);
- void EmitOpRegOpcode(const X86EncodingMap* entry, uint8_t reg);
- void EmitOpReg(const X86EncodingMap* entry, uint8_t reg);
- void EmitOpMem(const X86EncodingMap* entry, uint8_t base, int disp);
- void EmitOpArray(const X86EncodingMap* entry, uint8_t base, uint8_t index, int scale, int disp);
- void EmitMemReg(const X86EncodingMap* entry, uint8_t base, int disp, uint8_t reg);
- void EmitMemImm(const X86EncodingMap* entry, uint8_t base, int disp, int32_t imm);
- void EmitRegMem(const X86EncodingMap* entry, uint8_t reg, uint8_t base, int disp);
- void EmitRegArray(const X86EncodingMap* entry, uint8_t reg, uint8_t base, uint8_t index,
- int scale, int disp);
- void EmitArrayReg(const X86EncodingMap* entry, uint8_t base, uint8_t index, int scale, int disp,
- uint8_t reg);
- void EmitArrayImm(const X86EncodingMap* entry, uint8_t base, uint8_t index, int scale, int disp,
- int32_t imm);
- void EmitRegThread(const X86EncodingMap* entry, uint8_t reg, int disp);
- void EmitRegReg(const X86EncodingMap* entry, uint8_t reg1, uint8_t reg2);
- void EmitRegRegImm(const X86EncodingMap* entry, uint8_t reg1, uint8_t reg2, int32_t imm);
- void EmitRegRegImmRev(const X86EncodingMap* entry, uint8_t reg1, uint8_t reg2, int32_t imm);
- void EmitRegMemImm(const X86EncodingMap* entry, uint8_t reg1, uint8_t base, int disp,
- int32_t imm);
- void EmitMemRegImm(const X86EncodingMap* entry, uint8_t base, int disp, uint8_t reg1, int32_t imm);
- void EmitRegImm(const X86EncodingMap* entry, uint8_t reg, int imm);
- void EmitThreadImm(const X86EncodingMap* entry, int disp, int imm);
- void EmitMovRegImm(const X86EncodingMap* entry, uint8_t reg, int64_t imm);
- void EmitShiftRegImm(const X86EncodingMap* entry, uint8_t reg, int imm);
- void EmitShiftMemImm(const X86EncodingMap* entry, uint8_t base, int disp, int imm);
- void EmitShiftMemCl(const X86EncodingMap* entry, uint8_t base, int displacement, uint8_t cl);
- void EmitShiftRegCl(const X86EncodingMap* entry, uint8_t reg, uint8_t cl);
- void EmitRegCond(const X86EncodingMap* entry, uint8_t reg, uint8_t condition);
- void EmitMemCond(const X86EncodingMap* entry, uint8_t base, int displacement, uint8_t condition);
-
- /**
- * @brief Used for encoding conditional register to register operation.
- * @param entry The entry in the encoding map for the opcode.
- * @param reg1 The first physical register.
- * @param reg2 The second physical register.
- * @param condition The condition code for operation.
- */
- void EmitRegRegCond(const X86EncodingMap* entry, uint8_t reg1, uint8_t reg2, uint8_t condition);
-
- /**
- * @brief Used for encoding conditional register to memory operation.
- * @param entry The entry in the encoding map for the opcode.
- * @param reg1 The first physical register.
- * @param base The memory base register.
- * @param displacement The memory displacement.
- * @param condition The condition code for operation.
- */
- void EmitRegMemCond(const X86EncodingMap* entry, uint8_t reg1, uint8_t base, int displacement, uint8_t condition);
-
- void EmitJmp(const X86EncodingMap* entry, int rel);
- void EmitJcc(const X86EncodingMap* entry, int rel, uint8_t cc);
- void EmitCallMem(const X86EncodingMap* entry, uint8_t base, int disp);
- void EmitCallImmediate(const X86EncodingMap* entry, int disp);
- void EmitCallThread(const X86EncodingMap* entry, int disp);
- void EmitPcRel(const X86EncodingMap* entry, uint8_t reg, int base_or_table, uint8_t index,
- int scale, int table_or_disp);
- void EmitMacro(const X86EncodingMap* entry, uint8_t reg, int offset);
- void EmitUnimplemented(const X86EncodingMap* entry, LIR* lir);
- void GenFusedLongCmpImmBranch(BasicBlock* bb, RegLocation rl_src1,
- int64_t val, ConditionCode ccode);
- void GenConstWide(RegLocation rl_dest, int64_t value);
-
- static bool ProvidesFullMemoryBarrier(X86OpCode opcode);
-
- /*
- * @brief Ensure that a temporary register is byte addressable.
- * @returns a temporary guarenteed to be byte addressable.
- */
- virtual RegStorage AllocateByteRegister();
-
- /*
- * @brief generate inline code for fast case of Strng.indexOf.
- * @param info Call parameters
- * @param zero_based 'true' if the index into the string is 0.
- * @returns 'true' if the call was inlined, 'false' if a regular call needs to be
- * generated.
- */
- bool GenInlinedIndexOf(CallInfo* info, bool zero_based);
-
- /*
- * @brief Load 128 bit constant into vector register.
- * @param bb The basic block in which the MIR is from.
- * @param mir The MIR whose opcode is kMirConstVector
- * @note vA is the TypeSize for the register.
- * @note vB is the destination XMM register. arg[0..3] are 32 bit constant values.
- */
- void GenConst128(BasicBlock* bb, MIR* mir);
-
- /*
- * @brief MIR to move a vectorized register to another.
- * @param bb The basic block in which the MIR is from.
- * @param mir The MIR whose opcode is kMirConstVector.
- * @note vA: TypeSize
- * @note vB: destination
- * @note vC: source
- */
- void GenMoveVector(BasicBlock *bb, MIR *mir);
-
- /*
- * @brief Packed multiply of units in two vector registers: vB = vB .* @note vC using vA to know the type of the vector.
- * @param bb The basic block in which the MIR is from.
- * @param mir The MIR whose opcode is kMirConstVector.
- * @note vA: TypeSize
- * @note vB: destination and source
- * @note vC: source
- */
- void GenMultiplyVector(BasicBlock *bb, MIR *mir);
-
- /*
- * @brief Packed addition of units in two vector registers: vB = vB .+ vC using vA to know the type of the vector.
- * @param bb The basic block in which the MIR is from.
- * @param mir The MIR whose opcode is kMirConstVector.
- * @note vA: TypeSize
- * @note vB: destination and source
- * @note vC: source
- */
- void GenAddVector(BasicBlock *bb, MIR *mir);
-
- /*
- * @brief Packed subtraction of units in two vector registers: vB = vB .- vC using vA to know the type of the vector.
- * @param bb The basic block in which the MIR is from.
- * @param mir The MIR whose opcode is kMirConstVector.
- * @note vA: TypeSize
- * @note vB: destination and source
- * @note vC: source
- */
- void GenSubtractVector(BasicBlock *bb, MIR *mir);
-
- /*
- * @brief Packed shift left of units in two vector registers: vB = vB .<< vC using vA to know the type of the vector.
- * @param bb The basic block in which the MIR is from.
- * @param mir The MIR whose opcode is kMirConstVector.
- * @note vA: TypeSize
- * @note vB: destination and source
- * @note vC: immediate
- */
- void GenShiftLeftVector(BasicBlock *bb, MIR *mir);
-
- /*
- * @brief Packed signed shift right of units in two vector registers: vB = vB .>> vC using vA to know the type of the vector.
- * @param bb The basic block in which the MIR is from.
- * @param mir The MIR whose opcode is kMirConstVector.
- * @note vA: TypeSize
- * @note vB: destination and source
- * @note vC: immediate
- */
- void GenSignedShiftRightVector(BasicBlock *bb, MIR *mir);
-
- /*
- * @brief Packed unsigned shift right of units in two vector registers: vB = vB .>>> vC using vA to know the type of the vector.
- * @param bb The basic block in which the MIR is from..
- * @param mir The MIR whose opcode is kMirConstVector.
- * @note vA: TypeSize
- * @note vB: destination and source
- * @note vC: immediate
- */
- void GenUnsignedShiftRightVector(BasicBlock *bb, MIR *mir);
-
- /*
- * @brief Packed bitwise and of units in two vector registers: vB = vB .& vC using vA to know the type of the vector.
- * @note vA: TypeSize
- * @note vB: destination and source
- * @note vC: source
- */
- void GenAndVector(BasicBlock *bb, MIR *mir);
-
- /*
- * @brief Packed bitwise or of units in two vector registers: vB = vB .| vC using vA to know the type of the vector.
- * @param bb The basic block in which the MIR is from.
- * @param mir The MIR whose opcode is kMirConstVector.
- * @note vA: TypeSize
- * @note vB: destination and source
- * @note vC: source
- */
- void GenOrVector(BasicBlock *bb, MIR *mir);
-
- /*
- * @brief Packed bitwise xor of units in two vector registers: vB = vB .^ vC using vA to know the type of the vector.
- * @param bb The basic block in which the MIR is from.
- * @param mir The MIR whose opcode is kMirConstVector.
- * @note vA: TypeSize
- * @note vB: destination and source
- * @note vC: source
- */
- void GenXorVector(BasicBlock *bb, MIR *mir);
-
- /*
- * @brief Reduce a 128-bit packed element into a single VR by taking lower bits
- * @param bb The basic block in which the MIR is from.
- * @param mir The MIR whose opcode is kMirConstVector.
- * @details Instruction does a horizontal addition of the packed elements and then adds it to VR.
- * @note vA: TypeSize
- * @note vB: destination and source VR (not vector register)
- * @note vC: source (vector register)
- */
- void GenAddReduceVector(BasicBlock *bb, MIR *mir);
-
- /*
- * @brief Extract a packed element into a single VR.
- * @param bb The basic block in which the MIR is from.
- * @param mir The MIR whose opcode is kMirConstVector.
- * @note vA: TypeSize
- * @note vB: destination VR (not vector register)
- * @note vC: source (vector register)
- * @note arg[0]: The index to use for extraction from vector register (which packed element).
- */
- void GenReduceVector(BasicBlock *bb, MIR *mir);
-
- /*
- * @brief Create a vector value, with all TypeSize values equal to vC
- * @param bb The basic block in which the MIR is from.
- * @param mir The MIR whose opcode is kMirConstVector.
- * @note vA: TypeSize.
- * @note vB: destination vector register.
- * @note vC: source VR (not vector register).
- */
- void GenSetVector(BasicBlock *bb, MIR *mir);
-
- /*
- * @brief Generate code for a vector opcode.
- * @param bb The basic block in which the MIR is from.
- * @param mir The MIR whose opcode is a non-standard opcode.
- */
- void GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir);
-
- /*
- * @brief Return the correct x86 opcode for the Dex operation
- * @param op Dex opcode for the operation
- * @param loc Register location of the operand
- * @param is_high_op 'true' if this is an operation on the high word
- * @param value Immediate value for the operation. Used for byte variants
- * @returns the correct x86 opcode to perform the operation
- */
- X86OpCode GetOpcode(Instruction::Code op, RegLocation loc, bool is_high_op, int32_t value);
-
- /*
- * @brief Return the correct x86 opcode for the Dex operation
- * @param op Dex opcode for the operation
- * @param dest location of the destination. May be register or memory.
- * @param rhs Location for the rhs of the operation. May be in register or memory.
- * @param is_high_op 'true' if this is an operation on the high word
- * @returns the correct x86 opcode to perform the operation
- * @note at most one location may refer to memory
- */
- X86OpCode GetOpcode(Instruction::Code op, RegLocation dest, RegLocation rhs,
- bool is_high_op);
-
- /*
- * @brief Is this operation a no-op for this opcode and value
- * @param op Dex opcode for the operation
- * @param value Immediate value for the operation.
- * @returns 'true' if the operation will have no effect
- */
- bool IsNoOp(Instruction::Code op, int32_t value);
-
- /**
- * @brief Calculate magic number and shift for a given divisor
- * @param divisor divisor number for calculation
- * @param magic hold calculated magic number
- * @param shift hold calculated shift
- */
- void CalculateMagicAndShift(int divisor, int& magic, int& shift);
-
- /*
- * @brief Generate an integer div or rem operation.
- * @param rl_dest Destination Location.
- * @param rl_src1 Numerator Location.
- * @param rl_src2 Divisor Location.
- * @param is_div 'true' if this is a division, 'false' for a remainder.
- * @param check_zero 'true' if an exception should be generated if the divisor is 0.
- */
- RegLocation GenDivRem(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2,
- bool is_div, bool check_zero);
-
- /*
- * @brief Generate an integer div or rem operation by a literal.
- * @param rl_dest Destination Location.
- * @param rl_src Numerator Location.
- * @param lit Divisor.
- * @param is_div 'true' if this is a division, 'false' for a remainder.
- */
- RegLocation GenDivRemLit(RegLocation rl_dest, RegLocation rl_src, int lit, bool is_div);
-
- /*
- * Generate code to implement long shift operations.
- * @param opcode The DEX opcode to specify the shift type.
- * @param rl_dest The destination.
- * @param rl_src The value to be shifted.
- * @param shift_amount How much to shift.
- * @returns the RegLocation of the result.
- */
- RegLocation GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
- RegLocation rl_src, int shift_amount);
- /*
- * Generate an imul of a register by a constant or a better sequence.
- * @param dest Destination Register.
- * @param src Source Register.
- * @param val Constant multiplier.
- */
- void GenImulRegImm(RegStorage dest, RegStorage src, int val);
-
- /*
- * Generate an imul of a memory location by a constant or a better sequence.
- * @param dest Destination Register.
- * @param sreg Symbolic register.
- * @param displacement Displacement on stack of Symbolic Register.
- * @param val Constant multiplier.
- */
- void GenImulMemImm(RegStorage dest, int sreg, int displacement, int val);
-
- /*
- * @brief Compare memory to immediate, and branch if condition true.
- * @param cond The condition code that when true will branch to the target.
- * @param temp_reg A temporary register that can be used if compare memory is not
- * supported by the architecture.
- * @param base_reg The register holding the base address.
- * @param offset The offset from the base.
- * @param check_value The immediate to compare to.
- */
- LIR* OpCmpMemImmBranch(ConditionCode cond, RegStorage temp_reg, RegStorage base_reg,
- int offset, int check_value, LIR* target);
-
- /*
- * Can this operation be using core registers without temporaries?
- * @param rl_lhs Left hand operand.
- * @param rl_rhs Right hand operand.
- * @returns 'true' if the operation can proceed without needing temporary regs.
- */
- bool IsOperationSafeWithoutTemps(RegLocation rl_lhs, RegLocation rl_rhs);
-
- /**
- * @brief Generates inline code for conversion of long to FP by using x87/
- * @param rl_dest The destination of the FP.
- * @param rl_src The source of the long.
- * @param is_double 'true' if dealing with double, 'false' for float.
- */
- virtual void GenLongToFP(RegLocation rl_dest, RegLocation rl_src, bool is_double);
-
- /*
- * @brief Perform MIR analysis before compiling method.
- * @note Invokes Mir2LiR::Materialize after analysis.
- */
- void Materialize();
-
- /*
- * Mir2Lir's UpdateLoc() looks to see if the Dalvik value is currently live in any temp register
- * without regard to data type. In practice, this can result in UpdateLoc returning a
- * location record for a Dalvik float value in a core register, and vis-versa. For targets
- * which can inexpensively move data between core and float registers, this can often be a win.
- * However, for x86 this is generally not a win. These variants of UpdateLoc()
- * take a register class argument - and will return an in-register location record only if
- * the value is live in a temp register of the correct class. Additionally, if the value is in
- * a temp register of the wrong register class, it will be clobbered.
- */
- RegLocation UpdateLocTyped(RegLocation loc, int reg_class);
- RegLocation UpdateLocWideTyped(RegLocation loc, int reg_class);
-
- /*
- * @brief Analyze MIR before generating code, to prepare for the code generation.
- */
- void AnalyzeMIR();
-
- /*
- * @brief Analyze one basic block.
- * @param bb Basic block to analyze.
- */
- void AnalyzeBB(BasicBlock * bb);
-
- /*
- * @brief Analyze one extended MIR instruction
- * @param opcode MIR instruction opcode.
- * @param bb Basic block containing instruction.
- * @param mir Extended instruction to analyze.
- */
- void AnalyzeExtendedMIR(int opcode, BasicBlock * bb, MIR *mir);
-
- /*
- * @brief Analyze one MIR instruction
- * @param opcode MIR instruction opcode.
- * @param bb Basic block containing instruction.
- * @param mir Instruction to analyze.
- */
- virtual void AnalyzeMIR(int opcode, BasicBlock * bb, MIR *mir);
-
- /*
- * @brief Analyze one MIR float/double instruction
- * @param opcode MIR instruction opcode.
- * @param bb Basic block containing instruction.
- * @param mir Instruction to analyze.
- */
- void AnalyzeFPInstruction(int opcode, BasicBlock * bb, MIR *mir);
-
- /*
- * @brief Analyze one use of a double operand.
- * @param rl_use Double RegLocation for the operand.
- */
- void AnalyzeDoubleUse(RegLocation rl_use);
-
- bool Gen64Bit() const { return gen64bit_; }
-
- // Information derived from analysis of MIR
-
- // The compiler temporary for the code address of the method.
- CompilerTemp *base_of_code_;
-
- // Have we decided to compute a ptr to code and store in temporary VR?
- bool store_method_addr_;
-
- // Have we used the stored method address?
- bool store_method_addr_used_;
-
- // Instructions to remove if we didn't use the stored method address.
- LIR* setup_method_address_[2];
-
- // Instructions needing patching with Method* values.
- GrowableArray<LIR*> method_address_insns_;
-
- // Instructions needing patching with Class Type* values.
- GrowableArray<LIR*> class_type_address_insns_;
-
- // Instructions needing patching with PC relative code addresses.
- GrowableArray<LIR*> call_method_insns_;
-
- // Prologue decrement of stack pointer.
- LIR* stack_decrement_;
-
- // Epilogue increment of stack pointer.
- LIR* stack_increment_;
-
- // 64-bit mode
- bool gen64bit_;
-
- // The list of const vector literals.
- LIR *const_vectors_;
-
- /*
- * @brief Search for a matching vector literal
- * @param mir A kMirOpConst128b MIR instruction to match.
- * @returns pointer to matching LIR constant, or nullptr if not found.
- */
- LIR *ScanVectorLiteral(MIR *mir);
-
- /*
- * @brief Add a constant vector literal
- * @param mir A kMirOpConst128b MIR instruction to match.
- */
- LIR *AddVectorLiteral(MIR *mir);
+ void GenDivRemLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
+ RegLocation rl_src2, bool is_div);
+ // TODO: collapse reg_lo, reg_hi
+ RegLocation GenDivRem(RegLocation rl_dest, RegStorage reg_lo, RegStorage reg_hi, bool is_div);
+ RegLocation GenDivRemLit(RegLocation rl_dest, RegStorage reg_lo, int lit, bool is_div);
+ void GenCmpLong(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2);
+ void GenDivZeroCheckWide(RegStorage reg);
+ void GenArrayBoundsCheck(RegStorage index, RegStorage array_base, int32_t len_offset);
+ void GenArrayBoundsCheck(int32_t index, RegStorage array_base, int32_t len_offset);
+ void GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method);
+ void GenExitSequence();
+ void GenSpecialExitSequence();
+ void GenFillArrayData(DexOffset table_offset, RegLocation rl_src);
+ void GenFusedFPCmpBranch(BasicBlock* bb, MIR* mir, bool gt_bias, bool is_double);
+ void GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir);
+ void GenSelect(BasicBlock* bb, MIR* mir);
+ bool GenMemBarrier(MemBarrierKind barrier_kind);
+ void GenMoveException(RegLocation rl_dest);
+ void GenMultiplyByTwoBitMultiplier(RegLocation rl_src, RegLocation rl_result, int lit,
+ int first_bit, int second_bit);
+ void GenNegDouble(RegLocation rl_dest, RegLocation rl_src);
+ void GenNegFloat(RegLocation rl_dest, RegLocation rl_src);
+ void GenPackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src);
+ void GenSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src);
+ void GenIntToLong(RegLocation rl_dest, RegLocation rl_src);
+
+ /*
+ * @brief Generate a two address long operation with a constant value
+ * @param rl_dest location of result
+ * @param rl_src constant source operand
+ * @param op Opcode to be generated
+ * @return success or not
+ */
+ bool GenLongImm(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op);
+ /*
+ * @brief Generate a three address long operation with a constant value
+ * @param rl_dest location of result
+ * @param rl_src1 source operand
+ * @param rl_src2 constant source operand
+ * @param op Opcode to be generated
+ * @return success or not
+ */
+ bool GenLongLongImm(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2,
+ Instruction::Code op);
+
+ /**
+ * @brief Generate a long arithmetic operation.
+ * @param rl_dest The destination.
+ * @param rl_src1 First operand.
+ * @param rl_src2 Second operand.
+ * @param op The DEX opcode for the operation.
+ * @param is_commutative The sources can be swapped if needed.
+ */
+ virtual void GenLongArith(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2,
+ Instruction::Code op, bool is_commutative);
+
+ /**
+ * @brief Generate a two operand long arithmetic operation.
+ * @param rl_dest The destination.
+ * @param rl_src Second operand.
+ * @param op The DEX opcode for the operation.
+ */
+ void GenLongArith(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op);
+
+ /**
+ * @brief Generate a long operation.
+ * @param rl_dest The destination. Must be in a register
+ * @param rl_src The other operand. May be in a register or in memory.
+ * @param op The DEX opcode for the operation.
+ */
+ virtual void GenLongRegOrMemOp(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op);
+
+ /**
+ * @brief Implement instanceof a final class with x86 specific code.
+ * @param use_declaring_class 'true' if we can use the class itself.
+ * @param type_idx Type index to use if use_declaring_class is 'false'.
+ * @param rl_dest Result to be set to 0 or 1.
+ * @param rl_src Object to be tested.
+ */
+ void GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx, RegLocation rl_dest,
+ RegLocation rl_src);
+ /*
+ *
+ * @brief Implement Set up instanceof a class with x86 specific code.
+ * @param needs_access_check 'true' if we must check the access.
+ * @param type_known_final 'true' if the type is known to be a final class.
+ * @param type_known_abstract 'true' if the type is known to be an abstract class.
+ * @param use_declaring_class 'true' if the type can be loaded off the current Method*.
+ * @param can_assume_type_is_in_dex_cache 'true' if the type is known to be in the cache.
+ * @param type_idx Type index to use if use_declaring_class is 'false'.
+ * @param rl_dest Result to be set to 0 or 1.
+ * @param rl_src Object to be tested.
+ */
+ void GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
+ bool type_known_abstract, bool use_declaring_class,
+ bool can_assume_type_is_in_dex_cache,
+ uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src);
+
+ void GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest,
+ RegLocation rl_src1, RegLocation rl_shift);
+
+ // Single operation generators.
+ LIR* OpUnconditionalBranch(LIR* target);
+ LIR* OpCmpBranch(ConditionCode cond, RegStorage src1, RegStorage src2, LIR* target);
+ LIR* OpCmpImmBranch(ConditionCode cond, RegStorage reg, int check_value, LIR* target);
+ LIR* OpCondBranch(ConditionCode cc, LIR* target);
+ LIR* OpDecAndBranch(ConditionCode c_code, RegStorage reg, LIR* target);
+ LIR* OpFpRegCopy(RegStorage r_dest, RegStorage r_src);
+ LIR* OpIT(ConditionCode cond, const char* guide);
+ void OpEndIT(LIR* it);
+ LIR* OpMem(OpKind op, RegStorage r_base, int disp);
+ LIR* OpPcRelLoad(RegStorage reg, LIR* target);
+ LIR* OpReg(OpKind op, RegStorage r_dest_src);
+ void OpRegCopy(RegStorage r_dest, RegStorage r_src);
+ LIR* OpRegCopyNoInsert(RegStorage r_dest, RegStorage r_src);
+ LIR* OpRegImm(OpKind op, RegStorage r_dest_src1, int value);
+ LIR* OpRegMem(OpKind op, RegStorage r_dest, RegStorage r_base, int offset);
+ LIR* OpRegMem(OpKind op, RegStorage r_dest, RegLocation value);
+ LIR* OpMemReg(OpKind op, RegLocation rl_dest, int value);
+ LIR* OpRegReg(OpKind op, RegStorage r_dest_src1, RegStorage r_src2);
+ LIR* OpMovRegMem(RegStorage r_dest, RegStorage r_base, int offset, MoveType move_type);
+ LIR* OpMovMemReg(RegStorage r_base, int offset, RegStorage r_src, MoveType move_type);
+ LIR* OpCondRegReg(OpKind op, ConditionCode cc, RegStorage r_dest, RegStorage r_src);
+ LIR* OpRegRegImm(OpKind op, RegStorage r_dest, RegStorage r_src1, int value);
+ LIR* OpRegRegReg(OpKind op, RegStorage r_dest, RegStorage r_src1, RegStorage r_src2);
+ LIR* OpTestSuspend(LIR* target);
+ LIR* OpThreadMem(OpKind op, ThreadOffset<4> thread_offset) OVERRIDE;
+ LIR* OpThreadMem(OpKind op, ThreadOffset<8> thread_offset) OVERRIDE;
+ LIR* OpVldm(RegStorage r_base, int count);
+ LIR* OpVstm(RegStorage r_base, int count);
+ void OpLea(RegStorage r_base, RegStorage reg1, RegStorage reg2, int scale, int offset);
+ void OpRegCopyWide(RegStorage dest, RegStorage src);
+ void OpTlsCmp(ThreadOffset<4> offset, int val) OVERRIDE;
+ void OpTlsCmp(ThreadOffset<8> offset, int val) OVERRIDE;
+
+ void OpRegThreadMem(OpKind op, RegStorage r_dest, ThreadOffset<4> thread_offset);
+ void OpRegThreadMem(OpKind op, RegStorage r_dest, ThreadOffset<8> thread_offset);
+ void SpillCoreRegs();
+ void UnSpillCoreRegs();
+ static const X86EncodingMap EncodingMap[kX86Last];
+ bool InexpensiveConstantInt(int32_t value);
+ bool InexpensiveConstantFloat(int32_t value);
+ bool InexpensiveConstantLong(int64_t value);
+ bool InexpensiveConstantDouble(int64_t value);
+
+ /*
+ * @brief Should try to optimize for two address instructions?
+ * @return true if we try to avoid generating three operand instructions.
+ */
+ virtual bool GenerateTwoOperandInstructions() const { return true; }
+
+ /*
+ * @brief x86 specific codegen for int operations.
+ * @param opcode Operation to perform.
+ * @param rl_dest Destination for the result.
+ * @param rl_lhs Left hand operand.
+ * @param rl_rhs Right hand operand.
+ */
+ void GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_lhs,
+ RegLocation rl_rhs);
+
+ /*
+ * @brief Dump a RegLocation using printf
+ * @param loc Register location to dump
+ */
+ static void DumpRegLocation(RegLocation loc);
+
+ /*
+ * @brief Load the Method* of a dex method into the register.
+ * @param target_method The MethodReference of the method to be invoked.
+ * @param type How the method will be invoked.
+ * @param register that will contain the code address.
+ * @note register will be passed to TargetReg to get physical register.
+ */
+ void LoadMethodAddress(const MethodReference& target_method, InvokeType type,
+ SpecialTargetRegister symbolic_reg);
+
+ /*
+ * @brief Load the Class* of a Dex Class type into the register.
+ * @param type How the method will be invoked.
+ * @param register that will contain the code address.
+ * @note register will be passed to TargetReg to get physical register.
+ */
+ void LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg);
+
+ void FlushIns(RegLocation* ArgLocs, RegLocation rl_method);
+
+ int GenDalvikArgsNoRange(CallInfo* info, int call_state, LIR** pcrLabel,
+ NextCallInsn next_call_insn,
+ const MethodReference& target_method,
+ uint32_t vtable_idx,
+ uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
+ bool skip_this);
+
+ int GenDalvikArgsRange(CallInfo* info, int call_state, LIR** pcrLabel,
+ NextCallInsn next_call_insn,
+ const MethodReference& target_method,
+ uint32_t vtable_idx,
+ uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
+ bool skip_this);
+
+ /*
+ * @brief Generate a relative call to the method that will be patched at link time.
+ * @param target_method The MethodReference of the method to be invoked.
+ * @param type How the method will be invoked.
+ * @returns Call instruction
+ */
+ virtual LIR * CallWithLinkerFixup(const MethodReference& target_method, InvokeType type);
+
+ /*
+ * @brief Handle x86 specific literals
+ */
+ void InstallLiteralPools();
+
+ /*
+ * @brief Generate the debug_frame CFI information.
+ * @returns pointer to vector containing CFE information
+ */
+ static std::vector<uint8_t>* ReturnCommonCallFrameInformation();
+
+ /*
+ * @brief Generate the debug_frame FDE information.
+ * @returns pointer to vector containing CFE information
+ */
+ std::vector<uint8_t>* ReturnCallFrameInformation();
+
+ protected:
+ size_t ComputeSize(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_index,
+ int32_t raw_base, bool has_sib, bool r8_form, bool r8_reg_reg_form,
+ int32_t displacement);
+ void CheckValidByteRegister(const X86EncodingMap* entry, int32_t raw_reg);
+ void EmitPrefix(const X86EncodingMap* entry,
+ int32_t raw_reg_r, int32_t raw_reg_x, int32_t raw_reg_b,
+ bool r8_form);
+ void EmitOpcode(const X86EncodingMap* entry);
+ void EmitPrefixAndOpcode(const X86EncodingMap* entry,
+ int32_t reg_r, int32_t reg_x, int32_t reg_b, bool r8_form);
+ void EmitDisp(uint8_t base, int32_t disp);
+ void EmitModrmThread(uint8_t reg_or_opcode);
+ void EmitModrmDisp(uint8_t reg_or_opcode, uint8_t base, int32_t disp);
+ void EmitModrmSibDisp(uint8_t reg_or_opcode, uint8_t base, uint8_t index, int scale,
+ int32_t disp);
+ void EmitImm(const X86EncodingMap* entry, int64_t imm);
+ void EmitNullary(const X86EncodingMap* entry);
+ void EmitOpRegOpcode(const X86EncodingMap* entry, int32_t raw_reg);
+ void EmitOpReg(const X86EncodingMap* entry, int32_t raw_reg);
+ void EmitOpMem(const X86EncodingMap* entry, int32_t raw_base, int32_t disp);
+ void EmitOpArray(const X86EncodingMap* entry, int32_t raw_base, int32_t raw_index, int scale,
+ int32_t disp);
+ void EmitMemReg(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t raw_reg);
+ void EmitRegMem(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_base, int32_t disp);
+ void EmitRegArray(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_base,
+ int32_t raw_index, int scale, int32_t disp);
+ void EmitArrayReg(const X86EncodingMap* entry, int32_t raw_base, int32_t raw_index, int scale,
+ int32_t disp, int32_t raw_reg);
+ void EmitMemImm(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t imm);
+ void EmitArrayImm(const X86EncodingMap* entry, int32_t raw_base, int32_t raw_index, int scale,
+ int32_t raw_disp, int32_t imm);
+ void EmitRegThread(const X86EncodingMap* entry, int32_t raw_reg, int32_t disp);
+ void EmitRegReg(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2);
+ void EmitRegRegImm(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2, int32_t imm);
+ void EmitRegMemImm(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_base, int32_t disp,
+ int32_t imm);
+ void EmitMemRegImm(const X86EncodingMap* entry, int32_t base, int32_t disp, int32_t raw_reg1,
+ int32_t imm);
+ void EmitRegImm(const X86EncodingMap* entry, int32_t raw_reg, int32_t imm);
+ void EmitThreadImm(const X86EncodingMap* entry, int32_t disp, int32_t imm);
+ void EmitMovRegImm(const X86EncodingMap* entry, int32_t raw_reg, int64_t imm);
+ void EmitShiftRegImm(const X86EncodingMap* entry, int32_t raw_reg, int32_t imm);
+ void EmitShiftRegCl(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_cl);
+ void EmitShiftMemCl(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t raw_cl);
+ void EmitShiftMemImm(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t imm);
+ void EmitRegCond(const X86EncodingMap* entry, int32_t raw_reg, int32_t cc);
+ void EmitMemCond(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t cc);
+ void EmitRegRegCond(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2, int32_t cc);
+ void EmitRegMemCond(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_base, int32_t disp,
+ int32_t cc);
+
+ void EmitJmp(const X86EncodingMap* entry, int32_t rel);
+ void EmitJcc(const X86EncodingMap* entry, int32_t rel, int32_t cc);
+ void EmitCallMem(const X86EncodingMap* entry, int32_t raw_base, int32_t disp);
+ void EmitCallImmediate(const X86EncodingMap* entry, int32_t disp);
+ void EmitCallThread(const X86EncodingMap* entry, int32_t disp);
+ void EmitPcRel(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_base_or_table,
+ int32_t raw_index, int scale, int32_t table_or_disp);
+ void EmitMacro(const X86EncodingMap* entry, int32_t raw_reg, int32_t offset);
+ void EmitUnimplemented(const X86EncodingMap* entry, LIR* lir);
+ void GenFusedLongCmpImmBranch(BasicBlock* bb, RegLocation rl_src1,
+ int64_t val, ConditionCode ccode);
+ void GenConstWide(RegLocation rl_dest, int64_t value);
+
+ static bool ProvidesFullMemoryBarrier(X86OpCode opcode);
+
+ /*
+ * @brief Ensure that a temporary register is byte addressable.
+ * @returns a temporary guarenteed to be byte addressable.
+ */
+ virtual RegStorage AllocateByteRegister();
+
+ /*
+ * @brief generate inline code for fast case of Strng.indexOf.
+ * @param info Call parameters
+ * @param zero_based 'true' if the index into the string is 0.
+ * @returns 'true' if the call was inlined, 'false' if a regular call needs to be
+ * generated.
+ */
+ bool GenInlinedIndexOf(CallInfo* info, bool zero_based);
+
+ /*
+ * @brief Load 128 bit constant into vector register.
+ * @param bb The basic block in which the MIR is from.
+ * @param mir The MIR whose opcode is kMirConstVector
+ * @note vA is the TypeSize for the register.
+ * @note vB is the destination XMM register. arg[0..3] are 32 bit constant values.
+ */
+ void GenConst128(BasicBlock* bb, MIR* mir);
+
+ /*
+ * @brief MIR to move a vectorized register to another.
+ * @param bb The basic block in which the MIR is from.
+ * @param mir The MIR whose opcode is kMirConstVector.
+ * @note vA: TypeSize
+ * @note vB: destination
+ * @note vC: source
+ */
+ void GenMoveVector(BasicBlock *bb, MIR *mir);
+
+ /*
+ * @brief Packed multiply of units in two vector registers: vB = vB .* @note vC using vA to know the type of the vector.
+ * @param bb The basic block in which the MIR is from.
+ * @param mir The MIR whose opcode is kMirConstVector.
+ * @note vA: TypeSize
+ * @note vB: destination and source
+ * @note vC: source
+ */
+ void GenMultiplyVector(BasicBlock *bb, MIR *mir);
+
+ /*
+ * @brief Packed addition of units in two vector registers: vB = vB .+ vC using vA to know the type of the vector.
+ * @param bb The basic block in which the MIR is from.
+ * @param mir The MIR whose opcode is kMirConstVector.
+ * @note vA: TypeSize
+ * @note vB: destination and source
+ * @note vC: source
+ */
+ void GenAddVector(BasicBlock *bb, MIR *mir);
+
+ /*
+ * @brief Packed subtraction of units in two vector registers: vB = vB .- vC using vA to know the type of the vector.
+ * @param bb The basic block in which the MIR is from.
+ * @param mir The MIR whose opcode is kMirConstVector.
+ * @note vA: TypeSize
+ * @note vB: destination and source
+ * @note vC: source
+ */
+ void GenSubtractVector(BasicBlock *bb, MIR *mir);
+
+ /*
+ * @brief Packed shift left of units in two vector registers: vB = vB .<< vC using vA to know the type of the vector.
+ * @param bb The basic block in which the MIR is from.
+ * @param mir The MIR whose opcode is kMirConstVector.
+ * @note vA: TypeSize
+ * @note vB: destination and source
+ * @note vC: immediate
+ */
+ void GenShiftLeftVector(BasicBlock *bb, MIR *mir);
+
+ /*
+ * @brief Packed signed shift right of units in two vector registers: vB = vB .>> vC using vA to know the type of the vector.
+ * @param bb The basic block in which the MIR is from.
+ * @param mir The MIR whose opcode is kMirConstVector.
+ * @note vA: TypeSize
+ * @note vB: destination and source
+ * @note vC: immediate
+ */
+ void GenSignedShiftRightVector(BasicBlock *bb, MIR *mir);
+
+ /*
+ * @brief Packed unsigned shift right of units in two vector registers: vB = vB .>>> vC using vA to know the type of the vector.
+ * @param bb The basic block in which the MIR is from..
+ * @param mir The MIR whose opcode is kMirConstVector.
+ * @note vA: TypeSize
+ * @note vB: destination and source
+ * @note vC: immediate
+ */
+ void GenUnsignedShiftRightVector(BasicBlock *bb, MIR *mir);
+
+ /*
+ * @brief Packed bitwise and of units in two vector registers: vB = vB .& vC using vA to know the type of the vector.
+ * @note vA: TypeSize
+ * @note vB: destination and source
+ * @note vC: source
+ */
+ void GenAndVector(BasicBlock *bb, MIR *mir);
+
+ /*
+ * @brief Packed bitwise or of units in two vector registers: vB = vB .| vC using vA to know the type of the vector.
+ * @param bb The basic block in which the MIR is from.
+ * @param mir The MIR whose opcode is kMirConstVector.
+ * @note vA: TypeSize
+ * @note vB: destination and source
+ * @note vC: source
+ */
+ void GenOrVector(BasicBlock *bb, MIR *mir);
+
+ /*
+ * @brief Packed bitwise xor of units in two vector registers: vB = vB .^ vC using vA to know the type of the vector.
+ * @param bb The basic block in which the MIR is from.
+ * @param mir The MIR whose opcode is kMirConstVector.
+ * @note vA: TypeSize
+ * @note vB: destination and source
+ * @note vC: source
+ */
+ void GenXorVector(BasicBlock *bb, MIR *mir);
+
+ /*
+ * @brief Reduce a 128-bit packed element into a single VR by taking lower bits
+ * @param bb The basic block in which the MIR is from.
+ * @param mir The MIR whose opcode is kMirConstVector.
+ * @details Instruction does a horizontal addition of the packed elements and then adds it to VR.
+ * @note vA: TypeSize
+ * @note vB: destination and source VR (not vector register)
+ * @note vC: source (vector register)
+ */
+ void GenAddReduceVector(BasicBlock *bb, MIR *mir);
+
+ /*
+ * @brief Extract a packed element into a single VR.
+ * @param bb The basic block in which the MIR is from.
+ * @param mir The MIR whose opcode is kMirConstVector.
+ * @note vA: TypeSize
+ * @note vB: destination VR (not vector register)
+ * @note vC: source (vector register)
+ * @note arg[0]: The index to use for extraction from vector register (which packed element).
+ */
+ void GenReduceVector(BasicBlock *bb, MIR *mir);
+
+ /*
+ * @brief Create a vector value, with all TypeSize values equal to vC
+ * @param bb The basic block in which the MIR is from.
+ * @param mir The MIR whose opcode is kMirConstVector.
+ * @note vA: TypeSize.
+ * @note vB: destination vector register.
+ * @note vC: source VR (not vector register).
+ */
+ void GenSetVector(BasicBlock *bb, MIR *mir);
+
+ /*
+ * @brief Generate code for a vector opcode.
+ * @param bb The basic block in which the MIR is from.
+ * @param mir The MIR whose opcode is a non-standard opcode.
+ */
+ void GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir);
+
+ /*
+ * @brief Return the correct x86 opcode for the Dex operation
+ * @param op Dex opcode for the operation
+ * @param loc Register location of the operand
+ * @param is_high_op 'true' if this is an operation on the high word
+ * @param value Immediate value for the operation. Used for byte variants
+ * @returns the correct x86 opcode to perform the operation
+ */
+ X86OpCode GetOpcode(Instruction::Code op, RegLocation loc, bool is_high_op, int32_t value);
+
+ /*
+ * @brief Return the correct x86 opcode for the Dex operation
+ * @param op Dex opcode for the operation
+ * @param dest location of the destination. May be register or memory.
+ * @param rhs Location for the rhs of the operation. May be in register or memory.
+ * @param is_high_op 'true' if this is an operation on the high word
+ * @returns the correct x86 opcode to perform the operation
+ * @note at most one location may refer to memory
+ */
+ X86OpCode GetOpcode(Instruction::Code op, RegLocation dest, RegLocation rhs,
+ bool is_high_op);
+
+ /*
+ * @brief Is this operation a no-op for this opcode and value
+ * @param op Dex opcode for the operation
+ * @param value Immediate value for the operation.
+ * @returns 'true' if the operation will have no effect
+ */
+ bool IsNoOp(Instruction::Code op, int32_t value);
+
+ /**
+ * @brief Calculate magic number and shift for a given divisor
+ * @param divisor divisor number for calculation
+ * @param magic hold calculated magic number
+ * @param shift hold calculated shift
+ */
+ void CalculateMagicAndShift(int divisor, int& magic, int& shift);
+
+ /*
+ * @brief Generate an integer div or rem operation.
+ * @param rl_dest Destination Location.
+ * @param rl_src1 Numerator Location.
+ * @param rl_src2 Divisor Location.
+ * @param is_div 'true' if this is a division, 'false' for a remainder.
+ * @param check_zero 'true' if an exception should be generated if the divisor is 0.
+ */
+ RegLocation GenDivRem(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2,
+ bool is_div, bool check_zero);
+
+ /*
+ * @brief Generate an integer div or rem operation by a literal.
+ * @param rl_dest Destination Location.
+ * @param rl_src Numerator Location.
+ * @param lit Divisor.
+ * @param is_div 'true' if this is a division, 'false' for a remainder.
+ */
+ RegLocation GenDivRemLit(RegLocation rl_dest, RegLocation rl_src, int lit, bool is_div);
+
+ /*
+ * Generate code to implement long shift operations.
+ * @param opcode The DEX opcode to specify the shift type.
+ * @param rl_dest The destination.
+ * @param rl_src The value to be shifted.
+ * @param shift_amount How much to shift.
+ * @returns the RegLocation of the result.
+ */
+ RegLocation GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
+ RegLocation rl_src, int shift_amount);
+ /*
+ * Generate an imul of a register by a constant or a better sequence.
+ * @param dest Destination Register.
+ * @param src Source Register.
+ * @param val Constant multiplier.
+ */
+ void GenImulRegImm(RegStorage dest, RegStorage src, int val);
+
+ /*
+ * Generate an imul of a memory location by a constant or a better sequence.
+ * @param dest Destination Register.
+ * @param sreg Symbolic register.
+ * @param displacement Displacement on stack of Symbolic Register.
+ * @param val Constant multiplier.
+ */
+ void GenImulMemImm(RegStorage dest, int sreg, int displacement, int val);
+
+ /*
+ * @brief Compare memory to immediate, and branch if condition true.
+ * @param cond The condition code that when true will branch to the target.
+ * @param temp_reg A temporary register that can be used if compare memory is not
+ * supported by the architecture.
+ * @param base_reg The register holding the base address.
+ * @param offset The offset from the base.
+ * @param check_value The immediate to compare to.
+ */
+ LIR* OpCmpMemImmBranch(ConditionCode cond, RegStorage temp_reg, RegStorage base_reg,
+ int offset, int check_value, LIR* target);
+
+ /*
+ * Can this operation be using core registers without temporaries?
+ * @param rl_lhs Left hand operand.
+ * @param rl_rhs Right hand operand.
+ * @returns 'true' if the operation can proceed without needing temporary regs.
+ */
+ bool IsOperationSafeWithoutTemps(RegLocation rl_lhs, RegLocation rl_rhs);
+
+ /**
+ * @brief Generates inline code for conversion of long to FP by using x87/
+ * @param rl_dest The destination of the FP.
+ * @param rl_src The source of the long.
+ * @param is_double 'true' if dealing with double, 'false' for float.
+ */
+ virtual void GenLongToFP(RegLocation rl_dest, RegLocation rl_src, bool is_double);
+
+ /*
+ * @brief Perform MIR analysis before compiling method.
+ * @note Invokes Mir2LiR::Materialize after analysis.
+ */
+ void Materialize();
+
+ /*
+ * Mir2Lir's UpdateLoc() looks to see if the Dalvik value is currently live in any temp register
+ * without regard to data type. In practice, this can result in UpdateLoc returning a
+ * location record for a Dalvik float value in a core register, and vis-versa. For targets
+ * which can inexpensively move data between core and float registers, this can often be a win.
+ * However, for x86 this is generally not a win. These variants of UpdateLoc()
+ * take a register class argument - and will return an in-register location record only if
+ * the value is live in a temp register of the correct class. Additionally, if the value is in
+ * a temp register of the wrong register class, it will be clobbered.
+ */
+ RegLocation UpdateLocTyped(RegLocation loc, int reg_class);
+ RegLocation UpdateLocWideTyped(RegLocation loc, int reg_class);
+
+ /*
+ * @brief Analyze MIR before generating code, to prepare for the code generation.
+ */
+ void AnalyzeMIR();
+
+ /*
+ * @brief Analyze one basic block.
+ * @param bb Basic block to analyze.
+ */
+ void AnalyzeBB(BasicBlock * bb);
+
+ /*
+ * @brief Analyze one extended MIR instruction
+ * @param opcode MIR instruction opcode.
+ * @param bb Basic block containing instruction.
+ * @param mir Extended instruction to analyze.
+ */
+ void AnalyzeExtendedMIR(int opcode, BasicBlock * bb, MIR *mir);
+
+ /*
+ * @brief Analyze one MIR instruction
+ * @param opcode MIR instruction opcode.
+ * @param bb Basic block containing instruction.
+ * @param mir Instruction to analyze.
+ */
+ virtual void AnalyzeMIR(int opcode, BasicBlock * bb, MIR *mir);
+
+ /*
+ * @brief Analyze one MIR float/double instruction
+ * @param opcode MIR instruction opcode.
+ * @param bb Basic block containing instruction.
+ * @param mir Instruction to analyze.
+ */
+ void AnalyzeFPInstruction(int opcode, BasicBlock * bb, MIR *mir);
+
+ /*
+ * @brief Analyze one use of a double operand.
+ * @param rl_use Double RegLocation for the operand.
+ */
+ void AnalyzeDoubleUse(RegLocation rl_use);
+
+ bool Gen64Bit() const { return gen64bit_; }
+
+ // Information derived from analysis of MIR
+
+ // The compiler temporary for the code address of the method.
+ CompilerTemp *base_of_code_;
+
+ // Have we decided to compute a ptr to code and store in temporary VR?
+ bool store_method_addr_;
+
+ // Have we used the stored method address?
+ bool store_method_addr_used_;
+
+ // Instructions to remove if we didn't use the stored method address.
+ LIR* setup_method_address_[2];
+
+ // Instructions needing patching with Method* values.
+ GrowableArray<LIR*> method_address_insns_;
+
+ // Instructions needing patching with Class Type* values.
+ GrowableArray<LIR*> class_type_address_insns_;
+
+ // Instructions needing patching with PC relative code addresses.
+ GrowableArray<LIR*> call_method_insns_;
+
+ // Prologue decrement of stack pointer.
+ LIR* stack_decrement_;
+
+ // Epilogue increment of stack pointer.
+ LIR* stack_increment_;
+
+ // 64-bit mode
+ bool gen64bit_;
+
+ // The list of const vector literals.
+ LIR *const_vectors_;
+
+ /*
+ * @brief Search for a matching vector literal
+ * @param mir A kMirOpConst128b MIR instruction to match.
+ * @returns pointer to matching LIR constant, or nullptr if not found.
+ */
+ LIR *ScanVectorLiteral(MIR *mir);
+
+ /*
+ * @brief Add a constant vector literal
+ * @param mir A kMirOpConst128b MIR instruction to match.
+ */
+ LIR *AddVectorLiteral(MIR *mir);
+
+ InToRegStorageMapping in_to_reg_storage_mapping_;
};
} // namespace art
diff --git a/compiler/dex/quick/x86/fp_x86.cc b/compiler/dex/quick/x86/fp_x86.cc
index 0421a59..c3580f7 100644
--- a/compiler/dex/quick/x86/fp_x86.cc
+++ b/compiler/dex/quick/x86/fp_x86.cc
@@ -272,21 +272,67 @@ void X86Mir2Lir::GenConversion(Instruction::Code opcode, RegLocation rl_dest,
return;
}
case Instruction::LONG_TO_DOUBLE:
+ if (Gen64Bit()) {
+ rcSrc = kCoreReg;
+ op = kX86Cvtsqi2sdRR;
+ break;
+ }
GenLongToFP(rl_dest, rl_src, true /* is_double */);
return;
case Instruction::LONG_TO_FLOAT:
+ if (Gen64Bit()) {
+ rcSrc = kCoreReg;
+ op = kX86Cvtsqi2ssRR;
+ break;
+ }
GenLongToFP(rl_dest, rl_src, false /* is_double */);
return;
case Instruction::FLOAT_TO_LONG:
- if (Is64BitInstructionSet(cu_->instruction_set)) {
- GenConversionCall(QUICK_ENTRYPOINT_OFFSET(8, pF2l), rl_dest, rl_src);
+ if (Gen64Bit()) {
+ rl_src = LoadValue(rl_src, kFPReg);
+ // If result vreg is also src vreg, break association to avoid useless copy by EvalLoc()
+ ClobberSReg(rl_dest.s_reg_low);
+ rl_result = EvalLoc(rl_dest, kCoreReg, true);
+ RegStorage temp_reg = AllocTempSingle();
+
+ // Set 0x7fffffffffffffff to rl_result
+ LoadConstantWide(rl_result.reg, 0x7fffffffffffffff);
+ NewLIR2(kX86Cvtsqi2ssRR, temp_reg.GetReg(), rl_result.reg.GetReg());
+ NewLIR2(kX86ComissRR, rl_src.reg.GetReg(), temp_reg.GetReg());
+ LIR* branch_pos_overflow = NewLIR2(kX86Jcc8, 0, kX86CondA);
+ LIR* branch_na_n = NewLIR2(kX86Jcc8, 0, kX86CondP);
+ NewLIR2(kX86Cvttss2sqiRR, rl_result.reg.GetReg(), rl_src.reg.GetReg());
+ LIR* branch_normal = NewLIR1(kX86Jmp8, 0);
+ branch_na_n->target = NewLIR0(kPseudoTargetLabel);
+ NewLIR2(kX86Xor64RR, rl_result.reg.GetReg(), rl_result.reg.GetReg());
+ branch_pos_overflow->target = NewLIR0(kPseudoTargetLabel);
+ branch_normal->target = NewLIR0(kPseudoTargetLabel);
+ StoreValueWide(rl_dest, rl_result);
} else {
GenConversionCall(QUICK_ENTRYPOINT_OFFSET(4, pF2l), rl_dest, rl_src);
}
return;
case Instruction::DOUBLE_TO_LONG:
- if (Is64BitInstructionSet(cu_->instruction_set)) {
- GenConversionCall(QUICK_ENTRYPOINT_OFFSET(8, pD2l), rl_dest, rl_src);
+ if (Gen64Bit()) {
+ rl_src = LoadValueWide(rl_src, kFPReg);
+ // If result vreg is also src vreg, break association to avoid useless copy by EvalLoc()
+ ClobberSReg(rl_dest.s_reg_low);
+ rl_result = EvalLoc(rl_dest, kCoreReg, true);
+ RegStorage temp_reg = AllocTempDouble();
+
+ // Set 0x7fffffffffffffff to rl_result
+ LoadConstantWide(rl_result.reg, 0x7fffffffffffffff);
+ NewLIR2(kX86Cvtsqi2sdRR, temp_reg.GetReg(), rl_result.reg.GetReg());
+ NewLIR2(kX86ComisdRR, rl_src.reg.GetReg(), temp_reg.GetReg());
+ LIR* branch_pos_overflow = NewLIR2(kX86Jcc8, 0, kX86CondA);
+ LIR* branch_na_n = NewLIR2(kX86Jcc8, 0, kX86CondP);
+ NewLIR2(kX86Cvttsd2sqiRR, rl_result.reg.GetReg(), rl_src.reg.GetReg());
+ LIR* branch_normal = NewLIR1(kX86Jmp8, 0);
+ branch_na_n->target = NewLIR0(kPseudoTargetLabel);
+ NewLIR2(kX86Xor64RR, rl_result.reg.GetReg(), rl_result.reg.GetReg());
+ branch_pos_overflow->target = NewLIR0(kPseudoTargetLabel);
+ branch_normal->target = NewLIR0(kPseudoTargetLabel);
+ StoreValueWide(rl_dest, rl_result);
} else {
GenConversionCall(QUICK_ENTRYPOINT_OFFSET(4, pD2l), rl_dest, rl_src);
}
@@ -434,9 +480,14 @@ void X86Mir2Lir::GenNegFloat(RegLocation rl_dest, RegLocation rl_src) {
void X86Mir2Lir::GenNegDouble(RegLocation rl_dest, RegLocation rl_src) {
RegLocation rl_result;
rl_src = LoadValueWide(rl_src, kCoreReg);
- rl_result = EvalLoc(rl_dest, kCoreReg, true);
- OpRegRegImm(kOpAdd, rl_result.reg.GetHigh(), rl_src.reg.GetHigh(), 0x80000000);
- OpRegCopy(rl_result.reg, rl_src.reg);
+ rl_result = EvalLocWide(rl_dest, kCoreReg, true);
+ if (Gen64Bit()) {
+ LoadConstantWide(rl_result.reg, 0x8000000000000000);
+ OpRegReg(kOpAdd, rl_result.reg, rl_src.reg);
+ } else {
+ OpRegRegImm(kOpAdd, rl_result.reg.GetHigh(), rl_src.reg.GetHigh(), 0x80000000);
+ OpRegCopy(rl_result.reg, rl_src.reg);
+ }
StoreValueWide(rl_dest, rl_result);
}
diff --git a/compiler/dex/quick/x86/int_x86.cc b/compiler/dex/quick/x86/int_x86.cc
index 1cc16b9..8093fd7 100644
--- a/compiler/dex/quick/x86/int_x86.cc
+++ b/compiler/dex/quick/x86/int_x86.cc
@@ -31,6 +31,23 @@ namespace art {
*/
void X86Mir2Lir::GenCmpLong(RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_src2) {
+ if (Gen64Bit()) {
+ rl_src1 = LoadValueWide(rl_src1, kCoreReg);
+ rl_src2 = LoadValueWide(rl_src2, kCoreReg);
+ RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
+ OpRegReg(kOpXor, rl_result.reg, rl_result.reg); // result = 0
+ OpRegReg(kOpCmp, rl_src1.reg, rl_src2.reg);
+ NewLIR2(kX86Set8R, rl_result.reg.GetReg(), kX86CondNe); // result = (src1 != src2) ? 1 : result
+ RegStorage temp_reg = AllocTemp();
+ OpRegReg(kOpNeg, temp_reg, rl_result.reg);
+ OpRegReg(kOpCmp, rl_src1.reg, rl_src2.reg);
+ // result = (src1 < src2) ? -result : result
+ OpCondRegReg(kOpCmov, kCondLt, rl_result.reg, temp_reg);
+ StoreValue(rl_dest, rl_result);
+ FreeTemp(temp_reg);
+ return;
+ }
+
FlushAllRegs();
LockCallTemps(); // Prepare for explicit register usage
RegStorage r_tmp1 = RegStorage::MakeRegPair(rs_r0, rs_r1);
@@ -108,7 +125,7 @@ LIR* X86Mir2Lir::OpRegCopyNoInsert(RegStorage r_dest, RegStorage r_src) {
}
if (r_dest.IsFloat() || r_src.IsFloat())
return OpFpRegCopy(r_dest, r_src);
- LIR* res = RawLIR(current_dalvik_offset_, kX86Mov32RR,
+ LIR* res = RawLIR(current_dalvik_offset_, r_dest.Is64Bit() ? kX86Mov64RR : kX86Mov32RR,
r_dest.GetReg(), r_src.GetReg());
if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && r_dest == r_src) {
res->flags.is_nop = true;
@@ -133,36 +150,51 @@ void X86Mir2Lir::OpRegCopyWide(RegStorage r_dest, RegStorage r_src) {
} else {
// TODO: Prevent this from happening in the code. The result is often
// unused or could have been loaded more easily from memory.
- NewLIR2(kX86MovdxrRR, r_dest.GetReg(), r_src.GetLowReg());
- RegStorage r_tmp = AllocTempDouble();
- NewLIR2(kX86MovdxrRR, r_tmp.GetReg(), r_src.GetHighReg());
- NewLIR2(kX86PunpckldqRR, r_dest.GetReg(), r_tmp.GetReg());
- FreeTemp(r_tmp);
+ if (!r_src.IsPair()) {
+ DCHECK(!r_dest.IsPair());
+ NewLIR2(kX86MovqxrRR, r_dest.GetReg(), r_src.GetReg());
+ } else {
+ NewLIR2(kX86MovdxrRR, r_dest.GetReg(), r_src.GetLowReg());
+ RegStorage r_tmp = AllocTempDouble();
+ NewLIR2(kX86MovdxrRR, r_tmp.GetReg(), r_src.GetHighReg());
+ NewLIR2(kX86PunpckldqRR, r_dest.GetReg(), r_tmp.GetReg());
+ FreeTemp(r_tmp);
+ }
}
} else {
if (src_fp) {
- NewLIR2(kX86MovdrxRR, r_dest.GetLowReg(), r_src.GetReg());
- RegStorage temp_reg = AllocTempDouble();
- NewLIR2(kX86MovsdRR, temp_reg.GetReg(), r_src.GetReg());
- NewLIR2(kX86PsrlqRI, temp_reg.GetReg(), 32);
- NewLIR2(kX86MovdrxRR, r_dest.GetHighReg(), temp_reg.GetReg());
+ if (!r_dest.IsPair()) {
+ DCHECK(!r_src.IsPair());
+ NewLIR2(kX86MovqrxRR, r_dest.GetReg(), r_src.GetReg());
+ } else {
+ NewLIR2(kX86MovdrxRR, r_dest.GetLowReg(), r_src.GetReg());
+ RegStorage temp_reg = AllocTempDouble();
+ NewLIR2(kX86MovsdRR, temp_reg.GetReg(), r_src.GetReg());
+ NewLIR2(kX86PsrlqRI, temp_reg.GetReg(), 32);
+ NewLIR2(kX86MovdrxRR, r_dest.GetHighReg(), temp_reg.GetReg());
+ }
} else {
- DCHECK(r_dest.IsPair());
- DCHECK(r_src.IsPair());
- // Handle overlap
- if (r_src.GetHighReg() == r_dest.GetLowReg() && r_src.GetLowReg() == r_dest.GetHighReg()) {
- // Deal with cycles.
- RegStorage temp_reg = AllocTemp();
- OpRegCopy(temp_reg, r_dest.GetHigh());
- OpRegCopy(r_dest.GetHigh(), r_dest.GetLow());
- OpRegCopy(r_dest.GetLow(), temp_reg);
- FreeTemp(temp_reg);
- } else if (r_src.GetHighReg() == r_dest.GetLowReg()) {
- OpRegCopy(r_dest.GetHigh(), r_src.GetHigh());
- OpRegCopy(r_dest.GetLow(), r_src.GetLow());
+ DCHECK_EQ(r_dest.IsPair(), r_src.IsPair());
+ if (!r_src.IsPair()) {
+ // Just copy the register directly.
+ OpRegCopy(r_dest, r_src);
} else {
- OpRegCopy(r_dest.GetLow(), r_src.GetLow());
- OpRegCopy(r_dest.GetHigh(), r_src.GetHigh());
+ // Handle overlap
+ if (r_src.GetHighReg() == r_dest.GetLowReg() &&
+ r_src.GetLowReg() == r_dest.GetHighReg()) {
+ // Deal with cycles.
+ RegStorage temp_reg = AllocTemp();
+ OpRegCopy(temp_reg, r_dest.GetHigh());
+ OpRegCopy(r_dest.GetHigh(), r_dest.GetLow());
+ OpRegCopy(r_dest.GetLow(), temp_reg);
+ FreeTemp(temp_reg);
+ } else if (r_src.GetHighReg() == r_dest.GetLowReg()) {
+ OpRegCopy(r_dest.GetHigh(), r_src.GetHigh());
+ OpRegCopy(r_dest.GetLow(), r_src.GetLow());
+ } else {
+ OpRegCopy(r_dest.GetLow(), r_src.GetLow());
+ OpRegCopy(r_dest.GetHigh(), r_src.GetHigh());
+ }
}
}
}
@@ -778,7 +810,7 @@ bool X86Mir2Lir::GenInlinedCas(CallInfo* info, bool is_long, bool is_object) {
: (IsInReg(this, rl_src_offset, rs_rDI) ? 4
: (SRegOffset(rl_src_offset.s_reg_low) + push_offset));
LoadWordDisp(TargetReg(kSp), srcOffsetSp, rs_rSI);
- NewLIR4(kX86LockCmpxchg8bA, rs_rDI.GetReg(), rs_rSI.GetReg(), 0, 0);
+ NewLIR4(kX86LockCmpxchg64A, rs_rDI.GetReg(), rs_rSI.GetReg(), 0, 0);
// After a store we need to insert barrier in case of potential load. Since the
// locked cmpxchg has full barrier semantics, only a scheduling barrier will be generated.
@@ -821,8 +853,18 @@ bool X86Mir2Lir::GenInlinedCas(CallInfo* info, bool is_long, bool is_object) {
// Convert ZF to boolean
RegLocation rl_dest = InlineTarget(info); // boolean place for result
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
- NewLIR2(kX86Set8R, rl_result.reg.GetReg(), kX86CondZ);
- NewLIR2(kX86Movzx8RR, rl_result.reg.GetReg(), rl_result.reg.GetReg());
+ RegStorage result_reg = rl_result.reg;
+
+ // SETcc only works with EAX..EDX.
+ if (result_reg.GetRegNum() >= rs_rX86_SP.GetRegNum()) {
+ result_reg = AllocateByteRegister();
+ DCHECK_LT(result_reg.GetRegNum(), rs_rX86_SP.GetRegNum());
+ }
+ NewLIR2(kX86Set8R, result_reg.GetReg(), kX86CondZ);
+ NewLIR2(kX86Movzx8RR, rl_result.reg.GetReg(), result_reg.GetReg());
+ if (IsTemp(result_reg)) {
+ FreeTemp(result_reg);
+ }
StoreValue(rl_dest, rl_result);
return true;
}
@@ -832,7 +874,11 @@ LIR* X86Mir2Lir::OpPcRelLoad(RegStorage reg, LIR* target) {
// Address the start of the method
RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
- LoadValueDirectFixed(rl_method, reg);
+ if (rl_method.wide) {
+ LoadValueDirectWideFixed(rl_method, reg);
+ } else {
+ LoadValueDirectFixed(rl_method, reg);
+ }
store_method_addr_used_ = true;
// Load the proper value from the literal area.
@@ -871,18 +917,23 @@ void X86Mir2Lir::GenMultiplyByTwoBitMultiplier(RegLocation rl_src,
}
void X86Mir2Lir::GenDivZeroCheckWide(RegStorage reg) {
- DCHECK(reg.IsPair()); // TODO: allow 64BitSolo.
- // We are not supposed to clobber the incoming storage, so allocate a temporary.
- RegStorage t_reg = AllocTemp();
+ if (Gen64Bit()) {
+ DCHECK(reg.Is64Bit());
+
+ NewLIR2(kX86Cmp64RI8, reg.GetReg(), 0);
+ } else {
+ DCHECK(reg.IsPair());
- // Doing an OR is a quick way to check if both registers are zero. This will set the flags.
- OpRegRegReg(kOpOr, t_reg, reg.GetLow(), reg.GetHigh());
+ // We are not supposed to clobber the incoming storage, so allocate a temporary.
+ RegStorage t_reg = AllocTemp();
+ // Doing an OR is a quick way to check if both registers are zero. This will set the flags.
+ OpRegRegReg(kOpOr, t_reg, reg.GetLow(), reg.GetHigh());
+ // The temp is no longer needed so free it at this time.
+ FreeTemp(t_reg);
+ }
// In case of zero, throw ArithmeticException.
GenDivZeroCheck(kCondEq);
-
- // The temp is no longer needed so free it at this time.
- FreeTemp(t_reg);
}
void X86Mir2Lir::GenArrayBoundsCheck(RegStorage index,
@@ -1221,18 +1272,22 @@ void X86Mir2Lir::GenLongRegOrMemOp(RegLocation rl_dest, RegLocation rl_src,
if (rl_src.location == kLocPhysReg) {
// Both operands are in registers.
// But we must ensure that rl_src is in pair
- rl_src = LoadValueWide(rl_src, kCoreReg);
- if (rl_dest.reg.GetLowReg() == rl_src.reg.GetHighReg()) {
- // The registers are the same, so we would clobber it before the use.
- RegStorage temp_reg = AllocTemp();
- OpRegCopy(temp_reg, rl_dest.reg);
- rl_src.reg.SetHighReg(temp_reg.GetReg());
- }
- NewLIR2(x86op, rl_dest.reg.GetLowReg(), rl_src.reg.GetLowReg());
+ if (Gen64Bit()) {
+ NewLIR2(x86op, rl_dest.reg.GetReg(), rl_src.reg.GetReg());
+ } else {
+ rl_src = LoadValueWide(rl_src, kCoreReg);
+ if (rl_dest.reg.GetLowReg() == rl_src.reg.GetHighReg()) {
+ // The registers are the same, so we would clobber it before the use.
+ RegStorage temp_reg = AllocTemp();
+ OpRegCopy(temp_reg, rl_dest.reg);
+ rl_src.reg.SetHighReg(temp_reg.GetReg());
+ }
+ NewLIR2(x86op, rl_dest.reg.GetLowReg(), rl_src.reg.GetLowReg());
- x86op = GetOpcode(op, rl_dest, rl_src, true);
- NewLIR2(x86op, rl_dest.reg.GetHighReg(), rl_src.reg.GetHighReg());
- FreeTemp(rl_src.reg);
+ x86op = GetOpcode(op, rl_dest, rl_src, true);
+ NewLIR2(x86op, rl_dest.reg.GetHighReg(), rl_src.reg.GetHighReg());
+ FreeTemp(rl_src.reg); // ???
+ }
return;
}
@@ -1242,11 +1297,13 @@ void X86Mir2Lir::GenLongRegOrMemOp(RegLocation rl_dest, RegLocation rl_src,
int r_base = TargetReg(kSp).GetReg();
int displacement = SRegOffset(rl_src.s_reg_low);
- LIR *lir = NewLIR3(x86op, rl_dest.reg.GetLowReg(), r_base, displacement + LOWORD_OFFSET);
+ LIR *lir = NewLIR3(x86op, Gen64Bit() ? rl_dest.reg.GetReg() : rl_dest.reg.GetLowReg(), r_base, displacement + LOWORD_OFFSET);
AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
true /* is_load */, true /* is64bit */);
- x86op = GetOpcode(op, rl_dest, rl_src, true);
- lir = NewLIR3(x86op, rl_dest.reg.GetHighReg(), r_base, displacement + HIWORD_OFFSET);
+ if (!Gen64Bit()) {
+ x86op = GetOpcode(op, rl_dest, rl_src, true);
+ lir = NewLIR3(x86op, rl_dest.reg.GetHighReg(), r_base, displacement + HIWORD_OFFSET);
+ }
AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
true /* is_load */, true /* is64bit */);
}
@@ -1273,13 +1330,16 @@ void X86Mir2Lir::GenLongArith(RegLocation rl_dest, RegLocation rl_src, Instructi
int r_base = TargetReg(kSp).GetReg();
int displacement = SRegOffset(rl_dest.s_reg_low);
- LIR *lir = NewLIR3(x86op, r_base, displacement + LOWORD_OFFSET, rl_src.reg.GetLowReg());
+ LIR *lir = NewLIR3(x86op, r_base, displacement + LOWORD_OFFSET,
+ Gen64Bit() ? rl_src.reg.GetReg() : rl_src.reg.GetLowReg());
AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
true /* is_load */, true /* is64bit */);
AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
false /* is_load */, true /* is64bit */);
- x86op = GetOpcode(op, rl_dest, rl_src, true);
- lir = NewLIR3(x86op, r_base, displacement + HIWORD_OFFSET, rl_src.reg.GetHighReg());
+ if (!Gen64Bit()) {
+ x86op = GetOpcode(op, rl_dest, rl_src, true);
+ lir = NewLIR3(x86op, r_base, displacement + HIWORD_OFFSET, rl_src.reg.GetHighReg());
+ }
AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
true /* is_load */, true /* is64bit */);
AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
@@ -1330,23 +1390,44 @@ void X86Mir2Lir::GenLongArith(RegLocation rl_dest, RegLocation rl_src1,
// Get one of the source operands into temporary register.
rl_src1 = LoadValueWide(rl_src1, kCoreReg);
- if (IsTemp(rl_src1.reg.GetLow()) && IsTemp(rl_src1.reg.GetHigh())) {
- GenLongRegOrMemOp(rl_src1, rl_src2, op);
- } else if (is_commutative) {
- rl_src2 = LoadValueWide(rl_src2, kCoreReg);
- // We need at least one of them to be a temporary.
- if (!(IsTemp(rl_src2.reg.GetLow()) && IsTemp(rl_src2.reg.GetHigh()))) {
- rl_src1 = ForceTempWide(rl_src1);
+ if (Gen64Bit()) {
+ if (IsTemp(rl_src1.reg)) {
GenLongRegOrMemOp(rl_src1, rl_src2, op);
+ } else if (is_commutative) {
+ rl_src2 = LoadValueWide(rl_src2, kCoreReg);
+ // We need at least one of them to be a temporary.
+ if (!IsTemp(rl_src2.reg)) {
+ rl_src1 = ForceTempWide(rl_src1);
+ GenLongRegOrMemOp(rl_src1, rl_src2, op);
+ } else {
+ GenLongRegOrMemOp(rl_src2, rl_src1, op);
+ StoreFinalValueWide(rl_dest, rl_src2);
+ return;
+ }
} else {
- GenLongRegOrMemOp(rl_src2, rl_src1, op);
- StoreFinalValueWide(rl_dest, rl_src2);
- return;
+ // Need LHS to be the temp.
+ rl_src1 = ForceTempWide(rl_src1);
+ GenLongRegOrMemOp(rl_src1, rl_src2, op);
}
} else {
- // Need LHS to be the temp.
- rl_src1 = ForceTempWide(rl_src1);
- GenLongRegOrMemOp(rl_src1, rl_src2, op);
+ if (IsTemp(rl_src1.reg.GetLow()) && IsTemp(rl_src1.reg.GetHigh())) {
+ GenLongRegOrMemOp(rl_src1, rl_src2, op);
+ } else if (is_commutative) {
+ rl_src2 = LoadValueWide(rl_src2, kCoreReg);
+ // We need at least one of them to be a temporary.
+ if (!(IsTemp(rl_src2.reg.GetLow()) && IsTemp(rl_src2.reg.GetHigh()))) {
+ rl_src1 = ForceTempWide(rl_src1);
+ GenLongRegOrMemOp(rl_src1, rl_src2, op);
+ } else {
+ GenLongRegOrMemOp(rl_src2, rl_src1, op);
+ StoreFinalValueWide(rl_dest, rl_src2);
+ return;
+ }
+ } else {
+ // Need LHS to be the temp.
+ rl_src1 = ForceTempWide(rl_src1);
+ GenLongRegOrMemOp(rl_src1, rl_src2, op);
+ }
}
StoreFinalValueWide(rl_dest, rl_src1);
@@ -1378,27 +1459,91 @@ void X86Mir2Lir::GenXorLong(Instruction::Code opcode, RegLocation rl_dest,
}
void X86Mir2Lir::GenNotLong(RegLocation rl_dest, RegLocation rl_src) {
- LOG(FATAL) << "Unexpected use GenNotLong()";
+ if (Gen64Bit()) {
+ rl_src = LoadValueWide(rl_src, kCoreReg);
+ RegLocation rl_result;
+ rl_result = EvalLocWide(rl_dest, kCoreReg, true);
+ OpRegCopy(rl_result.reg, rl_src.reg);
+ OpReg(kOpNot, rl_result.reg);
+ StoreValueWide(rl_dest, rl_result);
+ } else {
+ LOG(FATAL) << "Unexpected use GenNotLong()";
+ }
}
void X86Mir2Lir::GenDivRemLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_src2, bool is_div) {
- LOG(FATAL) << "Unexpected use GenDivRemLong()";
+ if (!Gen64Bit()) {
+ LOG(FATAL) << "Unexpected use GenDivRemLong()";
+ return;
+ }
+
+ // We have to use fixed registers, so flush all the temps.
+ FlushAllRegs();
+ LockCallTemps(); // Prepare for explicit register usage.
+
+ // Load LHS into RAX.
+ LoadValueDirectWideFixed(rl_src1, rs_r0q);
+
+ // Load RHS into RCX.
+ LoadValueDirectWideFixed(rl_src2, rs_r1q);
+
+ // Copy LHS sign bit into RDX.
+ NewLIR0(kx86Cqo64Da);
+
+ // Handle division by zero case.
+ GenDivZeroCheckWide(rs_r1q);
+
+ // Have to catch 0x8000000000000000/-1 case, or we will get an exception!
+ NewLIR2(kX86Cmp64RI8, rs_r1q.GetReg(), -1);
+ LIR *minus_one_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
+
+ // RHS is -1.
+ LoadConstantWide(rs_r3q, 0x8000000000000000);
+ NewLIR2(kX86Cmp64RR, rs_r0q.GetReg(), rs_r3q.GetReg());
+ LIR * minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
+
+ // In 0x8000000000000000/-1 case.
+ if (!is_div) {
+ // For DIV, RAX is already right. For REM, we need RDX 0.
+ NewLIR2(kX86Xor64RR, rs_r2q.GetReg(), rs_r2q.GetReg());
+ }
+ LIR* done = NewLIR1(kX86Jmp8, 0);
+
+ // Expected case.
+ minus_one_branch->target = NewLIR0(kPseudoTargetLabel);
+ minint_branch->target = minus_one_branch->target;
+ NewLIR1(kX86Idivmod64DaR, rs_r1q.GetReg());
+ done->target = NewLIR0(kPseudoTargetLabel);
+
+ // Result is in RAX for div and RDX for rem.
+ RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, rs_r0q, INVALID_SREG, INVALID_SREG};
+ if (!is_div) {
+ rl_result.reg.SetReg(r2q);
+ }
+
+ StoreValueWide(rl_dest, rl_result);
}
void X86Mir2Lir::GenNegLong(RegLocation rl_dest, RegLocation rl_src) {
rl_src = LoadValueWide(rl_src, kCoreReg);
- RegLocation rl_result = ForceTempWide(rl_src);
- if (((rl_dest.location == kLocPhysReg) && (rl_src.location == kLocPhysReg)) &&
- ((rl_dest.reg.GetLowReg() == rl_src.reg.GetHighReg()))) {
- // The registers are the same, so we would clobber it before the use.
- RegStorage temp_reg = AllocTemp();
- OpRegCopy(temp_reg, rl_result.reg);
- rl_result.reg.SetHighReg(temp_reg.GetReg());
+ RegLocation rl_result;
+ if (Gen64Bit()) {
+ rl_result = EvalLocWide(rl_dest, kCoreReg, true);
+ OpRegReg(kOpNeg, rl_result.reg, rl_src.reg);
+ } else {
+ rl_result = ForceTempWide(rl_src);
+ if (((rl_dest.location == kLocPhysReg) && (rl_src.location == kLocPhysReg)) &&
+ ((rl_dest.reg.GetLowReg() == rl_src.reg.GetHighReg()))) {
+ // The registers are the same, so we would clobber it before the use.
+ RegStorage temp_reg = AllocTemp();
+ OpRegCopy(temp_reg, rl_result.reg);
+ rl_result.reg.SetHighReg(temp_reg.GetReg());
+ }
+ OpRegReg(kOpNeg, rl_result.reg.GetLow(), rl_result.reg.GetLow()); // rLow = -rLow
+ OpRegImm(kOpAdc, rl_result.reg.GetHigh(), 0); // rHigh = rHigh + CF
+ OpRegReg(kOpNeg, rl_result.reg.GetHigh(), rl_result.reg.GetHigh()); // rHigh = -rHigh
}
- OpRegReg(kOpNeg, rl_result.reg.GetLow(), rl_result.reg.GetLow()); // rLow = -rLow
- OpRegImm(kOpAdc, rl_result.reg.GetHigh(), 0); // rHigh = rHigh + CF
- OpRegReg(kOpNeg, rl_result.reg.GetHigh(), rl_result.reg.GetHigh()); // rHigh = -rHigh
StoreValueWide(rl_dest, rl_result);
}
@@ -1551,60 +1696,84 @@ void X86Mir2Lir::GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
RegLocation X86Mir2Lir::GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
RegLocation rl_src, int shift_amount) {
RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
- switch (opcode) {
- case Instruction::SHL_LONG:
- case Instruction::SHL_LONG_2ADDR:
- DCHECK_NE(shift_amount, 1); // Prevent a double store from happening.
- if (shift_amount == 32) {
- OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetLow());
- LoadConstant(rl_result.reg.GetLow(), 0);
- } else if (shift_amount > 31) {
- OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetLow());
- NewLIR2(kX86Sal32RI, rl_result.reg.GetHighReg(), shift_amount - 32);
- LoadConstant(rl_result.reg.GetLow(), 0);
- } else {
- OpRegCopy(rl_result.reg, rl_src.reg);
- OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetHigh());
- NewLIR3(kX86Shld32RRI, rl_result.reg.GetHighReg(), rl_result.reg.GetLowReg(), shift_amount);
- NewLIR2(kX86Sal32RI, rl_result.reg.GetLowReg(), shift_amount);
- }
- break;
- case Instruction::SHR_LONG:
- case Instruction::SHR_LONG_2ADDR:
- if (shift_amount == 32) {
- OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetHigh());
- OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetHigh());
- NewLIR2(kX86Sar32RI, rl_result.reg.GetHighReg(), 31);
- } else if (shift_amount > 31) {
- OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetHigh());
- OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetHigh());
- NewLIR2(kX86Sar32RI, rl_result.reg.GetLowReg(), shift_amount - 32);
- NewLIR2(kX86Sar32RI, rl_result.reg.GetHighReg(), 31);
- } else {
- OpRegCopy(rl_result.reg, rl_src.reg);
- OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetHigh());
- NewLIR3(kX86Shrd32RRI, rl_result.reg.GetLowReg(), rl_result.reg.GetHighReg(), shift_amount);
- NewLIR2(kX86Sar32RI, rl_result.reg.GetHighReg(), shift_amount);
- }
- break;
- case Instruction::USHR_LONG:
- case Instruction::USHR_LONG_2ADDR:
- if (shift_amount == 32) {
- OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetHigh());
- LoadConstant(rl_result.reg.GetHigh(), 0);
- } else if (shift_amount > 31) {
- OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetHigh());
- NewLIR2(kX86Shr32RI, rl_result.reg.GetLowReg(), shift_amount - 32);
- LoadConstant(rl_result.reg.GetHigh(), 0);
- } else {
- OpRegCopy(rl_result.reg, rl_src.reg);
- OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetHigh());
- NewLIR3(kX86Shrd32RRI, rl_result.reg.GetLowReg(), rl_result.reg.GetHighReg(), shift_amount);
- NewLIR2(kX86Shr32RI, rl_result.reg.GetHighReg(), shift_amount);
- }
- break;
- default:
- LOG(FATAL) << "Unexpected case";
+ if (Gen64Bit()) {
+ OpKind op = static_cast<OpKind>(0); /* Make gcc happy */
+ switch (opcode) {
+ case Instruction::SHL_LONG:
+ case Instruction::SHL_LONG_2ADDR:
+ op = kOpLsl;
+ break;
+ case Instruction::SHR_LONG:
+ case Instruction::SHR_LONG_2ADDR:
+ op = kOpAsr;
+ break;
+ case Instruction::USHR_LONG:
+ case Instruction::USHR_LONG_2ADDR:
+ op = kOpLsr;
+ break;
+ default:
+ LOG(FATAL) << "Unexpected case";
+ }
+ OpRegRegImm(op, rl_result.reg, rl_src.reg, shift_amount);
+ } else {
+ switch (opcode) {
+ case Instruction::SHL_LONG:
+ case Instruction::SHL_LONG_2ADDR:
+ DCHECK_NE(shift_amount, 1); // Prevent a double store from happening.
+ if (shift_amount == 32) {
+ OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetLow());
+ LoadConstant(rl_result.reg.GetLow(), 0);
+ } else if (shift_amount > 31) {
+ OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetLow());
+ NewLIR2(kX86Sal32RI, rl_result.reg.GetHighReg(), shift_amount - 32);
+ LoadConstant(rl_result.reg.GetLow(), 0);
+ } else {
+ OpRegCopy(rl_result.reg, rl_src.reg);
+ OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetHigh());
+ NewLIR3(kX86Shld32RRI, rl_result.reg.GetHighReg(), rl_result.reg.GetLowReg(),
+ shift_amount);
+ NewLIR2(kX86Sal32RI, rl_result.reg.GetLowReg(), shift_amount);
+ }
+ break;
+ case Instruction::SHR_LONG:
+ case Instruction::SHR_LONG_2ADDR:
+ if (shift_amount == 32) {
+ OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetHigh());
+ OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetHigh());
+ NewLIR2(kX86Sar32RI, rl_result.reg.GetHighReg(), 31);
+ } else if (shift_amount > 31) {
+ OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetHigh());
+ OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetHigh());
+ NewLIR2(kX86Sar32RI, rl_result.reg.GetLowReg(), shift_amount - 32);
+ NewLIR2(kX86Sar32RI, rl_result.reg.GetHighReg(), 31);
+ } else {
+ OpRegCopy(rl_result.reg, rl_src.reg);
+ OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetHigh());
+ NewLIR3(kX86Shrd32RRI, rl_result.reg.GetLowReg(), rl_result.reg.GetHighReg(),
+ shift_amount);
+ NewLIR2(kX86Sar32RI, rl_result.reg.GetHighReg(), shift_amount);
+ }
+ break;
+ case Instruction::USHR_LONG:
+ case Instruction::USHR_LONG_2ADDR:
+ if (shift_amount == 32) {
+ OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetHigh());
+ LoadConstant(rl_result.reg.GetHigh(), 0);
+ } else if (shift_amount > 31) {
+ OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetHigh());
+ NewLIR2(kX86Shr32RI, rl_result.reg.GetLowReg(), shift_amount - 32);
+ LoadConstant(rl_result.reg.GetHigh(), 0);
+ } else {
+ OpRegCopy(rl_result.reg, rl_src.reg);
+ OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetHigh());
+ NewLIR3(kX86Shrd32RRI, rl_result.reg.GetLowReg(), rl_result.reg.GetHighReg(),
+ shift_amount);
+ NewLIR2(kX86Shr32RI, rl_result.reg.GetHighReg(), shift_amount);
+ }
+ break;
+ default:
+ LOG(FATAL) << "Unexpected case";
+ }
}
return rl_result;
}
@@ -1634,24 +1803,26 @@ void X86Mir2Lir::GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest
void X86Mir2Lir::GenArithImmOpLong(Instruction::Code opcode,
RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) {
+ bool isConstSuccess = false;
switch (opcode) {
case Instruction::ADD_LONG:
case Instruction::AND_LONG:
case Instruction::OR_LONG:
case Instruction::XOR_LONG:
if (rl_src2.is_const) {
- GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode);
+ isConstSuccess = GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode);
} else {
DCHECK(rl_src1.is_const);
- GenLongLongImm(rl_dest, rl_src2, rl_src1, opcode);
+ isConstSuccess = GenLongLongImm(rl_dest, rl_src2, rl_src1, opcode);
}
break;
case Instruction::SUB_LONG:
case Instruction::SUB_LONG_2ADDR:
if (rl_src2.is_const) {
- GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode);
+ isConstSuccess = GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode);
} else {
GenSubLong(opcode, rl_dest, rl_src1, rl_src2);
+ isConstSuccess = true;
}
break;
case Instruction::ADD_LONG_2ADDR:
@@ -1660,20 +1831,24 @@ void X86Mir2Lir::GenArithImmOpLong(Instruction::Code opcode,
case Instruction::AND_LONG_2ADDR:
if (rl_src2.is_const) {
if (GenerateTwoOperandInstructions()) {
- GenLongImm(rl_dest, rl_src2, opcode);
+ isConstSuccess = GenLongImm(rl_dest, rl_src2, opcode);
} else {
- GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode);
+ isConstSuccess = GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode);
}
} else {
DCHECK(rl_src1.is_const);
- GenLongLongImm(rl_dest, rl_src2, rl_src1, opcode);
+ isConstSuccess = GenLongLongImm(rl_dest, rl_src2, rl_src1, opcode);
}
break;
default:
- // Default - bail to non-const handler.
- GenArithOpLong(opcode, rl_dest, rl_src1, rl_src2);
+ isConstSuccess = false;
break;
}
+
+ if (!isConstSuccess) {
+ // Default - bail to non-const handler.
+ GenArithOpLong(opcode, rl_dest, rl_src1, rl_src2);
+ }
}
bool X86Mir2Lir::IsNoOp(Instruction::Code op, int32_t value) {
@@ -1695,40 +1870,50 @@ X86OpCode X86Mir2Lir::GetOpcode(Instruction::Code op, RegLocation dest, RegLocat
bool is_high_op) {
bool rhs_in_mem = rhs.location != kLocPhysReg;
bool dest_in_mem = dest.location != kLocPhysReg;
+ bool is64Bit = Gen64Bit();
DCHECK(!rhs_in_mem || !dest_in_mem);
switch (op) {
case Instruction::ADD_LONG:
case Instruction::ADD_LONG_2ADDR:
if (dest_in_mem) {
- return is_high_op ? kX86Adc32MR : kX86Add32MR;
+ return is64Bit ? kX86Add64MR : is_high_op ? kX86Adc32MR : kX86Add32MR;
} else if (rhs_in_mem) {
- return is_high_op ? kX86Adc32RM : kX86Add32RM;
+ return is64Bit ? kX86Add64RM : is_high_op ? kX86Adc32RM : kX86Add32RM;
}
- return is_high_op ? kX86Adc32RR : kX86Add32RR;
+ return is64Bit ? kX86Add64RR : is_high_op ? kX86Adc32RR : kX86Add32RR;
case Instruction::SUB_LONG:
case Instruction::SUB_LONG_2ADDR:
if (dest_in_mem) {
- return is_high_op ? kX86Sbb32MR : kX86Sub32MR;
+ return is64Bit ? kX86Sub64MR : is_high_op ? kX86Sbb32MR : kX86Sub32MR;
} else if (rhs_in_mem) {
- return is_high_op ? kX86Sbb32RM : kX86Sub32RM;
+ return is64Bit ? kX86Sub64RM : is_high_op ? kX86Sbb32RM : kX86Sub32RM;
}
- return is_high_op ? kX86Sbb32RR : kX86Sub32RR;
+ return is64Bit ? kX86Sub64RR : is_high_op ? kX86Sbb32RR : kX86Sub32RR;
case Instruction::AND_LONG_2ADDR:
case Instruction::AND_LONG:
if (dest_in_mem) {
- return kX86And32MR;
+ return is64Bit ? kX86And64MR : kX86And32MR;
+ }
+ if (is64Bit) {
+ return rhs_in_mem ? kX86And64RM : kX86And64RR;
}
return rhs_in_mem ? kX86And32RM : kX86And32RR;
case Instruction::OR_LONG:
case Instruction::OR_LONG_2ADDR:
if (dest_in_mem) {
- return kX86Or32MR;
+ return is64Bit ? kX86Or64MR : kX86Or32MR;
+ }
+ if (is64Bit) {
+ return rhs_in_mem ? kX86Or64RM : kX86Or64RR;
}
return rhs_in_mem ? kX86Or32RM : kX86Or32RR;
case Instruction::XOR_LONG:
case Instruction::XOR_LONG_2ADDR:
if (dest_in_mem) {
- return kX86Xor32MR;
+ return is64Bit ? kX86Xor64MR : kX86Xor32MR;
+ }
+ if (is64Bit) {
+ return rhs_in_mem ? kX86Xor64RM : kX86Xor64RR;
}
return rhs_in_mem ? kX86Xor32RM : kX86Xor32RR;
default:
@@ -1740,6 +1925,7 @@ X86OpCode X86Mir2Lir::GetOpcode(Instruction::Code op, RegLocation dest, RegLocat
X86OpCode X86Mir2Lir::GetOpcode(Instruction::Code op, RegLocation loc, bool is_high_op,
int32_t value) {
bool in_mem = loc.location != kLocPhysReg;
+ bool is64Bit = Gen64Bit();
bool byte_imm = IS_SIMM8(value);
DCHECK(in_mem || !loc.reg.IsFloat());
switch (op) {
@@ -1747,43 +1933,61 @@ X86OpCode X86Mir2Lir::GetOpcode(Instruction::Code op, RegLocation loc, bool is_h
case Instruction::ADD_LONG_2ADDR:
if (byte_imm) {
if (in_mem) {
- return is_high_op ? kX86Adc32MI8 : kX86Add32MI8;
+ return is64Bit ? kX86Add64MI8 : is_high_op ? kX86Adc32MI8 : kX86Add32MI8;
}
- return is_high_op ? kX86Adc32RI8 : kX86Add32RI8;
+ return is64Bit ? kX86Add64RI8 : is_high_op ? kX86Adc32RI8 : kX86Add32RI8;
}
if (in_mem) {
- return is_high_op ? kX86Adc32MI : kX86Add32MI;
+ return is64Bit ? kX86Add64MI : is_high_op ? kX86Adc32MI : kX86Add32MI;
}
- return is_high_op ? kX86Adc32RI : kX86Add32RI;
+ return is64Bit ? kX86Add64RI : is_high_op ? kX86Adc32RI : kX86Add32RI;
case Instruction::SUB_LONG:
case Instruction::SUB_LONG_2ADDR:
if (byte_imm) {
if (in_mem) {
- return is_high_op ? kX86Sbb32MI8 : kX86Sub32MI8;
+ return is64Bit ? kX86Sub64MI8 : is_high_op ? kX86Sbb32MI8 : kX86Sub32MI8;
}
- return is_high_op ? kX86Sbb32RI8 : kX86Sub32RI8;
+ return is64Bit ? kX86Sub64RI8 : is_high_op ? kX86Sbb32RI8 : kX86Sub32RI8;
}
if (in_mem) {
- return is_high_op ? kX86Sbb32MI : kX86Sub32MI;
+ return is64Bit ? kX86Sub64MI : is_high_op ? kX86Sbb32MI : kX86Sub32MI;
}
- return is_high_op ? kX86Sbb32RI : kX86Sub32RI;
+ return is64Bit ? kX86Sub64RI : is_high_op ? kX86Sbb32RI : kX86Sub32RI;
case Instruction::AND_LONG_2ADDR:
case Instruction::AND_LONG:
if (byte_imm) {
+ if (is64Bit) {
+ return in_mem ? kX86And64MI8 : kX86And64RI8;
+ }
return in_mem ? kX86And32MI8 : kX86And32RI8;
}
+ if (is64Bit) {
+ return in_mem ? kX86And64MI : kX86And64RI;
+ }
return in_mem ? kX86And32MI : kX86And32RI;
case Instruction::OR_LONG:
case Instruction::OR_LONG_2ADDR:
if (byte_imm) {
+ if (is64Bit) {
+ return in_mem ? kX86Or64MI8 : kX86Or64RI8;
+ }
return in_mem ? kX86Or32MI8 : kX86Or32RI8;
}
+ if (is64Bit) {
+ return in_mem ? kX86Or64MI : kX86Or64RI;
+ }
return in_mem ? kX86Or32MI : kX86Or32RI;
case Instruction::XOR_LONG:
case Instruction::XOR_LONG_2ADDR:
if (byte_imm) {
+ if (is64Bit) {
+ return in_mem ? kX86Xor64MI8 : kX86Xor64RI8;
+ }
return in_mem ? kX86Xor32MI8 : kX86Xor32RI8;
}
+ if (is64Bit) {
+ return in_mem ? kX86Xor64MI : kX86Xor64RI;
+ }
return in_mem ? kX86Xor32MI : kX86Xor32RI;
default:
LOG(FATAL) << "Unexpected opcode: " << op;
@@ -1791,9 +1995,43 @@ X86OpCode X86Mir2Lir::GetOpcode(Instruction::Code op, RegLocation loc, bool is_h
}
}
-void X86Mir2Lir::GenLongImm(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op) {
+bool X86Mir2Lir::GenLongImm(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op) {
DCHECK(rl_src.is_const);
int64_t val = mir_graph_->ConstantValueWide(rl_src);
+
+ if (Gen64Bit()) {
+ // We can do with imm only if it fits 32 bit
+ if (val != (static_cast<int64_t>(static_cast<int32_t>(val)))) {
+ return false;
+ }
+
+ rl_dest = UpdateLocWideTyped(rl_dest, kCoreReg);
+
+ if ((rl_dest.location == kLocDalvikFrame) ||
+ (rl_dest.location == kLocCompilerTemp)) {
+ int r_base = TargetReg(kSp).GetReg();
+ int displacement = SRegOffset(rl_dest.s_reg_low);
+
+ X86OpCode x86op = GetOpcode(op, rl_dest, false, val);
+ LIR *lir = NewLIR3(x86op, r_base, displacement + LOWORD_OFFSET, val);
+ AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
+ true /* is_load */, true /* is64bit */);
+ AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
+ false /* is_load */, true /* is64bit */);
+ return true;
+ }
+
+ RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
+ DCHECK_EQ(rl_result.location, kLocPhysReg);
+ DCHECK(!rl_result.reg.IsFloat());
+
+ X86OpCode x86op = GetOpcode(op, rl_result, false, val);
+ NewLIR2(x86op, rl_result.reg.GetReg(), val);
+
+ StoreValueWide(rl_dest, rl_result);
+ return true;
+ }
+
int32_t val_lo = Low32Bits(val);
int32_t val_hi = High32Bits(val);
rl_dest = UpdateLocWideTyped(rl_dest, kCoreReg);
@@ -1820,7 +2058,7 @@ void X86Mir2Lir::GenLongImm(RegLocation rl_dest, RegLocation rl_src, Instruction
AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
false /* is_load */, true /* is64bit */);
}
- return;
+ return true;
}
RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
@@ -1836,12 +2074,38 @@ void X86Mir2Lir::GenLongImm(RegLocation rl_dest, RegLocation rl_src, Instruction
NewLIR2(x86op, rl_result.reg.GetHighReg(), val_hi);
}
StoreValueWide(rl_dest, rl_result);
+ return true;
}
-void X86Mir2Lir::GenLongLongImm(RegLocation rl_dest, RegLocation rl_src1,
+bool X86Mir2Lir::GenLongLongImm(RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_src2, Instruction::Code op) {
DCHECK(rl_src2.is_const);
int64_t val = mir_graph_->ConstantValueWide(rl_src2);
+
+ if (Gen64Bit()) {
+ // We can do with imm only if it fits 32 bit
+ if (val != (static_cast<int64_t>(static_cast<int32_t>(val)))) {
+ return false;
+ }
+ if (rl_dest.location == kLocPhysReg &&
+ rl_src1.location == kLocPhysReg && !rl_dest.reg.IsFloat()) {
+ X86OpCode x86op = GetOpcode(op, rl_dest, false, val);
+ NewLIR2(x86op, rl_dest.reg.GetReg(), val);
+ StoreFinalValueWide(rl_dest, rl_dest);
+ return true;
+ }
+
+ rl_src1 = LoadValueWide(rl_src1, kCoreReg);
+ // We need the values to be in a temporary
+ RegLocation rl_result = ForceTempWide(rl_src1);
+
+ X86OpCode x86op = GetOpcode(op, rl_result, false, val);
+ NewLIR2(x86op, rl_result.reg.GetReg(), val);
+
+ StoreFinalValueWide(rl_dest, rl_result);
+ return true;
+ }
+
int32_t val_lo = Low32Bits(val);
int32_t val_hi = High32Bits(val);
rl_dest = UpdateLocWideTyped(rl_dest, kCoreReg);
@@ -1861,7 +2125,7 @@ void X86Mir2Lir::GenLongLongImm(RegLocation rl_dest, RegLocation rl_src1,
}
StoreFinalValueWide(rl_dest, rl_dest);
- return;
+ return true;
}
rl_src1 = LoadValueWide(rl_src1, kCoreReg);
@@ -1879,6 +2143,7 @@ void X86Mir2Lir::GenLongLongImm(RegLocation rl_dest, RegLocation rl_src1,
}
StoreFinalValueWide(rl_dest, rl_result);
+ return true;
}
// For final classes there are no sub-classes to check and so we can answer the instance-of
@@ -1899,7 +2164,12 @@ void X86Mir2Lir::GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx,
LoadConstant(result_reg, 0);
LIR* null_branchover = OpCmpImmBranch(kCondEq, object.reg, 0, NULL);
- RegStorage check_class = AllocTypedTemp(false, kRefReg);
+ // We will use this register to compare to memory below.
+ // References are 32 bit in memory, and 64 bit in registers (in 64 bit mode).
+ // For this reason, force allocation of a 32 bit register to use, so that the
+ // compare to memory will be done using a 32 bit comparision.
+ // The LoadRefDisp(s) below will work normally, even in 64 bit mode.
+ RegStorage check_class = AllocTemp();
// If Method* is already in a register, we can save a copy.
RegLocation rl_method = mir_graph_->GetMethodLoc();
@@ -2239,7 +2509,8 @@ void X86Mir2Lir::GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
// We should be careful with order here
// If rl_dest and rl_lhs points to the same VR we should load first
// If the are different we should find a register first for dest
- if (mir_graph_->SRegToVReg(rl_dest.s_reg_low) == mir_graph_->SRegToVReg(rl_lhs.s_reg_low)) {
+ if (mir_graph_->SRegToVReg(rl_dest.s_reg_low) ==
+ mir_graph_->SRegToVReg(rl_lhs.s_reg_low)) {
rl_lhs = LoadValue(rl_lhs, kCoreReg);
rl_result = EvalLoc(rl_dest, kCoreReg, true);
// No-op if these are the same.
@@ -2289,4 +2560,82 @@ bool X86Mir2Lir::IsOperationSafeWithoutTemps(RegLocation rl_lhs, RegLocation rl_
// Everything will be fine :-).
return true;
}
+
+void X86Mir2Lir::GenIntToLong(RegLocation rl_dest, RegLocation rl_src) {
+ if (!Gen64Bit()) {
+ Mir2Lir::GenIntToLong(rl_dest, rl_src);
+ return;
+ }
+ RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
+ if (rl_src.location == kLocPhysReg) {
+ NewLIR2(kX86MovsxdRR, rl_result.reg.GetReg(), rl_src.reg.GetReg());
+ } else {
+ int displacement = SRegOffset(rl_src.s_reg_low);
+ LIR *m = NewLIR3(kX86MovsxdRM, rl_result.reg.GetReg(), rs_rX86_SP.GetReg(),
+ displacement + LOWORD_OFFSET);
+ AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
+ true /* is_load */, true /* is_64bit */);
+ }
+ StoreValueWide(rl_dest, rl_result);
+}
+
+void X86Mir2Lir::GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest,
+ RegLocation rl_src1, RegLocation rl_shift) {
+ if (!Gen64Bit()) {
+ Mir2Lir::GenShiftOpLong(opcode, rl_dest, rl_src1, rl_shift);
+ return;
+ }
+
+ bool is_two_addr = false;
+ OpKind op = kOpBkpt;
+ RegLocation rl_result;
+
+ switch (opcode) {
+ case Instruction::SHL_LONG_2ADDR:
+ is_two_addr = true;
+ // Fallthrough
+ case Instruction::SHL_LONG:
+ op = kOpLsl;
+ break;
+ case Instruction::SHR_LONG_2ADDR:
+ is_two_addr = true;
+ // Fallthrough
+ case Instruction::SHR_LONG:
+ op = kOpAsr;
+ break;
+ case Instruction::USHR_LONG_2ADDR:
+ is_two_addr = true;
+ // Fallthrough
+ case Instruction::USHR_LONG:
+ op = kOpLsr;
+ break;
+ default:
+ op = kOpBkpt;
+ }
+
+ // X86 doesn't require masking and must use ECX.
+ RegStorage t_reg = TargetReg(kCount); // rCX
+ LoadValueDirectFixed(rl_shift, t_reg);
+ if (is_two_addr) {
+ // Can we do this directly into memory?
+ rl_result = UpdateLocWideTyped(rl_dest, kCoreReg);
+ if (rl_result.location != kLocPhysReg) {
+ // Okay, we can do this into memory
+ OpMemReg(op, rl_result, t_reg.GetReg());
+ } else if (!rl_result.reg.IsFloat()) {
+ // Can do this directly into the result register
+ OpRegReg(op, rl_result.reg, t_reg);
+ StoreFinalValueWide(rl_dest, rl_result);
+ }
+ } else {
+ // Three address form, or we can't do directly.
+ rl_src1 = LoadValueWide(rl_src1, kCoreReg);
+ rl_result = EvalLocWide(rl_dest, kCoreReg, true);
+ OpRegRegReg(op, rl_result.reg, rl_src1.reg, t_reg);
+ StoreFinalValueWide(rl_dest, rl_result);
+ }
+
+ FreeTemp(t_reg);
+}
+
} // namespace art
diff --git a/compiler/dex/quick/x86/target_x86.cc b/compiler/dex/quick/x86/target_x86.cc
index 4d8fd1b..ce7229b 100644
--- a/compiler/dex/quick/x86/target_x86.cc
+++ b/compiler/dex/quick/x86/target_x86.cc
@@ -31,33 +31,25 @@ static constexpr RegStorage core_regs_arr_32[] = {
};
static constexpr RegStorage core_regs_arr_64[] = {
rs_rAX, rs_rCX, rs_rDX, rs_rBX, rs_rX86_SP_32, rs_rBP, rs_rSI, rs_rDI,
-#ifdef TARGET_REX_SUPPORT
rs_r8, rs_r9, rs_r10, rs_r11, rs_r12, rs_r13, rs_r14, rs_r15
-#endif
};
static constexpr RegStorage core_regs_arr_64q[] = {
rs_r0q, rs_r1q, rs_r2q, rs_r3q, rs_rX86_SP_64, rs_r5q, rs_r6q, rs_r7q,
-#ifdef TARGET_REX_SUPPORT
rs_r8q, rs_r9q, rs_r10q, rs_r11q, rs_r12q, rs_r13q, rs_r14q, rs_r15q
-#endif
};
static constexpr RegStorage sp_regs_arr_32[] = {
rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
};
static constexpr RegStorage sp_regs_arr_64[] = {
rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
-#ifdef TARGET_REX_SUPPORT
rs_fr8, rs_fr9, rs_fr10, rs_fr11, rs_fr12, rs_fr13, rs_fr14, rs_fr15
-#endif
};
static constexpr RegStorage dp_regs_arr_32[] = {
rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
};
static constexpr RegStorage dp_regs_arr_64[] = {
rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
-#ifdef TARGET_REX_SUPPORT
rs_dr8, rs_dr9, rs_dr10, rs_dr11, rs_dr12, rs_dr13, rs_dr14, rs_dr15
-#endif
};
static constexpr RegStorage reserved_regs_arr_32[] = {rs_rX86_SP_32};
static constexpr RegStorage reserved_regs_arr_64[] = {rs_rX86_SP_32};
@@ -65,33 +57,25 @@ static constexpr RegStorage reserved_regs_arr_64q[] = {rs_rX86_SP_64};
static constexpr RegStorage core_temps_arr_32[] = {rs_rAX, rs_rCX, rs_rDX, rs_rBX};
static constexpr RegStorage core_temps_arr_64[] = {
rs_rAX, rs_rCX, rs_rDX, rs_rSI, rs_rDI,
-#ifdef TARGET_REX_SUPPORT
rs_r8, rs_r9, rs_r10, rs_r11
-#endif
};
static constexpr RegStorage core_temps_arr_64q[] = {
rs_r0q, rs_r1q, rs_r2q, rs_r6q, rs_r7q,
-#ifdef TARGET_REX_SUPPORT
rs_r8q, rs_r9q, rs_r10q, rs_r11q
-#endif
};
static constexpr RegStorage sp_temps_arr_32[] = {
rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
};
static constexpr RegStorage sp_temps_arr_64[] = {
rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
-#ifdef TARGET_REX_SUPPORT
rs_fr8, rs_fr9, rs_fr10, rs_fr11, rs_fr12, rs_fr13, rs_fr14, rs_fr15
-#endif
};
static constexpr RegStorage dp_temps_arr_32[] = {
rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
};
static constexpr RegStorage dp_temps_arr_64[] = {
rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
-#ifdef TARGET_REX_SUPPORT
rs_dr8, rs_dr9, rs_dr10, rs_dr11, rs_dr12, rs_dr13, rs_dr14, rs_dr15
-#endif
};
static constexpr RegStorage xp_temps_arr_32[] = {
@@ -99,9 +83,7 @@ static constexpr RegStorage xp_temps_arr_32[] = {
};
static constexpr RegStorage xp_temps_arr_64[] = {
rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
-#ifdef TARGET_REX_SUPPORT
rs_xr8, rs_xr9, rs_xr10, rs_xr11, rs_xr12, rs_xr13, rs_xr14, rs_xr15
-#endif
};
static constexpr ArrayRef<const RegStorage> empty_pool;
@@ -132,10 +114,16 @@ X86NativeRegisterPool rX86_ARG0;
X86NativeRegisterPool rX86_ARG1;
X86NativeRegisterPool rX86_ARG2;
X86NativeRegisterPool rX86_ARG3;
+X86NativeRegisterPool rX86_ARG4;
+X86NativeRegisterPool rX86_ARG5;
X86NativeRegisterPool rX86_FARG0;
X86NativeRegisterPool rX86_FARG1;
X86NativeRegisterPool rX86_FARG2;
X86NativeRegisterPool rX86_FARG3;
+X86NativeRegisterPool rX86_FARG4;
+X86NativeRegisterPool rX86_FARG5;
+X86NativeRegisterPool rX86_FARG6;
+X86NativeRegisterPool rX86_FARG7;
X86NativeRegisterPool rX86_RET0;
X86NativeRegisterPool rX86_RET1;
X86NativeRegisterPool rX86_INVOKE_TGT;
@@ -145,10 +133,16 @@ RegStorage rs_rX86_ARG0;
RegStorage rs_rX86_ARG1;
RegStorage rs_rX86_ARG2;
RegStorage rs_rX86_ARG3;
+RegStorage rs_rX86_ARG4;
+RegStorage rs_rX86_ARG5;
RegStorage rs_rX86_FARG0;
RegStorage rs_rX86_FARG1;
RegStorage rs_rX86_FARG2;
RegStorage rs_rX86_FARG3;
+RegStorage rs_rX86_FARG4;
+RegStorage rs_rX86_FARG5;
+RegStorage rs_rX86_FARG6;
+RegStorage rs_rX86_FARG7;
RegStorage rs_rX86_RET0;
RegStorage rs_rX86_RET1;
RegStorage rs_rX86_INVOKE_TGT;
@@ -164,7 +158,7 @@ RegLocation X86Mir2Lir::LocCReturnRef() {
}
RegLocation X86Mir2Lir::LocCReturnWide() {
- return x86_loc_c_return_wide;
+ return Gen64Bit() ? x86_64_loc_c_return_wide : x86_loc_c_return_wide;
}
RegLocation X86Mir2Lir::LocCReturnFloat() {
@@ -188,35 +182,27 @@ RegStorage X86Mir2Lir::TargetReg(SpecialTargetRegister reg) {
case kArg1: res_reg = rs_rX86_ARG1; break;
case kArg2: res_reg = rs_rX86_ARG2; break;
case kArg3: res_reg = rs_rX86_ARG3; break;
+ case kArg4: res_reg = rs_rX86_ARG4; break;
+ case kArg5: res_reg = rs_rX86_ARG5; break;
case kFArg0: res_reg = rs_rX86_FARG0; break;
case kFArg1: res_reg = rs_rX86_FARG1; break;
case kFArg2: res_reg = rs_rX86_FARG2; break;
case kFArg3: res_reg = rs_rX86_FARG3; break;
+ case kFArg4: res_reg = rs_rX86_FARG4; break;
+ case kFArg5: res_reg = rs_rX86_FARG5; break;
+ case kFArg6: res_reg = rs_rX86_FARG6; break;
+ case kFArg7: res_reg = rs_rX86_FARG7; break;
case kRet0: res_reg = rs_rX86_RET0; break;
case kRet1: res_reg = rs_rX86_RET1; break;
case kInvokeTgt: res_reg = rs_rX86_INVOKE_TGT; break;
case kHiddenArg: res_reg = rs_rAX; break;
- case kHiddenFpArg: res_reg = rs_fr0; break;
+ case kHiddenFpArg: DCHECK(!Gen64Bit()); res_reg = rs_fr0; break;
case kCount: res_reg = rs_rX86_COUNT; break;
+ default: res_reg = RegStorage::InvalidReg();
}
return res_reg;
}
-RegStorage X86Mir2Lir::GetArgMappingToPhysicalReg(int arg_num) {
- // For the 32-bit internal ABI, the first 3 arguments are passed in registers.
- // TODO: This is not 64-bit compliant and depends on new internal ABI.
- switch (arg_num) {
- case 0:
- return rs_rX86_ARG1;
- case 1:
- return rs_rX86_ARG2;
- case 2:
- return rs_rX86_ARG3;
- default:
- return RegStorage::InvalidReg();
- }
-}
-
/*
* Decode the register id.
*/
@@ -482,6 +468,18 @@ void X86Mir2Lir::LockCallTemps() {
LockTemp(rs_rX86_ARG1);
LockTemp(rs_rX86_ARG2);
LockTemp(rs_rX86_ARG3);
+ if (Gen64Bit()) {
+ LockTemp(rs_rX86_ARG4);
+ LockTemp(rs_rX86_ARG5);
+ LockTemp(rs_rX86_FARG0);
+ LockTemp(rs_rX86_FARG1);
+ LockTemp(rs_rX86_FARG2);
+ LockTemp(rs_rX86_FARG3);
+ LockTemp(rs_rX86_FARG4);
+ LockTemp(rs_rX86_FARG5);
+ LockTemp(rs_rX86_FARG6);
+ LockTemp(rs_rX86_FARG7);
+ }
}
/* To be used when explicitly managing register use */
@@ -490,14 +488,26 @@ void X86Mir2Lir::FreeCallTemps() {
FreeTemp(rs_rX86_ARG1);
FreeTemp(rs_rX86_ARG2);
FreeTemp(rs_rX86_ARG3);
+ if (Gen64Bit()) {
+ FreeTemp(rs_rX86_ARG4);
+ FreeTemp(rs_rX86_ARG5);
+ FreeTemp(rs_rX86_FARG0);
+ FreeTemp(rs_rX86_FARG1);
+ FreeTemp(rs_rX86_FARG2);
+ FreeTemp(rs_rX86_FARG3);
+ FreeTemp(rs_rX86_FARG4);
+ FreeTemp(rs_rX86_FARG5);
+ FreeTemp(rs_rX86_FARG6);
+ FreeTemp(rs_rX86_FARG7);
+ }
}
bool X86Mir2Lir::ProvidesFullMemoryBarrier(X86OpCode opcode) {
switch (opcode) {
case kX86LockCmpxchgMR:
case kX86LockCmpxchgAR:
- case kX86LockCmpxchg8bM:
- case kX86LockCmpxchg8bA:
+ case kX86LockCmpxchg64M:
+ case kX86LockCmpxchg64A:
case kX86XchgMR:
case kX86Mfence:
// Atomic memory instructions provide full barrier.
@@ -653,6 +663,14 @@ bool X86Mir2Lir::SupportsVolatileLoadStore(OpSize size) {
}
RegisterClass X86Mir2Lir::RegClassForFieldLoadStore(OpSize size, bool is_volatile) {
+ // X86_64 can handle any size.
+ if (Gen64Bit()) {
+ if (size == kReference) {
+ return kRefReg;
+ }
+ return kCoreReg;
+ }
+
if (UNLIKELY(is_volatile)) {
// On x86, atomic 64-bit load/store requires an fp register.
// Smaller aligned load/store is atomic for both core and fp registers.
@@ -688,11 +706,30 @@ X86Mir2Lir::X86Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator*
rs_rX86_ARG1 = rs_rSI;
rs_rX86_ARG2 = rs_rDX;
rs_rX86_ARG3 = rs_rCX;
+ rs_rX86_ARG4 = rs_r8;
+ rs_rX86_ARG5 = rs_r9;
+ rs_rX86_FARG0 = rs_fr0;
+ rs_rX86_FARG1 = rs_fr1;
+ rs_rX86_FARG2 = rs_fr2;
+ rs_rX86_FARG3 = rs_fr3;
+ rs_rX86_FARG4 = rs_fr4;
+ rs_rX86_FARG5 = rs_fr5;
+ rs_rX86_FARG6 = rs_fr6;
+ rs_rX86_FARG7 = rs_fr7;
rX86_ARG0 = rDI;
rX86_ARG1 = rSI;
rX86_ARG2 = rDX;
rX86_ARG3 = rCX;
- // TODO: ARG4(r8), ARG5(r9), floating point args.
+ rX86_ARG4 = r8;
+ rX86_ARG5 = r9;
+ rX86_FARG0 = fr0;
+ rX86_FARG1 = fr1;
+ rX86_FARG2 = fr2;
+ rX86_FARG3 = fr3;
+ rX86_FARG4 = fr4;
+ rX86_FARG5 = fr5;
+ rX86_FARG6 = fr6;
+ rX86_FARG7 = fr7;
} else {
rs_rX86_SP = rs_rX86_SP_32;
@@ -700,23 +737,32 @@ X86Mir2Lir::X86Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator*
rs_rX86_ARG1 = rs_rCX;
rs_rX86_ARG2 = rs_rDX;
rs_rX86_ARG3 = rs_rBX;
+ rs_rX86_ARG4 = RegStorage::InvalidReg();
+ rs_rX86_ARG5 = RegStorage::InvalidReg();
+ rs_rX86_FARG0 = rs_rAX;
+ rs_rX86_FARG1 = rs_rCX;
+ rs_rX86_FARG2 = rs_rDX;
+ rs_rX86_FARG3 = rs_rBX;
+ rs_rX86_FARG4 = RegStorage::InvalidReg();
+ rs_rX86_FARG5 = RegStorage::InvalidReg();
+ rs_rX86_FARG6 = RegStorage::InvalidReg();
+ rs_rX86_FARG7 = RegStorage::InvalidReg();
rX86_ARG0 = rAX;
rX86_ARG1 = rCX;
rX86_ARG2 = rDX;
rX86_ARG3 = rBX;
+ rX86_FARG0 = rAX;
+ rX86_FARG1 = rCX;
+ rX86_FARG2 = rDX;
+ rX86_FARG3 = rBX;
+ // TODO(64): Initialize with invalid reg
+// rX86_ARG4 = RegStorage::InvalidReg();
+// rX86_ARG5 = RegStorage::InvalidReg();
}
- rs_rX86_FARG0 = rs_rAX;
- rs_rX86_FARG1 = rs_rCX;
- rs_rX86_FARG2 = rs_rDX;
- rs_rX86_FARG3 = rs_rBX;
rs_rX86_RET0 = rs_rAX;
rs_rX86_RET1 = rs_rDX;
rs_rX86_INVOKE_TGT = rs_rAX;
rs_rX86_COUNT = rs_rCX;
- rX86_FARG0 = rAX;
- rX86_FARG1 = rCX;
- rX86_FARG2 = rDX;
- rX86_FARG3 = rBX;
rX86_RET0 = rAX;
rX86_RET1 = rDX;
rX86_INVOKE_TGT = rAX;
@@ -1356,7 +1402,11 @@ void X86Mir2Lir::GenConst128(BasicBlock* bb, MIR* mir) {
// Address the start of the method.
RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
- rl_method = LoadValue(rl_method, kCoreReg);
+ if (rl_method.wide) {
+ rl_method = LoadValueWide(rl_method, kCoreReg);
+ } else {
+ rl_method = LoadValue(rl_method, kCoreReg);
+ }
// Load the proper value from the literal area.
// We don't know the proper offset for the value, so pick one that will force
@@ -1676,4 +1726,458 @@ LIR *X86Mir2Lir::AddVectorLiteral(MIR *mir) {
return new_value;
}
+// ------------ ABI support: mapping of args to physical registers -------------
+RegStorage X86Mir2Lir::InToRegStorageX86_64Mapper::GetNextReg(bool is_double_or_float, bool is_wide) {
+ const RegStorage coreArgMappingToPhysicalReg[] = {rs_rX86_ARG1, rs_rX86_ARG2, rs_rX86_ARG3, rs_rX86_ARG4, rs_rX86_ARG5};
+ const int coreArgMappingToPhysicalRegSize = sizeof(coreArgMappingToPhysicalReg) / sizeof(RegStorage);
+ const RegStorage fpArgMappingToPhysicalReg[] = {rs_rX86_FARG0, rs_rX86_FARG1, rs_rX86_FARG2, rs_rX86_FARG3,
+ rs_rX86_FARG4, rs_rX86_FARG5, rs_rX86_FARG6, rs_rX86_FARG7};
+ const int fpArgMappingToPhysicalRegSize = sizeof(fpArgMappingToPhysicalReg) / sizeof(RegStorage);
+
+ RegStorage result = RegStorage::InvalidReg();
+ if (is_double_or_float) {
+ if (cur_fp_reg_ < fpArgMappingToPhysicalRegSize) {
+ result = fpArgMappingToPhysicalReg[cur_fp_reg_++];
+ if (result.Valid()) {
+ result = is_wide ? RegStorage::FloatSolo64(result.GetReg()) : RegStorage::FloatSolo32(result.GetReg());
+ }
+ }
+ } else {
+ if (cur_core_reg_ < coreArgMappingToPhysicalRegSize) {
+ result = coreArgMappingToPhysicalReg[cur_core_reg_++];
+ if (result.Valid()) {
+ result = is_wide ? RegStorage::Solo64(result.GetReg()) : RegStorage::Solo32(result.GetReg());
+ }
+ }
+ }
+ return result;
+}
+
+RegStorage X86Mir2Lir::InToRegStorageMapping::Get(int in_position) {
+ DCHECK(IsInitialized());
+ auto res = mapping_.find(in_position);
+ return res != mapping_.end() ? res->second : RegStorage::InvalidReg();
+}
+
+void X86Mir2Lir::InToRegStorageMapping::Initialize(RegLocation* arg_locs, int count, InToRegStorageMapper* mapper) {
+ DCHECK(mapper != nullptr);
+ max_mapped_in_ = -1;
+ is_there_stack_mapped_ = false;
+ for (int in_position = 0; in_position < count; in_position++) {
+ RegStorage reg = mapper->GetNextReg(arg_locs[in_position].fp, arg_locs[in_position].wide);
+ if (reg.Valid()) {
+ mapping_[in_position] = reg;
+ max_mapped_in_ = std::max(max_mapped_in_, in_position);
+ if (reg.Is64BitSolo()) {
+ // We covered 2 args, so skip the next one
+ in_position++;
+ }
+ } else {
+ is_there_stack_mapped_ = true;
+ }
+ }
+ initialized_ = true;
+}
+
+RegStorage X86Mir2Lir::GetArgMappingToPhysicalReg(int arg_num) {
+ if (!Gen64Bit()) {
+ return GetCoreArgMappingToPhysicalReg(arg_num);
+ }
+
+ if (!in_to_reg_storage_mapping_.IsInitialized()) {
+ int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
+ RegLocation* arg_locs = &mir_graph_->reg_location_[start_vreg];
+
+ InToRegStorageX86_64Mapper mapper;
+ in_to_reg_storage_mapping_.Initialize(arg_locs, cu_->num_ins, &mapper);
+ }
+ return in_to_reg_storage_mapping_.Get(arg_num);
+}
+
+RegStorage X86Mir2Lir::GetCoreArgMappingToPhysicalReg(int core_arg_num) {
+ // For the 32-bit internal ABI, the first 3 arguments are passed in registers.
+ // Not used for 64-bit, TODO: Move X86_32 to the same framework
+ switch (core_arg_num) {
+ case 0:
+ return rs_rX86_ARG1;
+ case 1:
+ return rs_rX86_ARG2;
+ case 2:
+ return rs_rX86_ARG3;
+ default:
+ return RegStorage::InvalidReg();
+ }
+}
+
+// ---------End of ABI support: mapping of args to physical registers -------------
+
+/*
+ * If there are any ins passed in registers that have not been promoted
+ * to a callee-save register, flush them to the frame. Perform initial
+ * assignment of promoted arguments.
+ *
+ * ArgLocs is an array of location records describing the incoming arguments
+ * with one location record per word of argument.
+ */
+void X86Mir2Lir::FlushIns(RegLocation* ArgLocs, RegLocation rl_method) {
+ if (!Gen64Bit()) return Mir2Lir::FlushIns(ArgLocs, rl_method);
+ /*
+ * Dummy up a RegLocation for the incoming Method*
+ * It will attempt to keep kArg0 live (or copy it to home location
+ * if promoted).
+ */
+
+ RegLocation rl_src = rl_method;
+ rl_src.location = kLocPhysReg;
+ rl_src.reg = TargetReg(kArg0);
+ rl_src.home = false;
+ MarkLive(rl_src);
+ StoreValue(rl_method, rl_src);
+ // If Method* has been promoted, explicitly flush
+ if (rl_method.location == kLocPhysReg) {
+ StoreRefDisp(TargetReg(kSp), 0, TargetReg(kArg0));
+ }
+
+ if (cu_->num_ins == 0) {
+ return;
+ }
+
+ int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
+ /*
+ * Copy incoming arguments to their proper home locations.
+ * NOTE: an older version of dx had an issue in which
+ * it would reuse static method argument registers.
+ * This could result in the same Dalvik virtual register
+ * being promoted to both core and fp regs. To account for this,
+ * we only copy to the corresponding promoted physical register
+ * if it matches the type of the SSA name for the incoming
+ * argument. It is also possible that long and double arguments
+ * end up half-promoted. In those cases, we must flush the promoted
+ * half to memory as well.
+ */
+ for (int i = 0; i < cu_->num_ins; i++) {
+ PromotionMap* v_map = &promotion_map_[start_vreg + i];
+ RegStorage reg = RegStorage::InvalidReg();
+ // get reg corresponding to input
+ reg = GetArgMappingToPhysicalReg(i);
+
+ if (reg.Valid()) {
+ // If arriving in register
+ bool need_flush = true;
+ RegLocation* t_loc = &ArgLocs[i];
+ if ((v_map->core_location == kLocPhysReg) && !t_loc->fp) {
+ OpRegCopy(RegStorage::Solo32(v_map->core_reg), reg);
+ need_flush = false;
+ } else if ((v_map->fp_location == kLocPhysReg) && t_loc->fp) {
+ OpRegCopy(RegStorage::Solo32(v_map->FpReg), reg);
+ need_flush = false;
+ } else {
+ need_flush = true;
+ }
+
+ // For wide args, force flush if not fully promoted
+ if (t_loc->wide) {
+ PromotionMap* p_map = v_map + (t_loc->high_word ? -1 : +1);
+ // Is only half promoted?
+ need_flush |= (p_map->core_location != v_map->core_location) ||
+ (p_map->fp_location != v_map->fp_location);
+ }
+ if (need_flush) {
+ if (t_loc->wide && t_loc->fp) {
+ StoreBaseDisp(TargetReg(kSp), SRegOffset(start_vreg + i), reg, k64);
+ // Increment i to skip the next one
+ i++;
+ } else if (t_loc->wide && !t_loc->fp) {
+ StoreBaseDisp(TargetReg(kSp), SRegOffset(start_vreg + i), reg, k64);
+ // Increment i to skip the next one
+ i++;
+ } else {
+ Store32Disp(TargetReg(kSp), SRegOffset(start_vreg + i), reg);
+ }
+ }
+ } else {
+ // If arriving in frame & promoted
+ if (v_map->core_location == kLocPhysReg) {
+ Load32Disp(TargetReg(kSp), SRegOffset(start_vreg + i), RegStorage::Solo32(v_map->core_reg));
+ }
+ if (v_map->fp_location == kLocPhysReg) {
+ Load32Disp(TargetReg(kSp), SRegOffset(start_vreg + i), RegStorage::Solo32(v_map->FpReg));
+ }
+ }
+ }
+}
+
+/*
+ * Load up to 5 arguments, the first three of which will be in
+ * kArg1 .. kArg3. On entry kArg0 contains the current method pointer,
+ * and as part of the load sequence, it must be replaced with
+ * the target method pointer. Note, this may also be called
+ * for "range" variants if the number of arguments is 5 or fewer.
+ */
+int X86Mir2Lir::GenDalvikArgsNoRange(CallInfo* info,
+ int call_state, LIR** pcrLabel, NextCallInsn next_call_insn,
+ const MethodReference& target_method,
+ uint32_t vtable_idx, uintptr_t direct_code,
+ uintptr_t direct_method, InvokeType type, bool skip_this) {
+ if (!Gen64Bit()) {
+ return Mir2Lir::GenDalvikArgsNoRange(info,
+ call_state, pcrLabel, next_call_insn,
+ target_method,
+ vtable_idx, direct_code,
+ direct_method, type, skip_this);
+ }
+ return GenDalvikArgsRange(info,
+ call_state, pcrLabel, next_call_insn,
+ target_method,
+ vtable_idx, direct_code,
+ direct_method, type, skip_this);
+}
+
+/*
+ * May have 0+ arguments (also used for jumbo). Note that
+ * source virtual registers may be in physical registers, so may
+ * need to be flushed to home location before copying. This
+ * applies to arg3 and above (see below).
+ *
+ * Two general strategies:
+ * If < 20 arguments
+ * Pass args 3-18 using vldm/vstm block copy
+ * Pass arg0, arg1 & arg2 in kArg1-kArg3
+ * If 20+ arguments
+ * Pass args arg19+ using memcpy block copy
+ * Pass arg0, arg1 & arg2 in kArg1-kArg3
+ *
+ */
+int X86Mir2Lir::GenDalvikArgsRange(CallInfo* info, int call_state,
+ LIR** pcrLabel, NextCallInsn next_call_insn,
+ const MethodReference& target_method,
+ uint32_t vtable_idx, uintptr_t direct_code, uintptr_t direct_method,
+ InvokeType type, bool skip_this) {
+ if (!Gen64Bit()) {
+ return Mir2Lir::GenDalvikArgsRange(info, call_state,
+ pcrLabel, next_call_insn,
+ target_method,
+ vtable_idx, direct_code, direct_method,
+ type, skip_this);
+ }
+
+ /* If no arguments, just return */
+ if (info->num_arg_words == 0)
+ return call_state;
+
+ const int start_index = skip_this ? 1 : 0;
+
+ InToRegStorageX86_64Mapper mapper;
+ InToRegStorageMapping in_to_reg_storage_mapping;
+ in_to_reg_storage_mapping.Initialize(info->args, info->num_arg_words, &mapper);
+ const int last_mapped_in = in_to_reg_storage_mapping.GetMaxMappedIn();
+ const int size_of_the_last_mapped = last_mapped_in == -1 ? 1 :
+ in_to_reg_storage_mapping.Get(last_mapped_in).Is64BitSolo() ? 2 : 1;
+ int regs_left_to_pass_via_stack = info->num_arg_words - (last_mapped_in + size_of_the_last_mapped);
+
+ // Fisrt of all, check whether it make sense to use bulk copying
+ // Optimization is aplicable only for range case
+ // TODO: make a constant instead of 2
+ if (info->is_range && regs_left_to_pass_via_stack >= 2) {
+ // Scan the rest of the args - if in phys_reg flush to memory
+ for (int next_arg = last_mapped_in + size_of_the_last_mapped; next_arg < info->num_arg_words;) {
+ RegLocation loc = info->args[next_arg];
+ if (loc.wide) {
+ loc = UpdateLocWide(loc);
+ if (loc.location == kLocPhysReg) {
+ StoreBaseDisp(TargetReg(kSp), SRegOffset(loc.s_reg_low), loc.reg, k64);
+ }
+ next_arg += 2;
+ } else {
+ loc = UpdateLoc(loc);
+ if (loc.location == kLocPhysReg) {
+ StoreBaseDisp(TargetReg(kSp), SRegOffset(loc.s_reg_low), loc.reg, k32);
+ }
+ next_arg++;
+ }
+ }
+
+ // Logic below assumes that Method pointer is at offset zero from SP.
+ DCHECK_EQ(VRegOffset(static_cast<int>(kVRegMethodPtrBaseReg)), 0);
+
+ // The rest can be copied together
+ int start_offset = SRegOffset(info->args[last_mapped_in + size_of_the_last_mapped].s_reg_low);
+ int outs_offset = StackVisitor::GetOutVROffset(last_mapped_in + size_of_the_last_mapped, cu_->instruction_set);
+
+ int current_src_offset = start_offset;
+ int current_dest_offset = outs_offset;
+
+ while (regs_left_to_pass_via_stack > 0) {
+ // This is based on the knowledge that the stack itself is 16-byte aligned.
+ bool src_is_16b_aligned = (current_src_offset & 0xF) == 0;
+ bool dest_is_16b_aligned = (current_dest_offset & 0xF) == 0;
+ size_t bytes_to_move;
+
+ /*
+ * The amount to move defaults to 32-bit. If there are 4 registers left to move, then do a
+ * a 128-bit move because we won't get the chance to try to aligned. If there are more than
+ * 4 registers left to move, consider doing a 128-bit only if either src or dest are aligned.
+ * We do this because we could potentially do a smaller move to align.
+ */
+ if (regs_left_to_pass_via_stack == 4 ||
+ (regs_left_to_pass_via_stack > 4 && (src_is_16b_aligned || dest_is_16b_aligned))) {
+ // Moving 128-bits via xmm register.
+ bytes_to_move = sizeof(uint32_t) * 4;
+
+ // Allocate a free xmm temp. Since we are working through the calling sequence,
+ // we expect to have an xmm temporary available. AllocTempDouble will abort if
+ // there are no free registers.
+ RegStorage temp = AllocTempDouble();
+
+ LIR* ld1 = nullptr;
+ LIR* ld2 = nullptr;
+ LIR* st1 = nullptr;
+ LIR* st2 = nullptr;
+
+ /*
+ * The logic is similar for both loads and stores. If we have 16-byte alignment,
+ * do an aligned move. If we have 8-byte alignment, then do the move in two
+ * parts. This approach prevents possible cache line splits. Finally, fall back
+ * to doing an unaligned move. In most cases we likely won't split the cache
+ * line but we cannot prove it and thus take a conservative approach.
+ */
+ bool src_is_8b_aligned = (current_src_offset & 0x7) == 0;
+ bool dest_is_8b_aligned = (current_dest_offset & 0x7) == 0;
+
+ if (src_is_16b_aligned) {
+ ld1 = OpMovRegMem(temp, TargetReg(kSp), current_src_offset, kMovA128FP);
+ } else if (src_is_8b_aligned) {
+ ld1 = OpMovRegMem(temp, TargetReg(kSp), current_src_offset, kMovLo128FP);
+ ld2 = OpMovRegMem(temp, TargetReg(kSp), current_src_offset + (bytes_to_move >> 1),
+ kMovHi128FP);
+ } else {
+ ld1 = OpMovRegMem(temp, TargetReg(kSp), current_src_offset, kMovU128FP);
+ }
+
+ if (dest_is_16b_aligned) {
+ st1 = OpMovMemReg(TargetReg(kSp), current_dest_offset, temp, kMovA128FP);
+ } else if (dest_is_8b_aligned) {
+ st1 = OpMovMemReg(TargetReg(kSp), current_dest_offset, temp, kMovLo128FP);
+ st2 = OpMovMemReg(TargetReg(kSp), current_dest_offset + (bytes_to_move >> 1),
+ temp, kMovHi128FP);
+ } else {
+ st1 = OpMovMemReg(TargetReg(kSp), current_dest_offset, temp, kMovU128FP);
+ }
+
+ // TODO If we could keep track of aliasing information for memory accesses that are wider
+ // than 64-bit, we wouldn't need to set up a barrier.
+ if (ld1 != nullptr) {
+ if (ld2 != nullptr) {
+ // For 64-bit load we can actually set up the aliasing information.
+ AnnotateDalvikRegAccess(ld1, current_src_offset >> 2, true, true);
+ AnnotateDalvikRegAccess(ld2, (current_src_offset + (bytes_to_move >> 1)) >> 2, true, true);
+ } else {
+ // Set barrier for 128-bit load.
+ SetMemRefType(ld1, true /* is_load */, kDalvikReg);
+ ld1->u.m.def_mask = ENCODE_ALL;
+ }
+ }
+ if (st1 != nullptr) {
+ if (st2 != nullptr) {
+ // For 64-bit store we can actually set up the aliasing information.
+ AnnotateDalvikRegAccess(st1, current_dest_offset >> 2, false, true);
+ AnnotateDalvikRegAccess(st2, (current_dest_offset + (bytes_to_move >> 1)) >> 2, false, true);
+ } else {
+ // Set barrier for 128-bit store.
+ SetMemRefType(st1, false /* is_load */, kDalvikReg);
+ st1->u.m.def_mask = ENCODE_ALL;
+ }
+ }
+
+ // Free the temporary used for the data movement.
+ FreeTemp(temp);
+ } else {
+ // Moving 32-bits via general purpose register.
+ bytes_to_move = sizeof(uint32_t);
+
+ // Instead of allocating a new temp, simply reuse one of the registers being used
+ // for argument passing.
+ RegStorage temp = TargetReg(kArg3);
+
+ // Now load the argument VR and store to the outs.
+ Load32Disp(TargetReg(kSp), current_src_offset, temp);
+ Store32Disp(TargetReg(kSp), current_dest_offset, temp);
+ }
+
+ current_src_offset += bytes_to_move;
+ current_dest_offset += bytes_to_move;
+ regs_left_to_pass_via_stack -= (bytes_to_move >> 2);
+ }
+ DCHECK_EQ(regs_left_to_pass_via_stack, 0);
+ }
+
+ // Now handle rest not registers if they are
+ if (in_to_reg_storage_mapping.IsThereStackMapped()) {
+ RegStorage regSingle = TargetReg(kArg2);
+ RegStorage regWide = RegStorage::Solo64(TargetReg(kArg3).GetReg());
+ for (int i = start_index; i <= last_mapped_in + regs_left_to_pass_via_stack; i++) {
+ RegLocation rl_arg = info->args[i];
+ rl_arg = UpdateRawLoc(rl_arg);
+ RegStorage reg = in_to_reg_storage_mapping.Get(i);
+ if (!reg.Valid()) {
+ int out_offset = StackVisitor::GetOutVROffset(i, cu_->instruction_set);
+
+ if (rl_arg.wide) {
+ if (rl_arg.location == kLocPhysReg) {
+ StoreBaseDisp(TargetReg(kSp), out_offset, rl_arg.reg, k64);
+ } else {
+ LoadValueDirectWideFixed(rl_arg, regWide);
+ StoreBaseDisp(TargetReg(kSp), out_offset, regWide, k64);
+ }
+ i++;
+ } else {
+ if (rl_arg.location == kLocPhysReg) {
+ StoreBaseDisp(TargetReg(kSp), out_offset, rl_arg.reg, k32);
+ } else {
+ LoadValueDirectFixed(rl_arg, regSingle);
+ StoreBaseDisp(TargetReg(kSp), out_offset, regSingle, k32);
+ }
+ }
+ call_state = next_call_insn(cu_, info, call_state, target_method,
+ vtable_idx, direct_code, direct_method, type);
+ }
+ }
+ }
+
+ // Finish with mapped registers
+ for (int i = start_index; i <= last_mapped_in; i++) {
+ RegLocation rl_arg = info->args[i];
+ rl_arg = UpdateRawLoc(rl_arg);
+ RegStorage reg = in_to_reg_storage_mapping.Get(i);
+ if (reg.Valid()) {
+ if (rl_arg.wide) {
+ LoadValueDirectWideFixed(rl_arg, reg);
+ i++;
+ } else {
+ LoadValueDirectFixed(rl_arg, reg);
+ }
+ call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
+ direct_code, direct_method, type);
+ }
+ }
+
+ call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
+ direct_code, direct_method, type);
+ if (pcrLabel) {
+ if (Runtime::Current()->ExplicitNullChecks()) {
+ *pcrLabel = GenExplicitNullCheck(TargetReg(kArg1), info->opt_flags);
+ } else {
+ *pcrLabel = nullptr;
+ // In lieu of generating a check for kArg1 being null, we need to
+ // perform a load when doing implicit checks.
+ RegStorage tmp = AllocTemp();
+ Load32Disp(TargetReg(kArg1), 0, tmp);
+ MarkPossibleNullPointerException(info->opt_flags);
+ FreeTemp(tmp);
+ }
+ }
+ return call_state;
+}
+
} // namespace art
+
diff --git a/compiler/dex/quick/x86/utility_x86.cc b/compiler/dex/quick/x86/utility_x86.cc
index 618b3a5..d074d81 100644
--- a/compiler/dex/quick/x86/utility_x86.cc
+++ b/compiler/dex/quick/x86/utility_x86.cc
@@ -89,11 +89,8 @@ LIR* X86Mir2Lir::LoadConstantNoClobber(RegStorage r_dest, int value) {
res = NewLIR2(kX86Xor32RR, r_dest.GetReg(), r_dest.GetReg());
} else {
// Note, there is no byte immediate form of a 32 bit immediate move.
- if (r_dest.Is64Bit()) {
- res = NewLIR2(kX86Mov64RI, r_dest.GetReg(), value);
- } else {
- res = NewLIR2(kX86Mov32RI, r_dest.GetReg(), value);
- }
+ // 64-bit immediate is not supported by LIR structure
+ res = NewLIR2(kX86Mov32RI, r_dest.GetReg(), value);
}
if (r_dest_save.IsFloat()) {
@@ -120,8 +117,8 @@ LIR* X86Mir2Lir::OpCondBranch(ConditionCode cc, LIR* target) {
LIR* X86Mir2Lir::OpReg(OpKind op, RegStorage r_dest_src) {
X86OpCode opcode = kX86Bkpt;
switch (op) {
- case kOpNeg: opcode = kX86Neg32R; break;
- case kOpNot: opcode = kX86Not32R; break;
+ case kOpNeg: opcode = r_dest_src.Is64Bit() ? kX86Neg64R : kX86Neg32R; break;
+ case kOpNot: opcode = r_dest_src.Is64Bit() ? kX86Not64R : kX86Not32R; break;
case kOpRev: opcode = kX86Bswap32R; break;
case kOpBlx: opcode = kX86CallR; break;
default:
@@ -138,6 +135,9 @@ LIR* X86Mir2Lir::OpRegImm(OpKind op, RegStorage r_dest_src1, int value) {
switch (op) {
case kOpAdd: opcode = byte_imm ? kX86Add64RI8 : kX86Add64RI; break;
case kOpSub: opcode = byte_imm ? kX86Sub64RI8 : kX86Sub64RI; break;
+ case kOpLsl: opcode = kX86Sal64RI; break;
+ case kOpLsr: opcode = kX86Shr64RI; break;
+ case kOpAsr: opcode = kX86Sar64RI; break;
default:
LOG(FATAL) << "Bad case in OpRegImm (64-bit) " << op;
}
@@ -189,6 +189,7 @@ LIR* X86Mir2Lir::OpRegImm(OpKind op, RegStorage r_dest_src1, int value) {
}
LIR* X86Mir2Lir::OpRegReg(OpKind op, RegStorage r_dest_src1, RegStorage r_src2) {
+ bool is64Bit = r_dest_src1.Is64Bit();
X86OpCode opcode = kX86Nop;
bool src2_must_be_cx = false;
switch (op) {
@@ -207,33 +208,34 @@ LIR* X86Mir2Lir::OpRegReg(OpKind op, RegStorage r_dest_src1, RegStorage r_src2)
OpReg(kOpRev, r_dest_src1);
return OpRegImm(kOpAsr, r_dest_src1, 16);
// X86 binary opcodes
- case kOpSub: opcode = kX86Sub32RR; break;
- case kOpSbc: opcode = kX86Sbb32RR; break;
- case kOpLsl: opcode = kX86Sal32RC; src2_must_be_cx = true; break;
- case kOpLsr: opcode = kX86Shr32RC; src2_must_be_cx = true; break;
- case kOpAsr: opcode = kX86Sar32RC; src2_must_be_cx = true; break;
- case kOpMov: opcode = kX86Mov32RR; break;
- case kOpCmp: opcode = kX86Cmp32RR; break;
- case kOpAdd: opcode = kX86Add32RR; break;
- case kOpAdc: opcode = kX86Adc32RR; break;
- case kOpAnd: opcode = kX86And32RR; break;
- case kOpOr: opcode = kX86Or32RR; break;
- case kOpXor: opcode = kX86Xor32RR; break;
+ case kOpSub: opcode = is64Bit ? kX86Sub64RR : kX86Sub32RR; break;
+ case kOpSbc: opcode = is64Bit ? kX86Sbb64RR : kX86Sbb32RR; break;
+ case kOpLsl: opcode = is64Bit ? kX86Sal64RC : kX86Sal32RC; src2_must_be_cx = true; break;
+ case kOpLsr: opcode = is64Bit ? kX86Shr64RC : kX86Shr32RC; src2_must_be_cx = true; break;
+ case kOpAsr: opcode = is64Bit ? kX86Sar64RC : kX86Sar32RC; src2_must_be_cx = true; break;
+ case kOpMov: opcode = is64Bit ? kX86Mov64RR : kX86Mov32RR; break;
+ case kOpCmp: opcode = is64Bit ? kX86Cmp64RR : kX86Cmp32RR; break;
+ case kOpAdd: opcode = is64Bit ? kX86Add64RR : kX86Add32RR; break;
+ case kOpAdc: opcode = is64Bit ? kX86Adc64RR : kX86Adc32RR; break;
+ case kOpAnd: opcode = is64Bit ? kX86And64RR : kX86And32RR; break;
+ case kOpOr: opcode = is64Bit ? kX86Or64RR : kX86Or32RR; break;
+ case kOpXor: opcode = is64Bit ? kX86Xor64RR : kX86Xor32RR; break;
case kOp2Byte:
// TODO: there are several instances of this check. A utility function perhaps?
// TODO: Similar to Arm's reg < 8 check. Perhaps add attribute checks to RegStorage?
// Use shifts instead of a byte operand if the source can't be byte accessed.
if (r_src2.GetRegNum() >= rs_rX86_SP.GetRegNum()) {
- NewLIR2(kX86Mov32RR, r_dest_src1.GetReg(), r_src2.GetReg());
- NewLIR2(kX86Sal32RI, r_dest_src1.GetReg(), 24);
- return NewLIR2(kX86Sar32RI, r_dest_src1.GetReg(), 24);
+ NewLIR2(is64Bit ? kX86Mov64RR : kX86Mov32RR, r_dest_src1.GetReg(), r_src2.GetReg());
+ NewLIR2(is64Bit ? kX86Sal64RI : kX86Sal32RI, r_dest_src1.GetReg(), is64Bit ? 56 : 24);
+ return NewLIR2(is64Bit ? kX86Sar64RI : kX86Sar32RI, r_dest_src1.GetReg(),
+ is64Bit ? 56 : 24);
} else {
- opcode = kX86Movsx8RR;
+ opcode = is64Bit ? kX86Bkpt : kX86Movsx8RR;
}
break;
- case kOp2Short: opcode = kX86Movsx16RR; break;
- case kOp2Char: opcode = kX86Movzx16RR; break;
- case kOpMul: opcode = kX86Imul32RR; break;
+ case kOp2Short: opcode = is64Bit ? kX86Bkpt : kX86Movsx16RR; break;
+ case kOp2Char: opcode = is64Bit ? kX86Bkpt : kX86Movzx16RR; break;
+ case kOpMul: opcode = is64Bit ? kX86Bkpt : kX86Imul32RR; break;
default:
LOG(FATAL) << "Bad case in OpRegReg " << op;
break;
@@ -354,16 +356,17 @@ LIR* X86Mir2Lir::OpCondRegReg(OpKind op, ConditionCode cc, RegStorage r_dest, Re
}
LIR* X86Mir2Lir::OpRegMem(OpKind op, RegStorage r_dest, RegStorage r_base, int offset) {
+ bool is64Bit = r_dest.Is64Bit();
X86OpCode opcode = kX86Nop;
switch (op) {
// X86 binary opcodes
- case kOpSub: opcode = kX86Sub32RM; break;
- case kOpMov: opcode = kX86Mov32RM; break;
- case kOpCmp: opcode = kX86Cmp32RM; break;
- case kOpAdd: opcode = kX86Add32RM; break;
- case kOpAnd: opcode = kX86And32RM; break;
- case kOpOr: opcode = kX86Or32RM; break;
- case kOpXor: opcode = kX86Xor32RM; break;
+ case kOpSub: opcode = is64Bit ? kX86Sub64RM : kX86Sub32RM; break;
+ case kOpMov: opcode = is64Bit ? kX86Mov64RM : kX86Mov32RM; break;
+ case kOpCmp: opcode = is64Bit ? kX86Cmp64RM : kX86Cmp32RM; break;
+ case kOpAdd: opcode = is64Bit ? kX86Add64RM : kX86Add32RM; break;
+ case kOpAnd: opcode = is64Bit ? kX86And64RM : kX86And32RM; break;
+ case kOpOr: opcode = is64Bit ? kX86Or64RM : kX86Or32RM; break;
+ case kOpXor: opcode = is64Bit ? kX86Xor64RM : kX86Xor32RM; break;
case kOp2Byte: opcode = kX86Movsx8RM; break;
case kOp2Short: opcode = kX86Movsx16RM; break;
case kOp2Char: opcode = kX86Movzx16RM; break;
@@ -382,63 +385,68 @@ LIR* X86Mir2Lir::OpRegMem(OpKind op, RegStorage r_dest, RegStorage r_base, int o
LIR* X86Mir2Lir::OpMemReg(OpKind op, RegLocation rl_dest, int r_value) {
DCHECK_NE(rl_dest.location, kLocPhysReg);
int displacement = SRegOffset(rl_dest.s_reg_low);
+ bool is64Bit = rl_dest.wide != 0;
X86OpCode opcode = kX86Nop;
switch (op) {
- case kOpSub: opcode = kX86Sub32MR; break;
- case kOpMov: opcode = kX86Mov32MR; break;
- case kOpCmp: opcode = kX86Cmp32MR; break;
- case kOpAdd: opcode = kX86Add32MR; break;
- case kOpAnd: opcode = kX86And32MR; break;
- case kOpOr: opcode = kX86Or32MR; break;
- case kOpXor: opcode = kX86Xor32MR; break;
- case kOpLsl: opcode = kX86Sal32MC; break;
- case kOpLsr: opcode = kX86Shr32MC; break;
- case kOpAsr: opcode = kX86Sar32MC; break;
+ case kOpSub: opcode = is64Bit ? kX86Sub64MR : kX86Sub32MR; break;
+ case kOpMov: opcode = is64Bit ? kX86Mov64MR : kX86Mov32MR; break;
+ case kOpCmp: opcode = is64Bit ? kX86Cmp64MR : kX86Cmp32MR; break;
+ case kOpAdd: opcode = is64Bit ? kX86Add64MR : kX86Add32MR; break;
+ case kOpAnd: opcode = is64Bit ? kX86And64MR : kX86And32MR; break;
+ case kOpOr: opcode = is64Bit ? kX86Or64MR : kX86Or32MR; break;
+ case kOpXor: opcode = is64Bit ? kX86Xor64MR : kX86Xor32MR; break;
+ case kOpLsl: opcode = is64Bit ? kX86Sal64MC : kX86Sal32MC; break;
+ case kOpLsr: opcode = is64Bit ? kX86Shr64MC : kX86Shr32MC; break;
+ case kOpAsr: opcode = is64Bit ? kX86Sar64MC : kX86Sar32MC; break;
default:
LOG(FATAL) << "Bad case in OpMemReg " << op;
break;
}
LIR *l = NewLIR3(opcode, rs_rX86_SP.GetReg(), displacement, r_value);
- AnnotateDalvikRegAccess(l, displacement >> 2, true /* is_load */, false /* is_64bit */);
- AnnotateDalvikRegAccess(l, displacement >> 2, false /* is_load */, false /* is_64bit */);
+ AnnotateDalvikRegAccess(l, displacement >> 2, true /* is_load */, is64Bit /* is_64bit */);
+ AnnotateDalvikRegAccess(l, displacement >> 2, false /* is_load */, is64Bit /* is_64bit */);
return l;
}
LIR* X86Mir2Lir::OpRegMem(OpKind op, RegStorage r_dest, RegLocation rl_value) {
DCHECK_NE(rl_value.location, kLocPhysReg);
+ bool is64Bit = r_dest.Is64Bit();
int displacement = SRegOffset(rl_value.s_reg_low);
X86OpCode opcode = kX86Nop;
switch (op) {
- case kOpSub: opcode = kX86Sub32RM; break;
- case kOpMov: opcode = kX86Mov32RM; break;
- case kOpCmp: opcode = kX86Cmp32RM; break;
- case kOpAdd: opcode = kX86Add32RM; break;
- case kOpAnd: opcode = kX86And32RM; break;
- case kOpOr: opcode = kX86Or32RM; break;
- case kOpXor: opcode = kX86Xor32RM; break;
- case kOpMul: opcode = kX86Imul32RM; break;
+ case kOpSub: opcode = is64Bit ? kX86Sub64RM : kX86Sub32RM; break;
+ case kOpMov: opcode = is64Bit ? kX86Mov64RM : kX86Mov32RM; break;
+ case kOpCmp: opcode = is64Bit ? kX86Cmp64RM : kX86Cmp32RM; break;
+ case kOpAdd: opcode = is64Bit ? kX86Add64RM : kX86Add32RM; break;
+ case kOpAnd: opcode = is64Bit ? kX86And64RM : kX86And32RM; break;
+ case kOpOr: opcode = is64Bit ? kX86Or64RM : kX86Or32RM; break;
+ case kOpXor: opcode = is64Bit ? kX86Xor64RM : kX86Xor32RM; break;
+ case kOpMul: opcode = is64Bit ? kX86Bkpt : kX86Imul32RM; break;
default:
LOG(FATAL) << "Bad case in OpRegMem " << op;
break;
}
LIR *l = NewLIR3(opcode, r_dest.GetReg(), rs_rX86_SP.GetReg(), displacement);
- AnnotateDalvikRegAccess(l, displacement >> 2, true /* is_load */, false /* is_64bit */);
+ AnnotateDalvikRegAccess(l, displacement >> 2, true /* is_load */, is64Bit /* is_64bit */);
return l;
}
LIR* X86Mir2Lir::OpRegRegReg(OpKind op, RegStorage r_dest, RegStorage r_src1,
RegStorage r_src2) {
+ bool is64Bit = r_dest.Is64Bit();
if (r_dest != r_src1 && r_dest != r_src2) {
if (op == kOpAdd) { // lea special case, except can't encode rbp as base
if (r_src1 == r_src2) {
OpRegCopy(r_dest, r_src1);
return OpRegImm(kOpLsl, r_dest, 1);
} else if (r_src1 != rs_rBP) {
- return NewLIR5(kX86Lea32RA, r_dest.GetReg(), r_src1.GetReg() /* base */,
- r_src2.GetReg() /* index */, 0 /* scale */, 0 /* disp */);
+ return NewLIR5(is64Bit ? kX86Lea64RA : kX86Lea32RA, r_dest.GetReg(),
+ r_src1.GetReg() /* base */, r_src2.GetReg() /* index */,
+ 0 /* scale */, 0 /* disp */);
} else {
- return NewLIR5(kX86Lea32RA, r_dest.GetReg(), r_src2.GetReg() /* base */,
- r_src1.GetReg() /* index */, 0 /* scale */, 0 /* disp */);
+ return NewLIR5(is64Bit ? kX86Lea64RA : kX86Lea32RA, r_dest.GetReg(),
+ r_src2.GetReg() /* base */, r_src1.GetReg() /* index */,
+ 0 /* scale */, 0 /* disp */);
}
} else {
OpRegCopy(r_dest, r_src1);
@@ -476,10 +484,10 @@ LIR* X86Mir2Lir::OpRegRegReg(OpKind op, RegStorage r_dest, RegStorage r_src1,
}
LIR* X86Mir2Lir::OpRegRegImm(OpKind op, RegStorage r_dest, RegStorage r_src, int value) {
- if (op == kOpMul) {
+ if (op == kOpMul && !Gen64Bit()) {
X86OpCode opcode = IS_SIMM8(value) ? kX86Imul32RRI8 : kX86Imul32RRI;
return NewLIR3(opcode, r_dest.GetReg(), r_src.GetReg(), value);
- } else if (op == kOpAnd) {
+ } else if (op == kOpAnd && !Gen64Bit()) {
if (value == 0xFF && r_src.Low4()) {
return NewLIR2(kX86Movzx8RR, r_dest.GetReg(), r_src.GetReg());
} else if (value == 0xFFFF) {
@@ -492,8 +500,9 @@ LIR* X86Mir2Lir::OpRegRegImm(OpKind op, RegStorage r_dest, RegStorage r_src, int
return NewLIR5(kX86Lea32RA, r_dest.GetReg(), r5sib_no_base /* base */,
r_src.GetReg() /* index */, value /* scale */, 0 /* disp */);
} else if (op == kOpAdd) { // lea add special case
- return NewLIR5(kX86Lea32RA, r_dest.GetReg(), r_src.GetReg() /* base */,
- rs_rX86_SP.GetReg()/*r4sib_no_index*/ /* index */, 0 /* scale */, value /* disp */);
+ return NewLIR5(Gen64Bit() ? kX86Lea64RA : kX86Lea32RA, r_dest.GetReg(),
+ r_src.GetReg() /* base */, rs_rX86_SP.GetReg()/*r4sib_no_index*/ /* index */,
+ 0 /* scale */, value /* disp */);
}
OpRegCopy(r_dest, r_src);
}
@@ -556,7 +565,11 @@ LIR* X86Mir2Lir::LoadConstantWide(RegStorage r_dest, int64_t value) {
// Address the start of the method
RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
- rl_method = LoadValue(rl_method, kCoreReg);
+ if (rl_method.wide) {
+ rl_method = LoadValueWide(rl_method, kCoreReg);
+ } else {
+ rl_method = LoadValue(rl_method, kCoreReg);
+ }
// Load the proper value from the literal area.
// We don't know the proper offset for the value, so pick one that will force
@@ -582,8 +595,20 @@ LIR* X86Mir2Lir::LoadConstantWide(RegStorage r_dest, int64_t value) {
}
}
} else {
- res = LoadConstantNoClobber(r_dest.GetLow(), val_lo);
- LoadConstantNoClobber(r_dest.GetHigh(), val_hi);
+ if (r_dest.IsPair()) {
+ res = LoadConstantNoClobber(r_dest.GetLow(), val_lo);
+ LoadConstantNoClobber(r_dest.GetHigh(), val_hi);
+ } else {
+ // TODO(64) make int64_t value parameter of LoadConstantNoClobber
+ if (val_lo < 0) {
+ val_hi += 1;
+ }
+ res = LoadConstantNoClobber(RegStorage::Solo32(r_dest.GetReg()), val_hi);
+ NewLIR2(kX86Sal64RI, r_dest.GetReg(), 32);
+ if (val_lo != 0) {
+ NewLIR2(kX86Add64RI, r_dest.GetReg(), val_lo);
+ }
+ }
}
return res;
}
@@ -601,6 +626,8 @@ LIR* X86Mir2Lir::LoadBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int
case kDouble:
if (r_dest.IsFloat()) {
opcode = is_array ? kX86MovsdRA : kX86MovsdRM;
+ } else if (!pair) {
+ opcode = is_array ? kX86Mov64RA : kX86Mov64RM;
} else {
opcode = is_array ? kX86Mov32RA : kX86Mov32RM;
}
@@ -742,13 +769,10 @@ LIR* X86Mir2Lir::StoreBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int
case kDouble:
if (r_src.IsFloat()) {
opcode = is_array ? kX86MovsdAR : kX86MovsdMR;
+ } else if (!pair) {
+ opcode = is_array ? kX86Mov64AR : kX86Mov64MR;
} else {
- if (Gen64Bit()) {
- opcode = is_array ? kX86Mov64AR : kX86Mov64MR;
- } else {
- // TODO(64): pair = true;
- opcode = is_array ? kX86Mov32AR : kX86Mov32MR;
- }
+ opcode = is_array ? kX86Mov32AR : kX86Mov32MR;
}
// TODO: double store is to unaligned address
DCHECK_EQ((displacement & 0x3), 0);
@@ -855,7 +879,7 @@ void X86Mir2Lir::AnalyzeMIR() {
// Did we need a pointer to the method code?
if (store_method_addr_) {
- base_of_code_ = mir_graph_->GetNewCompilerTemp(kCompilerTempVR, false);
+ base_of_code_ = mir_graph_->GetNewCompilerTemp(kCompilerTempVR, Gen64Bit() == true);
} else {
base_of_code_ = nullptr;
}
@@ -971,6 +995,7 @@ RegLocation X86Mir2Lir::UpdateLocTyped(RegLocation loc, int reg_class) {
loc.location = kLocDalvikFrame;
}
}
+ DCHECK(CheckCorePoolSanity());
return loc;
}
@@ -984,7 +1009,7 @@ RegLocation X86Mir2Lir::UpdateLocWideTyped(RegLocation loc, int reg_class) {
loc.location = kLocDalvikFrame;
}
}
+ DCHECK(CheckCorePoolSanity());
return loc;
}
-
} // namespace art
diff --git a/compiler/dex/quick/x86/x86_lir.h b/compiler/dex/quick/x86/x86_lir.h
index bb8df89..5022529 100644
--- a/compiler/dex/quick/x86/x86_lir.h
+++ b/compiler/dex/quick/x86/x86_lir.h
@@ -142,10 +142,6 @@ enum X86NativeRegisterPool {
r7 = RegStorage::k32BitSolo | RegStorage::kCoreRegister | 7,
r7q = RegStorage::k64BitSolo | RegStorage::kCoreRegister | 7,
rDI = r7,
-#ifndef TARGET_REX_SUPPORT
- // fake return address register for core spill mask.
- rRET = RegStorage::k32BitSolo | RegStorage::kCoreRegister | 8,
-#else
r8 = RegStorage::k32BitSolo | RegStorage::kCoreRegister | 8,
r8q = RegStorage::k64BitSolo | RegStorage::kCoreRegister | 8,
r9 = RegStorage::k32BitSolo | RegStorage::kCoreRegister | 9,
@@ -164,7 +160,6 @@ enum X86NativeRegisterPool {
r15q = RegStorage::k64BitSolo | RegStorage::kCoreRegister | 15,
// fake return address register for core spill mask.
rRET = RegStorage::k32BitSolo | RegStorage::kCoreRegister | 16,
-#endif
// xmm registers, single precision view.
fr0 = RegStorage::k32BitSolo | RegStorage::kFloatingPoint | 0,
@@ -175,7 +170,6 @@ enum X86NativeRegisterPool {
fr5 = RegStorage::k32BitSolo | RegStorage::kFloatingPoint | 5,
fr6 = RegStorage::k32BitSolo | RegStorage::kFloatingPoint | 6,
fr7 = RegStorage::k32BitSolo | RegStorage::kFloatingPoint | 7,
-#ifdef TARGET_REX_SUPPORT
fr8 = RegStorage::k32BitSolo | RegStorage::kFloatingPoint | 8,
fr9 = RegStorage::k32BitSolo | RegStorage::kFloatingPoint | 9,
fr10 = RegStorage::k32BitSolo | RegStorage::kFloatingPoint | 10,
@@ -184,7 +178,6 @@ enum X86NativeRegisterPool {
fr13 = RegStorage::k32BitSolo | RegStorage::kFloatingPoint | 13,
fr14 = RegStorage::k32BitSolo | RegStorage::kFloatingPoint | 14,
fr15 = RegStorage::k32BitSolo | RegStorage::kFloatingPoint | 15,
-#endif
// xmm registers, double precision aliases.
dr0 = RegStorage::k64BitSolo | RegStorage::kFloatingPoint | 0,
@@ -195,7 +188,6 @@ enum X86NativeRegisterPool {
dr5 = RegStorage::k64BitSolo | RegStorage::kFloatingPoint | 5,
dr6 = RegStorage::k64BitSolo | RegStorage::kFloatingPoint | 6,
dr7 = RegStorage::k64BitSolo | RegStorage::kFloatingPoint | 7,
-#ifdef TARGET_REX_SUPPORT
dr8 = RegStorage::k64BitSolo | RegStorage::kFloatingPoint | 8,
dr9 = RegStorage::k64BitSolo | RegStorage::kFloatingPoint | 9,
dr10 = RegStorage::k64BitSolo | RegStorage::kFloatingPoint | 10,
@@ -204,7 +196,6 @@ enum X86NativeRegisterPool {
dr13 = RegStorage::k64BitSolo | RegStorage::kFloatingPoint | 13,
dr14 = RegStorage::k64BitSolo | RegStorage::kFloatingPoint | 14,
dr15 = RegStorage::k64BitSolo | RegStorage::kFloatingPoint | 15,
-#endif
// xmm registers, quad precision aliases
xr0 = RegStorage::k128BitSolo | 0,
@@ -215,7 +206,6 @@ enum X86NativeRegisterPool {
xr5 = RegStorage::k128BitSolo | 5,
xr6 = RegStorage::k128BitSolo | 6,
xr7 = RegStorage::k128BitSolo | 7,
-#ifdef TARGET_REX_SUPPORT
xr8 = RegStorage::k128BitSolo | 8,
xr9 = RegStorage::k128BitSolo | 9,
xr10 = RegStorage::k128BitSolo | 10,
@@ -224,7 +214,6 @@ enum X86NativeRegisterPool {
xr13 = RegStorage::k128BitSolo | 13,
xr14 = RegStorage::k128BitSolo | 14,
xr15 = RegStorage::k128BitSolo | 15,
-#endif
// TODO: as needed, add 256, 512 and 1024-bit xmm views.
};
@@ -254,7 +243,6 @@ constexpr RegStorage rs_r7(RegStorage::kValid | r7);
constexpr RegStorage rs_r7q(RegStorage::kValid | r7q);
constexpr RegStorage rs_rDI = rs_r7;
constexpr RegStorage rs_rRET(RegStorage::kValid | rRET);
-#ifdef TARGET_REX_SUPPORT
constexpr RegStorage rs_r8(RegStorage::kValid | r8);
constexpr RegStorage rs_r8q(RegStorage::kValid | r8q);
constexpr RegStorage rs_r9(RegStorage::kValid | r9);
@@ -271,7 +259,6 @@ constexpr RegStorage rs_r14(RegStorage::kValid | r14);
constexpr RegStorage rs_r14q(RegStorage::kValid | r14q);
constexpr RegStorage rs_r15(RegStorage::kValid | r15);
constexpr RegStorage rs_r15q(RegStorage::kValid | r15q);
-#endif
constexpr RegStorage rs_fr0(RegStorage::kValid | fr0);
constexpr RegStorage rs_fr1(RegStorage::kValid | fr1);
@@ -281,7 +268,6 @@ constexpr RegStorage rs_fr4(RegStorage::kValid | fr4);
constexpr RegStorage rs_fr5(RegStorage::kValid | fr5);
constexpr RegStorage rs_fr6(RegStorage::kValid | fr6);
constexpr RegStorage rs_fr7(RegStorage::kValid | fr7);
-#ifdef TARGET_REX_SUPPORT
constexpr RegStorage rs_fr8(RegStorage::kValid | fr8);
constexpr RegStorage rs_fr9(RegStorage::kValid | fr9);
constexpr RegStorage rs_fr10(RegStorage::kValid | fr10);
@@ -290,7 +276,6 @@ constexpr RegStorage rs_fr12(RegStorage::kValid | fr12);
constexpr RegStorage rs_fr13(RegStorage::kValid | fr13);
constexpr RegStorage rs_fr14(RegStorage::kValid | fr14);
constexpr RegStorage rs_fr15(RegStorage::kValid | fr15);
-#endif
constexpr RegStorage rs_dr0(RegStorage::kValid | dr0);
constexpr RegStorage rs_dr1(RegStorage::kValid | dr1);
@@ -300,7 +285,6 @@ constexpr RegStorage rs_dr4(RegStorage::kValid | dr4);
constexpr RegStorage rs_dr5(RegStorage::kValid | dr5);
constexpr RegStorage rs_dr6(RegStorage::kValid | dr6);
constexpr RegStorage rs_dr7(RegStorage::kValid | dr7);
-#ifdef TARGET_REX_SUPPORT
constexpr RegStorage rs_dr8(RegStorage::kValid | dr8);
constexpr RegStorage rs_dr9(RegStorage::kValid | dr9);
constexpr RegStorage rs_dr10(RegStorage::kValid | dr10);
@@ -309,7 +293,6 @@ constexpr RegStorage rs_dr12(RegStorage::kValid | dr12);
constexpr RegStorage rs_dr13(RegStorage::kValid | dr13);
constexpr RegStorage rs_dr14(RegStorage::kValid | dr14);
constexpr RegStorage rs_dr15(RegStorage::kValid | dr15);
-#endif
constexpr RegStorage rs_xr0(RegStorage::kValid | xr0);
constexpr RegStorage rs_xr1(RegStorage::kValid | xr1);
@@ -319,7 +302,6 @@ constexpr RegStorage rs_xr4(RegStorage::kValid | xr4);
constexpr RegStorage rs_xr5(RegStorage::kValid | xr5);
constexpr RegStorage rs_xr6(RegStorage::kValid | xr6);
constexpr RegStorage rs_xr7(RegStorage::kValid | xr7);
-#ifdef TARGET_REX_SUPPORT
constexpr RegStorage rs_xr8(RegStorage::kValid | xr8);
constexpr RegStorage rs_xr9(RegStorage::kValid | xr9);
constexpr RegStorage rs_xr10(RegStorage::kValid | xr10);
@@ -328,16 +310,21 @@ constexpr RegStorage rs_xr12(RegStorage::kValid | xr12);
constexpr RegStorage rs_xr13(RegStorage::kValid | xr13);
constexpr RegStorage rs_xr14(RegStorage::kValid | xr14);
constexpr RegStorage rs_xr15(RegStorage::kValid | xr15);
-#endif
extern X86NativeRegisterPool rX86_ARG0;
extern X86NativeRegisterPool rX86_ARG1;
extern X86NativeRegisterPool rX86_ARG2;
extern X86NativeRegisterPool rX86_ARG3;
+extern X86NativeRegisterPool rX86_ARG4;
+extern X86NativeRegisterPool rX86_ARG5;
extern X86NativeRegisterPool rX86_FARG0;
extern X86NativeRegisterPool rX86_FARG1;
extern X86NativeRegisterPool rX86_FARG2;
extern X86NativeRegisterPool rX86_FARG3;
+extern X86NativeRegisterPool rX86_FARG4;
+extern X86NativeRegisterPool rX86_FARG5;
+extern X86NativeRegisterPool rX86_FARG6;
+extern X86NativeRegisterPool rX86_FARG7;
extern X86NativeRegisterPool rX86_RET0;
extern X86NativeRegisterPool rX86_RET1;
extern X86NativeRegisterPool rX86_INVOKE_TGT;
@@ -347,10 +334,16 @@ extern RegStorage rs_rX86_ARG0;
extern RegStorage rs_rX86_ARG1;
extern RegStorage rs_rX86_ARG2;
extern RegStorage rs_rX86_ARG3;
+extern RegStorage rs_rX86_ARG4;
+extern RegStorage rs_rX86_ARG5;
extern RegStorage rs_rX86_FARG0;
extern RegStorage rs_rX86_FARG1;
extern RegStorage rs_rX86_FARG2;
extern RegStorage rs_rX86_FARG3;
+extern RegStorage rs_rX86_FARG4;
+extern RegStorage rs_rX86_FARG5;
+extern RegStorage rs_rX86_FARG6;
+extern RegStorage rs_rX86_FARG7;
extern RegStorage rs_rX86_RET0;
extern RegStorage rs_rX86_RET1;
extern RegStorage rs_rX86_INVOKE_TGT;
@@ -363,6 +356,9 @@ const RegLocation x86_loc_c_return
const RegLocation x86_loc_c_return_wide
{kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1,
RegStorage(RegStorage::k64BitPair, rAX, rDX), INVALID_SREG, INVALID_SREG};
+const RegLocation x86_64_loc_c_return_wide
+ {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1,
+ RegStorage(RegStorage::k64BitSolo, rAX), INVALID_SREG, INVALID_SREG};
const RegLocation x86_loc_c_return_float
{kLocPhysReg, 0, 0, 0, 1, 0, 0, 0, 1,
RegStorage(RegStorage::k32BitSolo, fr0), INVALID_SREG, INVALID_SREG};
@@ -505,6 +501,7 @@ enum X86OpCode {
UnaryOpcode(kX86Divmod, DaR, DaM, DaA),
UnaryOpcode(kX86Idivmod, DaR, DaM, DaA),
kx86Cdq32Da,
+ kx86Cqo64Da,
kX86Bswap32R,
kX86Push32R, kX86Pop32R,
#undef UnaryOpcode
@@ -518,8 +515,12 @@ enum X86OpCode {
kX86MovssAR,
Binary0fOpCode(kX86Cvtsi2sd), // int to double
Binary0fOpCode(kX86Cvtsi2ss), // int to float
+ Binary0fOpCode(kX86Cvtsqi2sd), // long to double
+ Binary0fOpCode(kX86Cvtsqi2ss), // long to float
Binary0fOpCode(kX86Cvttsd2si), // truncating double to int
Binary0fOpCode(kX86Cvttss2si), // truncating float to int
+ Binary0fOpCode(kX86Cvttsd2sqi), // truncating double to long
+ Binary0fOpCode(kX86Cvttss2sqi), // truncating float to long
Binary0fOpCode(kX86Cvtsd2si), // rounding double to int
Binary0fOpCode(kX86Cvtss2si), // rounding float to int
Binary0fOpCode(kX86Ucomisd), // unordered double compare
@@ -587,14 +588,18 @@ enum X86OpCode {
kX86MovhpsRM, kX86MovhpsRA, // load packed single FP values from m64 to high quadword of xmm
kX86MovhpsMR, kX86MovhpsAR, // store packed single FP values from high quadword of xmm to m64
Binary0fOpCode(kX86Movdxr), // move into xmm from gpr
+ Binary0fOpCode(kX86Movqxr), // move into xmm from 64 bit gpr
+ kX86MovqrxRR, kX86MovqrxMR, kX86MovqrxAR, // move into 64 bit reg from xmm
kX86MovdrxRR, kX86MovdrxMR, kX86MovdrxAR, // move into reg from xmm
+ kX86MovsxdRR, kX86MovsxdRM, kX86MovsxdRA, // move 32 bit to 64 bit with sign extension
kX86Set8R, kX86Set8M, kX86Set8A, // set byte depending on condition operand
kX86Mfence, // memory barrier
Binary0fOpCode(kX86Imul16), // 16bit multiply
Binary0fOpCode(kX86Imul32), // 32bit multiply
+ Binary0fOpCode(kX86Imul64), // 64bit multiply
kX86CmpxchgRR, kX86CmpxchgMR, kX86CmpxchgAR, // compare and exchange
kX86LockCmpxchgMR, kX86LockCmpxchgAR, // locked compare and exchange
- kX86LockCmpxchg8bM, kX86LockCmpxchg8bA, // locked compare and exchange
+ kX86LockCmpxchg64M, kX86LockCmpxchg64A, // locked compare and exchange
kX86XchgMR, // exchange memory with register (automatically locked)
Binary0fOpCode(kX86Movzx8), // zero-extend 8-bit value
Binary0fOpCode(kX86Movzx16), // zero-extend 16-bit value
@@ -628,7 +633,6 @@ enum X86EncodingKind {
kData, // Special case for raw data.
kNop, // Special case for variable length nop.
kNullary, // Opcode that takes no arguments.
- kPrefix2Nullary, // Opcode that takes no arguments, but 2 prefixes.
kRegOpcode, // Shorter form of R instruction kind (opcode+rd)
kReg, kMem, kArray, // R, M and A instruction kinds.
kMemReg, kArrayReg, kThreadReg, // MR, AR and TR instruction kinds.
@@ -637,11 +641,11 @@ enum X86EncodingKind {
kRegImm, kMemImm, kArrayImm, kThreadImm, // RI, MI, AI and TI instruction kinds.
kRegRegImm, kRegMemImm, kRegArrayImm, // RRI, RMI and RAI instruction kinds.
kMovRegImm, // Shorter form move RI.
- kRegRegImmRev, // RRI with first reg in r/m
+ kRegRegImmStore, // RRI following the store modrm reg-reg encoding rather than the load.
kMemRegImm, // MRI instruction kinds.
kShiftRegImm, kShiftMemImm, kShiftArrayImm, // Shift opcode with immediate.
kShiftRegCl, kShiftMemCl, kShiftArrayCl, // Shift opcode with register CL.
- kRegRegReg, kRegRegMem, kRegRegArray, // RRR, RRM, RRA instruction kinds.
+ // kRegRegReg, kRegRegMem, kRegRegArray, // RRR, RRM, RRA instruction kinds.
kRegCond, kMemCond, kArrayCond, // R, M, A instruction kinds following by a condition.
kRegRegCond, // RR instruction kind followed by a condition.
kRegMemCond, // RM instruction kind followed by a condition.
@@ -654,19 +658,25 @@ enum X86EncodingKind {
/* Struct used to define the EncodingMap positions for each X86 opcode */
struct X86EncodingMap {
X86OpCode opcode; // e.g. kOpAddRI
- X86EncodingKind kind; // Used to discriminate in the union below
+ // The broad category the instruction conforms to, such as kRegReg. Identifies which LIR operands
+ // hold meaning for the opcode.
+ X86EncodingKind kind;
uint64_t flags;
struct {
- uint8_t prefix1; // non-zero => a prefix byte
- uint8_t prefix2; // non-zero => a second prefix byte
- uint8_t opcode; // 1 byte opcode
- uint8_t extra_opcode1; // possible extra opcode byte
- uint8_t extra_opcode2; // possible second extra opcode byte
- // 3bit opcode that gets encoded in the register bits of the modrm byte, use determined by the
- // encoding kind
+ uint8_t prefix1; // Non-zero => a prefix byte.
+ uint8_t prefix2; // Non-zero => a second prefix byte.
+ uint8_t opcode; // 1 byte opcode.
+ uint8_t extra_opcode1; // Possible extra opcode byte.
+ uint8_t extra_opcode2; // Possible second extra opcode byte.
+ // 3-bit opcode that gets encoded in the register bits of the modrm byte, use determined by the
+ // encoding kind.
uint8_t modrm_opcode;
- uint8_t ax_opcode; // non-zero => shorter encoding for AX as a destination
- uint8_t immediate_bytes; // number of bytes of immediate
+ uint8_t ax_opcode; // Non-zero => shorter encoding for AX as a destination.
+ uint8_t immediate_bytes; // Number of bytes of immediate.
+ // Does the instruction address a byte register? In 32-bit mode the registers ah, bh, ch and dh
+ // are not used. In 64-bit mode the REX prefix is used to normalize and allow any byte register
+ // to be addressed.
+ bool r8_form;
} skeleton;
const char *name;
const char* fmt;
@@ -700,6 +710,7 @@ struct X86EncodingMap {
#define IS_SIMM8(v) ((-128 <= (v)) && ((v) <= 127))
#define IS_SIMM16(v) ((-32768 <= (v)) && ((v) <= 32767))
+#define IS_SIMM32(v) ((INT64_C(-2147483648) <= (v)) && ((v) <= INT64_C(2147483647)))
extern X86EncodingMap EncodingMap[kX86Last];
extern X86ConditionCode X86ConditionEncoding(ConditionCode cond);
diff --git a/compiler/optimizing/code_generator_arm.cc b/compiler/optimizing/code_generator_arm.cc
index ed3f43c..e888cc1 100644
--- a/compiler/optimizing/code_generator_arm.cc
+++ b/compiler/optimizing/code_generator_arm.cc
@@ -484,7 +484,10 @@ void InstructionCodeGeneratorARM::VisitStoreLocal(HStoreLocal* store) {
}
void LocationsBuilderARM::VisitIntConstant(HIntConstant* constant) {
- constant->SetLocations(nullptr);
+ // TODO: Support constant locations.
+ LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant);
+ locations->SetOut(Location::RequiresRegister());
+ constant->SetLocations(locations);
}
void InstructionCodeGeneratorARM::VisitIntConstant(HIntConstant* constant) {
@@ -492,7 +495,10 @@ void InstructionCodeGeneratorARM::VisitIntConstant(HIntConstant* constant) {
}
void LocationsBuilderARM::VisitLongConstant(HLongConstant* constant) {
- constant->SetLocations(nullptr);
+ // TODO: Support constant locations.
+ LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant);
+ locations->SetOut(Location::RequiresRegister());
+ constant->SetLocations(locations);
}
void InstructionCodeGeneratorARM::VisitLongConstant(HLongConstant* constant) {
@@ -794,7 +800,12 @@ void InstructionCodeGeneratorARM::VisitNot(HNot* instruction) {
}
void LocationsBuilderARM::VisitPhi(HPhi* instruction) {
- LOG(FATAL) << "Unimplemented";
+ LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
+ for (size_t i = 0, e = instruction->InputCount(); i < e; ++i) {
+ locations->SetInAt(i, Location::Any());
+ }
+ locations->SetOut(Location::Any());
+ instruction->SetLocations(locations);
}
void InstructionCodeGeneratorARM::VisitPhi(HPhi* instruction) {
diff --git a/compiler/optimizing/code_generator_x86.cc b/compiler/optimizing/code_generator_x86.cc
index 8bfd8d6..72c697f 100644
--- a/compiler/optimizing/code_generator_x86.cc
+++ b/compiler/optimizing/code_generator_x86.cc
@@ -494,7 +494,10 @@ void InstructionCodeGeneratorX86::VisitEqual(HEqual* equal) {
}
void LocationsBuilderX86::VisitIntConstant(HIntConstant* constant) {
- constant->SetLocations(nullptr);
+ // TODO: Support constant locations.
+ LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant);
+ locations->SetOut(Location::RequiresRegister());
+ constant->SetLocations(locations);
}
void InstructionCodeGeneratorX86::VisitIntConstant(HIntConstant* constant) {
@@ -502,7 +505,10 @@ void InstructionCodeGeneratorX86::VisitIntConstant(HIntConstant* constant) {
}
void LocationsBuilderX86::VisitLongConstant(HLongConstant* constant) {
- constant->SetLocations(nullptr);
+ // TODO: Support constant locations.
+ LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant);
+ locations->SetOut(Location::RequiresRegister());
+ constant->SetLocations(locations);
}
void InstructionCodeGeneratorX86::VisitLongConstant(HLongConstant* constant) {
@@ -814,7 +820,12 @@ void InstructionCodeGeneratorX86::VisitNot(HNot* instruction) {
}
void LocationsBuilderX86::VisitPhi(HPhi* instruction) {
- LOG(FATAL) << "Unimplemented";
+ LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
+ for (size_t i = 0, e = instruction->InputCount(); i < e; ++i) {
+ locations->SetInAt(i, Location::Any());
+ }
+ locations->SetOut(Location::Any());
+ instruction->SetLocations(locations);
}
void InstructionCodeGeneratorX86::VisitPhi(HPhi* instruction) {
diff --git a/compiler/optimizing/graph_test.cc b/compiler/optimizing/graph_test.cc
new file mode 100644
index 0000000..371478c
--- /dev/null
+++ b/compiler/optimizing/graph_test.cc
@@ -0,0 +1,322 @@
+/*
+ * Copyright (C) 2014 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "base/stringprintf.h"
+#include "builder.h"
+#include "nodes.h"
+#include "optimizing_unit_test.h"
+#include "pretty_printer.h"
+#include "utils/arena_allocator.h"
+
+#include "gtest/gtest.h"
+
+namespace art {
+
+static HBasicBlock* createIfBlock(HGraph* graph, ArenaAllocator* allocator) {
+ HBasicBlock* if_block = new (allocator) HBasicBlock(graph);
+ graph->AddBlock(if_block);
+ HInstruction* instr = new (allocator) HIntConstant(4);
+ if_block->AddInstruction(instr);
+ instr = new (allocator) HIf(instr);
+ if_block->AddInstruction(instr);
+ return if_block;
+}
+
+static HBasicBlock* createGotoBlock(HGraph* graph, ArenaAllocator* allocator) {
+ HBasicBlock* block = new (allocator) HBasicBlock(graph);
+ graph->AddBlock(block);
+ HInstruction* got = new (allocator) HGoto();
+ block->AddInstruction(got);
+ return block;
+}
+
+static HBasicBlock* createReturnBlock(HGraph* graph, ArenaAllocator* allocator) {
+ HBasicBlock* block = new (allocator) HBasicBlock(graph);
+ graph->AddBlock(block);
+ HInstruction* return_instr = new (allocator) HReturnVoid();
+ block->AddInstruction(return_instr);
+ return block;
+}
+
+static HBasicBlock* createExitBlock(HGraph* graph, ArenaAllocator* allocator) {
+ HBasicBlock* block = new (allocator) HBasicBlock(graph);
+ graph->AddBlock(block);
+ HInstruction* exit_instr = new (allocator) HExit();
+ block->AddInstruction(exit_instr);
+ return block;
+}
+
+
+// Test that the successors of an if block stay consistent after a SimplifyCFG.
+// This test sets the false block to be the return block.
+TEST(GraphTest, IfSuccessorSimpleJoinBlock1) {
+ ArenaPool pool;
+ ArenaAllocator allocator(&pool);
+
+ HGraph* graph = new (&allocator) HGraph(&allocator);
+ HBasicBlock* entry_block = createGotoBlock(graph, &allocator);
+ HBasicBlock* if_block = createIfBlock(graph, &allocator);
+ HBasicBlock* if_true = createGotoBlock(graph, &allocator);
+ HBasicBlock* return_block = createReturnBlock(graph, &allocator);
+ HBasicBlock* exit_block = createExitBlock(graph, &allocator);
+
+ entry_block->AddSuccessor(if_block);
+ if_block->AddSuccessor(if_true);
+ if_true->AddSuccessor(return_block);
+ if_block->AddSuccessor(return_block);
+ return_block->AddSuccessor(exit_block);
+
+ ASSERT_EQ(if_block->GetLastInstruction()->AsIf()->IfTrueSuccessor(), if_true);
+ ASSERT_EQ(if_block->GetLastInstruction()->AsIf()->IfFalseSuccessor(), return_block);
+
+ graph->SimplifyCFG();
+
+ // Ensure we still have the same if true block.
+ ASSERT_EQ(if_block->GetLastInstruction()->AsIf()->IfTrueSuccessor(), if_true);
+
+ // Ensure the critical edge has been removed.
+ HBasicBlock* false_block = if_block->GetLastInstruction()->AsIf()->IfFalseSuccessor();
+ ASSERT_NE(false_block, return_block);
+
+ // Ensure the new block branches to the join block.
+ ASSERT_EQ(false_block->GetSuccessors().Get(0), return_block);
+}
+
+// Test that the successors of an if block stay consistent after a SimplifyCFG.
+// This test sets the true block to be the return block.
+TEST(GraphTest, IfSuccessorSimpleJoinBlock2) {
+ ArenaPool pool;
+ ArenaAllocator allocator(&pool);
+
+ HGraph* graph = new (&allocator) HGraph(&allocator);
+ HBasicBlock* entry_block = createGotoBlock(graph, &allocator);
+ HBasicBlock* if_block = createIfBlock(graph, &allocator);
+ HBasicBlock* if_false = createGotoBlock(graph, &allocator);
+ HBasicBlock* return_block = createReturnBlock(graph, &allocator);
+ HBasicBlock* exit_block = createExitBlock(graph, &allocator);
+
+ entry_block->AddSuccessor(if_block);
+ if_block->AddSuccessor(return_block);
+ if_false->AddSuccessor(return_block);
+ if_block->AddSuccessor(if_false);
+ return_block->AddSuccessor(exit_block);
+
+ ASSERT_EQ(if_block->GetLastInstruction()->AsIf()->IfTrueSuccessor(), return_block);
+ ASSERT_EQ(if_block->GetLastInstruction()->AsIf()->IfFalseSuccessor(), if_false);
+
+ graph->SimplifyCFG();
+
+ // Ensure we still have the same if true block.
+ ASSERT_EQ(if_block->GetLastInstruction()->AsIf()->IfFalseSuccessor(), if_false);
+
+ // Ensure the critical edge has been removed.
+ HBasicBlock* true_block = if_block->GetLastInstruction()->AsIf()->IfTrueSuccessor();
+ ASSERT_NE(true_block, return_block);
+
+ // Ensure the new block branches to the join block.
+ ASSERT_EQ(true_block->GetSuccessors().Get(0), return_block);
+}
+
+// Test that the successors of an if block stay consistent after a SimplifyCFG.
+// This test sets the true block to be the loop header.
+TEST(GraphTest, IfSuccessorMultipleBackEdges1) {
+ ArenaPool pool;
+ ArenaAllocator allocator(&pool);
+
+ HGraph* graph = new (&allocator) HGraph(&allocator);
+ HBasicBlock* entry_block = createGotoBlock(graph, &allocator);
+ HBasicBlock* if_block = createIfBlock(graph, &allocator);
+ HBasicBlock* return_block = createReturnBlock(graph, &allocator);
+ HBasicBlock* exit_block = createExitBlock(graph, &allocator);
+
+ graph->SetEntryBlock(entry_block);
+ entry_block->AddSuccessor(if_block);
+ if_block->AddSuccessor(if_block);
+ if_block->AddSuccessor(return_block);
+ return_block->AddSuccessor(exit_block);
+
+ ASSERT_EQ(if_block->GetLastInstruction()->AsIf()->IfTrueSuccessor(), if_block);
+ ASSERT_EQ(if_block->GetLastInstruction()->AsIf()->IfFalseSuccessor(), return_block);
+
+ graph->BuildDominatorTree();
+
+ // Ensure we still have the same if false block.
+ ASSERT_EQ(if_block->GetLastInstruction()->AsIf()->IfFalseSuccessor(), return_block);
+
+ // Ensure there is only one back edge.
+ ASSERT_EQ(if_block->GetPredecessors().Size(), 2u);
+ ASSERT_EQ(if_block->GetPredecessors().Get(0), entry_block);
+ ASSERT_NE(if_block->GetPredecessors().Get(1), if_block);
+
+ // Ensure the new block is the back edge.
+ ASSERT_EQ(if_block->GetPredecessors().Get(1),
+ if_block->GetLastInstruction()->AsIf()->IfTrueSuccessor());
+}
+
+// Test that the successors of an if block stay consistent after a SimplifyCFG.
+// This test sets the false block to be the loop header.
+TEST(GraphTest, IfSuccessorMultipleBackEdges2) {
+ ArenaPool pool;
+ ArenaAllocator allocator(&pool);
+
+ HGraph* graph = new (&allocator) HGraph(&allocator);
+ HBasicBlock* entry_block = createGotoBlock(graph, &allocator);
+ HBasicBlock* if_block = createIfBlock(graph, &allocator);
+ HBasicBlock* return_block = createReturnBlock(graph, &allocator);
+ HBasicBlock* exit_block = createExitBlock(graph, &allocator);
+
+ graph->SetEntryBlock(entry_block);
+ entry_block->AddSuccessor(if_block);
+ if_block->AddSuccessor(return_block);
+ if_block->AddSuccessor(if_block);
+ return_block->AddSuccessor(exit_block);
+
+ ASSERT_EQ(if_block->GetLastInstruction()->AsIf()->IfTrueSuccessor(), return_block);
+ ASSERT_EQ(if_block->GetLastInstruction()->AsIf()->IfFalseSuccessor(), if_block);
+
+ graph->BuildDominatorTree();
+
+ // Ensure we still have the same if true block.
+ ASSERT_EQ(if_block->GetLastInstruction()->AsIf()->IfTrueSuccessor(), return_block);
+
+ // Ensure there is only one back edge.
+ ASSERT_EQ(if_block->GetPredecessors().Size(), 2u);
+ ASSERT_EQ(if_block->GetPredecessors().Get(0), entry_block);
+ ASSERT_NE(if_block->GetPredecessors().Get(1), if_block);
+
+ // Ensure the new block is the back edge.
+ ASSERT_EQ(if_block->GetPredecessors().Get(1),
+ if_block->GetLastInstruction()->AsIf()->IfFalseSuccessor());
+}
+
+// Test that the successors of an if block stay consistent after a SimplifyCFG.
+// This test sets the true block to be a loop header with multiple pre headers.
+TEST(GraphTest, IfSuccessorMultiplePreHeaders1) {
+ ArenaPool pool;
+ ArenaAllocator allocator(&pool);
+
+ HGraph* graph = new (&allocator) HGraph(&allocator);
+ HBasicBlock* entry_block = createGotoBlock(graph, &allocator);
+ HBasicBlock* first_if_block = createIfBlock(graph, &allocator);
+ HBasicBlock* if_block = createIfBlock(graph, &allocator);
+ HBasicBlock* loop_block = createGotoBlock(graph, &allocator);
+ HBasicBlock* return_block = createReturnBlock(graph, &allocator);
+
+ graph->SetEntryBlock(entry_block);
+ entry_block->AddSuccessor(first_if_block);
+ first_if_block->AddSuccessor(if_block);
+ first_if_block->AddSuccessor(loop_block);
+ loop_block->AddSuccessor(loop_block);
+ if_block->AddSuccessor(loop_block);
+ if_block->AddSuccessor(return_block);
+
+
+ ASSERT_EQ(if_block->GetLastInstruction()->AsIf()->IfTrueSuccessor(), loop_block);
+ ASSERT_EQ(if_block->GetLastInstruction()->AsIf()->IfFalseSuccessor(), return_block);
+
+ graph->BuildDominatorTree();
+
+ HIf* if_instr = if_block->GetLastInstruction()->AsIf();
+ // Ensure we still have the same if false block.
+ ASSERT_EQ(if_instr->IfFalseSuccessor(), return_block);
+
+ // Ensure there is only one pre header..
+ ASSERT_EQ(loop_block->GetPredecessors().Size(), 2u);
+
+ // Ensure the new block is the successor of the true block.
+ ASSERT_EQ(if_instr->IfTrueSuccessor()->GetSuccessors().Size(), 1u);
+ ASSERT_EQ(if_instr->IfTrueSuccessor()->GetSuccessors().Get(0),
+ loop_block->GetLoopInformation()->GetPreHeader());
+}
+
+// Test that the successors of an if block stay consistent after a SimplifyCFG.
+// This test sets the false block to be a loop header with multiple pre headers.
+TEST(GraphTest, IfSuccessorMultiplePreHeaders2) {
+ ArenaPool pool;
+ ArenaAllocator allocator(&pool);
+
+ HGraph* graph = new (&allocator) HGraph(&allocator);
+ HBasicBlock* entry_block = createGotoBlock(graph, &allocator);
+ HBasicBlock* first_if_block = createIfBlock(graph, &allocator);
+ HBasicBlock* if_block = createIfBlock(graph, &allocator);
+ HBasicBlock* loop_block = createGotoBlock(graph, &allocator);
+ HBasicBlock* return_block = createReturnBlock(graph, &allocator);
+
+ graph->SetEntryBlock(entry_block);
+ entry_block->AddSuccessor(first_if_block);
+ first_if_block->AddSuccessor(if_block);
+ first_if_block->AddSuccessor(loop_block);
+ loop_block->AddSuccessor(loop_block);
+ if_block->AddSuccessor(return_block);
+ if_block->AddSuccessor(loop_block);
+
+ ASSERT_EQ(if_block->GetLastInstruction()->AsIf()->IfTrueSuccessor(), return_block);
+ ASSERT_EQ(if_block->GetLastInstruction()->AsIf()->IfFalseSuccessor(), loop_block);
+
+ graph->BuildDominatorTree();
+
+ HIf* if_instr = if_block->GetLastInstruction()->AsIf();
+ // Ensure we still have the same if true block.
+ ASSERT_EQ(if_instr->IfTrueSuccessor(), return_block);
+
+ // Ensure there is only one pre header..
+ ASSERT_EQ(loop_block->GetPredecessors().Size(), 2u);
+
+ // Ensure the new block is the successor of the false block.
+ ASSERT_EQ(if_instr->IfFalseSuccessor()->GetSuccessors().Size(), 1u);
+ ASSERT_EQ(if_instr->IfFalseSuccessor()->GetSuccessors().Get(0),
+ loop_block->GetLoopInformation()->GetPreHeader());
+}
+
+TEST(GraphTest, InsertInstructionBefore) {
+ ArenaPool pool;
+ ArenaAllocator allocator(&pool);
+
+ HGraph* graph = new (&allocator) HGraph(&allocator);
+ HBasicBlock* block = createGotoBlock(graph, &allocator);
+ HInstruction* got = block->GetLastInstruction();
+ ASSERT_TRUE(got->IsControlFlow());
+
+ // Test at the beginning of the block.
+ HInstruction* first_instruction = new (&allocator) HIntConstant(4);
+ block->InsertInstructionBefore(first_instruction, got);
+
+ ASSERT_NE(first_instruction->GetId(), -1);
+ ASSERT_EQ(first_instruction->GetBlock(), block);
+ ASSERT_EQ(block->GetFirstInstruction(), first_instruction);
+ ASSERT_EQ(block->GetLastInstruction(), got);
+ ASSERT_EQ(first_instruction->GetNext(), got);
+ ASSERT_EQ(first_instruction->GetPrevious(), nullptr);
+ ASSERT_EQ(got->GetNext(), nullptr);
+ ASSERT_EQ(got->GetPrevious(), first_instruction);
+
+ // Test in the middle of the block.
+ HInstruction* second_instruction = new (&allocator) HIntConstant(4);
+ block->InsertInstructionBefore(second_instruction, got);
+
+ ASSERT_NE(second_instruction->GetId(), -1);
+ ASSERT_EQ(second_instruction->GetBlock(), block);
+ ASSERT_EQ(block->GetFirstInstruction(), first_instruction);
+ ASSERT_EQ(block->GetLastInstruction(), got);
+ ASSERT_EQ(first_instruction->GetNext(), second_instruction);
+ ASSERT_EQ(first_instruction->GetPrevious(), nullptr);
+ ASSERT_EQ(second_instruction->GetNext(), got);
+ ASSERT_EQ(second_instruction->GetPrevious(), first_instruction);
+ ASSERT_EQ(got->GetNext(), nullptr);
+ ASSERT_EQ(got->GetPrevious(), second_instruction);
+}
+
+} // namespace art
diff --git a/compiler/optimizing/linearize_test.cc b/compiler/optimizing/linearize_test.cc
index f9ae529..e4f9371 100644
--- a/compiler/optimizing/linearize_test.cc
+++ b/compiler/optimizing/linearize_test.cc
@@ -18,6 +18,7 @@
#include "base/stringprintf.h"
#include "builder.h"
+#include "code_generator.h"
#include "dex_file.h"
#include "dex_instruction.h"
#include "graph_visualizer.h"
@@ -41,8 +42,11 @@ static void TestCode(const uint16_t* data, const int* expected_order, size_t num
ASSERT_NE(graph, nullptr);
graph->BuildDominatorTree();
+ graph->TransformToSSA();
graph->FindNaturalLoops();
- SsaLivenessAnalysis liveness(*graph);
+
+ CodeGenerator* codegen = CodeGenerator::Create(&allocator, graph, InstructionSet::kX86);
+ SsaLivenessAnalysis liveness(*graph, codegen);
liveness.Analyze();
ASSERT_EQ(liveness.GetLinearPostOrder().Size(), number_of_blocks);
diff --git a/compiler/optimizing/live_ranges_test.cc b/compiler/optimizing/live_ranges_test.cc
index c797497..987c5f2 100644
--- a/compiler/optimizing/live_ranges_test.cc
+++ b/compiler/optimizing/live_ranges_test.cc
@@ -15,6 +15,7 @@
*/
#include "builder.h"
+#include "code_generator.h"
#include "dex_file.h"
#include "dex_instruction.h"
#include "nodes.h"
@@ -56,14 +57,16 @@ TEST(LiveRangesTest, CFG1) {
ArenaPool pool;
ArenaAllocator allocator(&pool);
HGraph* graph = BuildGraph(data, &allocator);
- SsaLivenessAnalysis liveness(*graph);
+
+ CodeGenerator* codegen = CodeGenerator::Create(&allocator, graph, InstructionSet::kX86);
+ SsaLivenessAnalysis liveness(*graph, codegen);
liveness.Analyze();
LiveInterval* interval = liveness.GetInstructionFromSsaIndex(0)->GetLiveInterval();
LiveRange* range = interval->GetFirstRange();
ASSERT_EQ(2u, range->GetStart());
// Last use is the return instruction.
- ASSERT_EQ(8u, range->GetEnd());
+ ASSERT_EQ(9u, range->GetEnd());
HBasicBlock* block = graph->GetBlocks().Get(1);
ASSERT_TRUE(block->GetLastInstruction()->AsReturn() != nullptr);
ASSERT_EQ(8u, block->GetLastInstruction()->GetLifetimePosition());
@@ -101,14 +104,15 @@ TEST(LiveRangesTest, CFG2) {
ArenaPool pool;
ArenaAllocator allocator(&pool);
HGraph* graph = BuildGraph(data, &allocator);
- SsaLivenessAnalysis liveness(*graph);
+ CodeGenerator* codegen = CodeGenerator::Create(&allocator, graph, InstructionSet::kX86);
+ SsaLivenessAnalysis liveness(*graph, codegen);
liveness.Analyze();
LiveInterval* interval = liveness.GetInstructionFromSsaIndex(0)->GetLiveInterval();
LiveRange* range = interval->GetFirstRange();
ASSERT_EQ(2u, range->GetStart());
// Last use is the return instruction.
- ASSERT_EQ(22u, range->GetEnd());
+ ASSERT_EQ(23u, range->GetEnd());
HBasicBlock* block = graph->GetBlocks().Get(3);
ASSERT_TRUE(block->GetLastInstruction()->AsReturn() != nullptr);
ASSERT_EQ(22u, block->GetLastInstruction()->GetLifetimePosition());
@@ -149,25 +153,26 @@ TEST(LiveRangesTest, CFG3) {
ArenaPool pool;
ArenaAllocator allocator(&pool);
HGraph* graph = BuildGraph(data, &allocator);
- SsaLivenessAnalysis liveness(*graph);
+ CodeGenerator* codegen = CodeGenerator::Create(&allocator, graph, InstructionSet::kX86);
+ SsaLivenessAnalysis liveness(*graph, codegen);
liveness.Analyze();
- // Test for the 0 constant.
- LiveInterval* interval = liveness.GetInstructionFromSsaIndex(0)->GetLiveInterval();
+ // Test for the 4 constant.
+ LiveInterval* interval = liveness.GetInstructionFromSsaIndex(1)->GetLiveInterval();
LiveRange* range = interval->GetFirstRange();
- ASSERT_EQ(2u, range->GetStart());
+ ASSERT_EQ(4u, range->GetStart());
// Last use is the phi at the return block so instruction is live until
// the end of the then block.
ASSERT_EQ(18u, range->GetEnd());
ASSERT_TRUE(range->GetNext() == nullptr);
- // Test for the 4 constant.
- interval = liveness.GetInstructionFromSsaIndex(1)->GetLiveInterval();
+ // Test for the 0 constant.
+ interval = liveness.GetInstructionFromSsaIndex(0)->GetLiveInterval();
// The then branch is a hole for this constant, therefore its interval has 2 ranges.
// First range starts from the definition and ends at the if block.
range = interval->GetFirstRange();
- ASSERT_EQ(4u, range->GetStart());
- // 9 is the end of the if block.
+ ASSERT_EQ(2u, range->GetStart());
+ // 14 is the end of the if block.
ASSERT_EQ(14u, range->GetEnd());
// Second range is the else block.
range = range->GetNext();
@@ -179,8 +184,9 @@ TEST(LiveRangesTest, CFG3) {
// Test for the phi.
interval = liveness.GetInstructionFromSsaIndex(3)->GetLiveInterval();
range = interval->GetFirstRange();
+ ASSERT_EQ(22u, liveness.GetInstructionFromSsaIndex(3)->GetLifetimePosition());
ASSERT_EQ(22u, range->GetStart());
- ASSERT_EQ(24u, range->GetEnd());
+ ASSERT_EQ(25u, range->GetEnd());
ASSERT_TRUE(range->GetNext() == nullptr);
}
@@ -223,7 +229,8 @@ TEST(LiveRangesTest, Loop) {
ArenaPool pool;
ArenaAllocator allocator(&pool);
HGraph* graph = BuildGraph(data, &allocator);
- SsaLivenessAnalysis liveness(*graph);
+ CodeGenerator* codegen = CodeGenerator::Create(&allocator, graph, InstructionSet::kX86);
+ SsaLivenessAnalysis liveness(*graph, codegen);
liveness.Analyze();
// Test for the 0 constant.
@@ -248,7 +255,7 @@ TEST(LiveRangesTest, Loop) {
range = interval->GetFirstRange();
// The instruction is live until the return instruction after the loop.
ASSERT_EQ(6u, range->GetStart());
- ASSERT_EQ(26u, range->GetEnd());
+ ASSERT_EQ(27u, range->GetEnd());
ASSERT_TRUE(range->GetNext() == nullptr);
// Test for the phi.
@@ -256,7 +263,7 @@ TEST(LiveRangesTest, Loop) {
range = interval->GetFirstRange();
// Instruction is consumed by the if.
ASSERT_EQ(14u, range->GetStart());
- ASSERT_EQ(16u, range->GetEnd());
+ ASSERT_EQ(17u, range->GetEnd());
ASSERT_TRUE(range->GetNext() == nullptr);
}
diff --git a/compiler/optimizing/liveness_test.cc b/compiler/optimizing/liveness_test.cc
index 7a33620..2d0bc39 100644
--- a/compiler/optimizing/liveness_test.cc
+++ b/compiler/optimizing/liveness_test.cc
@@ -15,6 +15,7 @@
*/
#include "builder.h"
+#include "code_generator.h"
#include "dex_file.h"
#include "dex_instruction.h"
#include "nodes.h"
@@ -48,7 +49,8 @@ static void TestCode(const uint16_t* data, const char* expected) {
graph->BuildDominatorTree();
graph->TransformToSSA();
graph->FindNaturalLoops();
- SsaLivenessAnalysis liveness(*graph);
+ CodeGenerator* codegen = CodeGenerator::Create(&allocator, graph, InstructionSet::kX86);
+ SsaLivenessAnalysis liveness(*graph, codegen);
liveness.Analyze();
std::ostringstream buffer;
@@ -69,17 +71,17 @@ static void TestCode(const uint16_t* data, const char* expected) {
TEST(LivenessTest, CFG1) {
const char* expected =
"Block 0\n"
- " live in: ()\n"
- " live out: ()\n"
- " kill: ()\n"
+ " live in: (0)\n"
+ " live out: (0)\n"
+ " kill: (1)\n"
"Block 1\n"
- " live in: ()\n"
- " live out: ()\n"
- " kill: ()\n"
+ " live in: (0)\n"
+ " live out: (0)\n"
+ " kill: (0)\n"
"Block 2\n"
- " live in: ()\n"
- " live out: ()\n"
- " kill: ()\n";
+ " live in: (0)\n"
+ " live out: (0)\n"
+ " kill: (0)\n";
// Constant is not used.
const uint16_t data[] = ONE_REGISTER_CODE_ITEM(
diff --git a/compiler/optimizing/nodes.cc b/compiler/optimizing/nodes.cc
index 752466b..2a97fad 100644
--- a/compiler/optimizing/nodes.cc
+++ b/compiler/optimizing/nodes.cc
@@ -35,7 +35,7 @@ void HGraph::RemoveDeadBlocks(const ArenaBitVector& visited) const {
if (!visited.IsBitSet(i)) {
HBasicBlock* block = blocks_.Get(i);
for (size_t j = 0; j < block->GetSuccessors().Size(); ++j) {
- block->GetSuccessors().Get(j)->RemovePredecessor(block, false);
+ block->GetSuccessors().Get(j)->RemovePredecessor(block);
}
for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
block->RemovePhi(it.Current()->AsPhi());
@@ -143,8 +143,7 @@ void HGraph::SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor) {
HBasicBlock* new_block = new (arena_) HBasicBlock(this);
AddBlock(new_block);
new_block->AddInstruction(new (arena_) HGoto());
- block->RemoveSuccessor(successor);
- block->AddSuccessor(new_block);
+ block->ReplaceSuccessor(successor, new_block);
new_block->AddSuccessor(successor);
if (successor->IsLoopHeader()) {
// If we split at a back edge boundary, make the new block the back edge.
@@ -168,8 +167,7 @@ void HGraph::SimplifyLoop(HBasicBlock* header) {
new_back_edge->AddInstruction(new (arena_) HGoto());
for (size_t pred = 0, e = info->GetBackEdges().Size(); pred < e; ++pred) {
HBasicBlock* back_edge = info->GetBackEdges().Get(pred);
- header->RemovePredecessor(back_edge);
- back_edge->AddSuccessor(new_back_edge);
+ back_edge->ReplaceSuccessor(header, new_back_edge);
}
info->ClearBackEdges();
info->AddBackEdge(new_back_edge);
@@ -190,9 +188,8 @@ void HGraph::SimplifyLoop(HBasicBlock* header) {
for (size_t pred = 0; pred < header->GetPredecessors().Size(); ++pred) {
HBasicBlock* predecessor = header->GetPredecessors().Get(pred);
if (predecessor != back_edge) {
- header->RemovePredecessor(predecessor);
+ predecessor->ReplaceSuccessor(header, pre_header);
pred--;
- predecessor->AddSuccessor(pre_header);
}
}
pre_header->AddSuccessor(header);
@@ -294,12 +291,20 @@ bool HBasicBlock::Dominates(HBasicBlock* other) const {
void HBasicBlock::InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor) {
DCHECK(cursor->AsPhi() == nullptr);
DCHECK(instruction->AsPhi() == nullptr);
+ DCHECK_EQ(instruction->GetId(), -1);
+ DCHECK_NE(cursor->GetId(), -1);
+ DCHECK_EQ(cursor->GetBlock(), this);
+ DCHECK(!instruction->IsControlFlow());
instruction->next_ = cursor;
instruction->previous_ = cursor->previous_;
cursor->previous_ = instruction;
if (GetFirstInstruction() == cursor) {
instructions_.first_instruction_ = instruction;
+ } else {
+ instruction->previous_->next_ = instruction;
}
+ instruction->SetBlock(this);
+ instruction->SetId(GetGraph()->GetNextInstructionId());
}
static void Add(HInstructionList* instruction_list,
diff --git a/compiler/optimizing/nodes.h b/compiler/optimizing/nodes.h
index b1c8016..68848de 100644
--- a/compiler/optimizing/nodes.h
+++ b/compiler/optimizing/nodes.h
@@ -283,18 +283,16 @@ class HBasicBlock : public ArenaObject {
block->predecessors_.Add(this);
}
- void RemovePredecessor(HBasicBlock* block, bool remove_in_successor = true) {
- predecessors_.Delete(block);
- if (remove_in_successor) {
- block->successors_.Delete(this);
- }
+ void ReplaceSuccessor(HBasicBlock* existing, HBasicBlock* new_block) {
+ size_t successor_index = GetSuccessorIndexOf(existing);
+ DCHECK_NE(successor_index, static_cast<size_t>(-1));
+ existing->RemovePredecessor(this);
+ new_block->predecessors_.Add(this);
+ successors_.Put(successor_index, new_block);
}
- void RemoveSuccessor(HBasicBlock* block, bool remove_in_predecessor = true) {
- successors_.Delete(block);
- if (remove_in_predecessor) {
- block->predecessors_.Delete(this);
- }
+ void RemovePredecessor(HBasicBlock* block) {
+ predecessors_.Delete(block);
}
void ClearAllPredecessors() {
@@ -315,6 +313,15 @@ class HBasicBlock : public ArenaObject {
return -1;
}
+ size_t GetSuccessorIndexOf(HBasicBlock* successor) {
+ for (size_t i = 0, e = successors_.Size(); i < e; ++i) {
+ if (successors_.Get(i) == successor) {
+ return i;
+ }
+ }
+ return -1;
+ }
+
void AddInstruction(HInstruction* instruction);
void RemoveInstruction(HInstruction* instruction);
void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
@@ -455,6 +462,7 @@ class HInstruction : public ArenaObject {
virtual void SetRawInputAt(size_t index, HInstruction* input) = 0;
virtual bool NeedsEnvironment() const { return false; }
+ virtual bool IsControlFlow() const { return false; }
void AddUseAt(HInstruction* user, size_t index) {
uses_ = new (block_->GetGraph()->GetArena()) HUseListNode<HInstruction>(user, index, uses_);
@@ -733,7 +741,9 @@ class HTemplateInstruction: public HInstruction {
// instruction that branches to the exit block.
class HReturnVoid : public HTemplateInstruction<0> {
public:
- HReturnVoid() { }
+ HReturnVoid() {}
+
+ virtual bool IsControlFlow() const { return true; }
DECLARE_INSTRUCTION(ReturnVoid);
@@ -749,6 +759,8 @@ class HReturn : public HTemplateInstruction<1> {
SetRawInputAt(0, value);
}
+ virtual bool IsControlFlow() const { return true; }
+
DECLARE_INSTRUCTION(Return);
private:
@@ -760,7 +772,9 @@ class HReturn : public HTemplateInstruction<1> {
// exit block.
class HExit : public HTemplateInstruction<0> {
public:
- HExit() { }
+ HExit() {}
+
+ virtual bool IsControlFlow() const { return true; }
DECLARE_INSTRUCTION(Exit);
@@ -771,12 +785,14 @@ class HExit : public HTemplateInstruction<0> {
// Jumps from one block to another.
class HGoto : public HTemplateInstruction<0> {
public:
- HGoto() { }
+ HGoto() {}
HBasicBlock* GetSuccessor() const {
return GetBlock()->GetSuccessors().Get(0);
}
+ virtual bool IsControlFlow() const { return true; }
+
DECLARE_INSTRUCTION(Goto);
private:
@@ -799,6 +815,8 @@ class HIf : public HTemplateInstruction<1> {
return GetBlock()->GetSuccessors().Get(1);
}
+ virtual bool IsControlFlow() const { return true; }
+
DECLARE_INSTRUCTION(If);
private:
diff --git a/compiler/optimizing/optimizing_compiler.cc b/compiler/optimizing/optimizing_compiler.cc
index dfbb488..3dc0928 100644
--- a/compiler/optimizing/optimizing_compiler.cc
+++ b/compiler/optimizing/optimizing_compiler.cc
@@ -131,7 +131,7 @@ CompiledMethod* OptimizingCompiler::TryCompile(const DexFile::CodeItem* code_ite
visualizer.DumpGraph("ssa");
graph->FindNaturalLoops();
- SsaLivenessAnalysis liveness(*graph);
+ SsaLivenessAnalysis liveness(*graph, codegen);
liveness.Analyze();
visualizer.DumpGraph("liveness");
diff --git a/compiler/optimizing/register_allocator.cc b/compiler/optimizing/register_allocator.cc
index dd175d2..8c6eb2a 100644
--- a/compiler/optimizing/register_allocator.cc
+++ b/compiler/optimizing/register_allocator.cc
@@ -22,6 +22,7 @@
namespace art {
static constexpr size_t kMaxLifetimePosition = -1;
+static constexpr size_t kDefaultNumberOfSpillSlots = 4;
RegisterAllocator::RegisterAllocator(ArenaAllocator* allocator, const CodeGenerator& codegen)
: allocator_(allocator),
@@ -30,6 +31,7 @@ RegisterAllocator::RegisterAllocator(ArenaAllocator* allocator, const CodeGenera
handled_(allocator, 0),
active_(allocator, 0),
inactive_(allocator, 0),
+ spill_slots_(allocator, kDefaultNumberOfSpillSlots),
processing_core_registers_(false),
number_of_registers_(-1),
registers_array_(nullptr),
@@ -78,11 +80,39 @@ bool RegisterAllocator::ValidateInternal(const SsaLivenessAnalysis& liveness,
intervals.Add(instruction->GetLiveInterval());
}
}
- return ValidateIntervals(intervals, codegen_, allocator_, processing_core_registers_,
- log_fatal_on_failure);
+ return ValidateIntervals(intervals, spill_slots_.Size(), codegen_, allocator_,
+ processing_core_registers_, log_fatal_on_failure);
}
-bool RegisterAllocator::ValidateIntervals(const GrowableArray<LiveInterval*>& ranges,
+class AllRangesIterator : public ValueObject {
+ public:
+ explicit AllRangesIterator(LiveInterval* interval)
+ : current_interval_(interval),
+ current_range_(interval->GetFirstRange()) {}
+
+ bool Done() const { return current_interval_ == nullptr; }
+ LiveRange* CurrentRange() const { return current_range_; }
+ LiveInterval* CurrentInterval() const { return current_interval_; }
+
+ void Advance() {
+ current_range_ = current_range_->GetNext();
+ if (current_range_ == nullptr) {
+ current_interval_ = current_interval_->GetNextSibling();
+ if (current_interval_ != nullptr) {
+ current_range_ = current_interval_->GetFirstRange();
+ }
+ }
+ }
+
+ private:
+ LiveInterval* current_interval_;
+ LiveRange* current_range_;
+
+ DISALLOW_COPY_AND_ASSIGN(AllRangesIterator);
+};
+
+bool RegisterAllocator::ValidateIntervals(const GrowableArray<LiveInterval*>& intervals,
+ size_t number_of_spill_slots,
const CodeGenerator& codegen,
ArenaAllocator* allocator,
bool processing_core_registers,
@@ -90,25 +120,40 @@ bool RegisterAllocator::ValidateIntervals(const GrowableArray<LiveInterval*>& ra
size_t number_of_registers = processing_core_registers
? codegen.GetNumberOfCoreRegisters()
: codegen.GetNumberOfFloatingPointRegisters();
- GrowableArray<ArenaBitVector*> bit_vectors(allocator, number_of_registers);
+ GrowableArray<ArenaBitVector*> liveness_of_values(
+ allocator, number_of_registers + number_of_spill_slots);
// Allocate a bit vector per register. A live interval that has a register
// allocated will populate the associated bit vector based on its live ranges.
- for (size_t i = 0; i < number_of_registers; i++) {
- bit_vectors.Add(new (allocator) ArenaBitVector(allocator, 0, true));
+ for (size_t i = 0; i < number_of_registers + number_of_spill_slots; ++i) {
+ liveness_of_values.Add(new (allocator) ArenaBitVector(allocator, 0, true));
}
- for (size_t i = 0, e = ranges.Size(); i < e; ++i) {
- LiveInterval* current = ranges.Get(i);
- do {
- if (!current->HasRegister()) {
- continue;
+ for (size_t i = 0, e = intervals.Size(); i < e; ++i) {
+ for (AllRangesIterator it(intervals.Get(i)); !it.Done(); it.Advance()) {
+ LiveInterval* current = it.CurrentInterval();
+ if (current->GetParent()->HasSpillSlot()) {
+ BitVector* liveness_of_spill_slot = liveness_of_values.Get(
+ number_of_registers + current->GetParent()->GetSpillSlot() / kVRegSize);
+ for (size_t j = it.CurrentRange()->GetStart(); j < it.CurrentRange()->GetEnd(); ++j) {
+ if (liveness_of_spill_slot->IsBitSet(j)) {
+ if (log_fatal_on_failure) {
+ std::ostringstream message;
+ message << "Spill slot conflict at " << j;
+ LOG(FATAL) << message.str();
+ } else {
+ return false;
+ }
+ } else {
+ liveness_of_spill_slot->SetBit(j);
+ }
+ }
}
- BitVector* vector = bit_vectors.Get(current->GetRegister());
- LiveRange* range = current->GetFirstRange();
- do {
- for (size_t j = range->GetStart(); j < range->GetEnd(); ++j) {
- if (vector->IsBitSet(j)) {
+
+ if (current->HasRegister()) {
+ BitVector* liveness_of_register = liveness_of_values.Get(current->GetRegister());
+ for (size_t j = it.CurrentRange()->GetStart(); j < it.CurrentRange()->GetEnd(); ++j) {
+ if (liveness_of_register->IsBitSet(j)) {
if (log_fatal_on_failure) {
std::ostringstream message;
message << "Register conflict at " << j << " for ";
@@ -122,11 +167,11 @@ bool RegisterAllocator::ValidateIntervals(const GrowableArray<LiveInterval*>& ra
return false;
}
} else {
- vector->SetBit(j);
+ liveness_of_register->SetBit(j);
}
}
- } while ((range = range->GetNext()) != nullptr);
- } while ((current = current->GetNextSibling()) != nullptr);
+ }
+ }
}
return true;
}
@@ -270,7 +315,7 @@ bool RegisterAllocator::IsBlocked(int reg) const {
bool RegisterAllocator::AllocateBlockedReg(LiveInterval* current) {
size_t first_register_use = current->FirstRegisterUse();
if (current->FirstRegisterUse() == kNoLifetime) {
- // TODO: Allocate spill slot for `current`.
+ AllocateSpillSlotFor(current);
return false;
}
@@ -317,6 +362,7 @@ bool RegisterAllocator::AllocateBlockedReg(LiveInterval* current) {
if (first_register_use >= next_use[reg]) {
// If the first use of that instruction is after the last use of the found
// register, we split this interval just before its first register use.
+ AllocateSpillSlotFor(current);
LiveInterval* split = Split(current, first_register_use - 1);
AddToUnhandled(split);
return false;
@@ -370,9 +416,42 @@ LiveInterval* RegisterAllocator::Split(LiveInterval* interval, size_t position)
return interval;
} else {
LiveInterval* new_interval = interval->SplitAt(position);
- // TODO: Allocate spill slot for `interval`.
return new_interval;
}
}
+void RegisterAllocator::AllocateSpillSlotFor(LiveInterval* interval) {
+ LiveInterval* parent = interval->GetParent();
+
+ // An instruction gets a spill slot for its entire lifetime. If the parent
+ // of this interval already has a spill slot, there is nothing to do.
+ if (parent->HasSpillSlot()) {
+ return;
+ }
+
+ // Find when this instruction dies.
+ LiveInterval* last_sibling = interval;
+ while (last_sibling->GetNextSibling() != nullptr) {
+ last_sibling = last_sibling->GetNextSibling();
+ }
+ size_t end = last_sibling->GetEnd();
+
+ // Find an available spill slot.
+ size_t slot = 0;
+ for (size_t e = spill_slots_.Size(); slot < e; ++slot) {
+ if (spill_slots_.Get(slot) <= parent->GetStart()) {
+ break;
+ }
+ }
+
+ if (slot == spill_slots_.Size()) {
+ // We need a new spill slot.
+ spill_slots_.Add(end);
+ } else {
+ spill_slots_.Put(slot, end);
+ }
+
+ interval->GetParent()->SetSpillSlot(slot * kVRegSize);
+}
+
} // namespace art
diff --git a/compiler/optimizing/register_allocator.h b/compiler/optimizing/register_allocator.h
index e575b96..3393a04 100644
--- a/compiler/optimizing/register_allocator.h
+++ b/compiler/optimizing/register_allocator.h
@@ -55,6 +55,7 @@ class RegisterAllocator {
// Helper method for validation. Used by unit testing.
static bool ValidateIntervals(const GrowableArray<LiveInterval*>& intervals,
+ size_t number_of_spill_slots,
const CodeGenerator& codegen,
ArenaAllocator* allocator,
bool processing_core_registers,
@@ -75,6 +76,9 @@ class RegisterAllocator {
// Returns whether `reg` is blocked by the code generator.
bool IsBlocked(int reg) const;
+ // Allocate a spill slot for the given interval.
+ void AllocateSpillSlotFor(LiveInterval* interval);
+
// Helper methods.
void AllocateRegistersInternal(const SsaLivenessAnalysis& liveness);
bool ValidateInternal(const SsaLivenessAnalysis& liveness, bool log_fatal_on_failure) const;
@@ -98,6 +102,9 @@ class RegisterAllocator {
// That is, they have a lifetime hole that spans the start of the new interval.
GrowableArray<LiveInterval*> inactive_;
+ // The spill slots allocated for live intervals.
+ GrowableArray<size_t> spill_slots_;
+
// True if processing core registers. False if processing floating
// point registers.
bool processing_core_registers_;
diff --git a/compiler/optimizing/register_allocator_test.cc b/compiler/optimizing/register_allocator_test.cc
index 019d0f8..ff9b9be 100644
--- a/compiler/optimizing/register_allocator_test.cc
+++ b/compiler/optimizing/register_allocator_test.cc
@@ -40,9 +40,9 @@ static bool Check(const uint16_t* data) {
graph->BuildDominatorTree();
graph->TransformToSSA();
graph->FindNaturalLoops();
- SsaLivenessAnalysis liveness(*graph);
- liveness.Analyze();
CodeGenerator* codegen = CodeGenerator::Create(&allocator, graph, kX86);
+ SsaLivenessAnalysis liveness(*graph, codegen);
+ liveness.Analyze();
RegisterAllocator register_allocator(&allocator, *codegen);
register_allocator.AllocateRegisters(liveness);
return register_allocator.Validate(liveness, false);
@@ -64,10 +64,12 @@ TEST(RegisterAllocatorTest, ValidateIntervals) {
static constexpr size_t ranges[][2] = {{0, 42}};
intervals.Add(BuildInterval(ranges, arraysize(ranges), &allocator, 0));
intervals.Add(BuildInterval(ranges, arraysize(ranges), &allocator, 1));
- ASSERT_TRUE(RegisterAllocator::ValidateIntervals(intervals, *codegen, &allocator, true, false));
+ ASSERT_TRUE(RegisterAllocator::ValidateIntervals(
+ intervals, 0, *codegen, &allocator, true, false));
intervals.Get(1)->SetRegister(0);
- ASSERT_FALSE(RegisterAllocator::ValidateIntervals(intervals, *codegen, &allocator, true, false));
+ ASSERT_FALSE(RegisterAllocator::ValidateIntervals(
+ intervals, 0, *codegen, &allocator, true, false));
intervals.Reset();
}
@@ -77,10 +79,12 @@ TEST(RegisterAllocatorTest, ValidateIntervals) {
intervals.Add(BuildInterval(ranges1, arraysize(ranges1), &allocator, 0));
static constexpr size_t ranges2[][2] = {{42, 43}};
intervals.Add(BuildInterval(ranges2, arraysize(ranges2), &allocator, 1));
- ASSERT_TRUE(RegisterAllocator::ValidateIntervals(intervals, *codegen, &allocator, true, false));
+ ASSERT_TRUE(RegisterAllocator::ValidateIntervals(
+ intervals, 0, *codegen, &allocator, true, false));
intervals.Get(1)->SetRegister(0);
- ASSERT_TRUE(RegisterAllocator::ValidateIntervals(intervals, *codegen, &allocator, true, false));
+ ASSERT_TRUE(RegisterAllocator::ValidateIntervals(
+ intervals, 0, *codegen, &allocator, true, false));
intervals.Reset();
}
@@ -90,10 +94,12 @@ TEST(RegisterAllocatorTest, ValidateIntervals) {
intervals.Add(BuildInterval(ranges1, arraysize(ranges1), &allocator, 0));
static constexpr size_t ranges2[][2] = {{42, 43}};
intervals.Add(BuildInterval(ranges2, arraysize(ranges2), &allocator, 1));
- ASSERT_TRUE(RegisterAllocator::ValidateIntervals(intervals, *codegen, &allocator, true, false));
+ ASSERT_TRUE(RegisterAllocator::ValidateIntervals(
+ intervals, 0, *codegen, &allocator, true, false));
intervals.Get(1)->SetRegister(0);
- ASSERT_TRUE(RegisterAllocator::ValidateIntervals(intervals, *codegen, &allocator, true, false));
+ ASSERT_TRUE(RegisterAllocator::ValidateIntervals(
+ intervals, 0, *codegen, &allocator, true, false));
intervals.Reset();
}
@@ -103,10 +109,12 @@ TEST(RegisterAllocatorTest, ValidateIntervals) {
intervals.Add(BuildInterval(ranges1, arraysize(ranges1), &allocator, 0));
static constexpr size_t ranges2[][2] = {{42, 47}};
intervals.Add(BuildInterval(ranges2, arraysize(ranges2), &allocator, 1));
- ASSERT_TRUE(RegisterAllocator::ValidateIntervals(intervals, *codegen, &allocator, true, false));
+ ASSERT_TRUE(RegisterAllocator::ValidateIntervals(
+ intervals, 0, *codegen, &allocator, true, false));
intervals.Get(1)->SetRegister(0);
- ASSERT_FALSE(RegisterAllocator::ValidateIntervals(intervals, *codegen, &allocator, true, false));
+ ASSERT_FALSE(RegisterAllocator::ValidateIntervals(
+ intervals, 0, *codegen, &allocator, true, false));
intervals.Reset();
}
@@ -117,14 +125,17 @@ TEST(RegisterAllocatorTest, ValidateIntervals) {
intervals.Get(0)->SplitAt(43);
static constexpr size_t ranges2[][2] = {{42, 47}};
intervals.Add(BuildInterval(ranges2, arraysize(ranges2), &allocator, 1));
- ASSERT_TRUE(RegisterAllocator::ValidateIntervals(intervals, *codegen, &allocator, true, false));
+ ASSERT_TRUE(RegisterAllocator::ValidateIntervals(
+ intervals, 0, *codegen, &allocator, true, false));
intervals.Get(1)->SetRegister(0);
// Sibling of the first interval has no register allocated to it.
- ASSERT_TRUE(RegisterAllocator::ValidateIntervals(intervals, *codegen, &allocator, true, false));
+ ASSERT_TRUE(RegisterAllocator::ValidateIntervals(
+ intervals, 0, *codegen, &allocator, true, false));
intervals.Get(0)->GetNextSibling()->SetRegister(0);
- ASSERT_FALSE(RegisterAllocator::ValidateIntervals(intervals, *codegen, &allocator, true, false));
+ ASSERT_FALSE(RegisterAllocator::ValidateIntervals(
+ intervals, 0, *codegen, &allocator, true, false));
}
}
@@ -286,9 +297,9 @@ TEST(RegisterAllocatorTest, Loop3) {
ArenaPool pool;
ArenaAllocator allocator(&pool);
HGraph* graph = BuildSSAGraph(data, &allocator);
- SsaLivenessAnalysis liveness(*graph);
- liveness.Analyze();
CodeGenerator* codegen = CodeGenerator::Create(&allocator, graph, kX86);
+ SsaLivenessAnalysis liveness(*graph, codegen);
+ liveness.Analyze();
RegisterAllocator register_allocator(&allocator, *codegen);
register_allocator.AllocateRegisters(liveness);
ASSERT_TRUE(register_allocator.Validate(liveness, false));
diff --git a/compiler/optimizing/ssa_builder.cc b/compiler/optimizing/ssa_builder.cc
index 1284a97..471307e 100644
--- a/compiler/optimizing/ssa_builder.cc
+++ b/compiler/optimizing/ssa_builder.cc
@@ -15,22 +15,12 @@
*/
#include "ssa_builder.h"
+
#include "nodes.h"
+#include "ssa_type_propagation.h"
namespace art {
-static Primitive::Type MergeTypes(Primitive::Type existing, Primitive::Type new_type) {
- // We trust the verifier has already done the necessary checking.
- switch (existing) {
- case Primitive::kPrimFloat:
- case Primitive::kPrimDouble:
- case Primitive::kPrimNot:
- return existing;
- default:
- return new_type;
- }
-}
-
void SsaBuilder::BuildSsa() {
// 1) Visit in reverse post order. We need to have all predecessors of a block visited
// (with the exception of loops) in order to create the right environment for that
@@ -44,18 +34,18 @@ void SsaBuilder::BuildSsa() {
HBasicBlock* block = loop_headers_.Get(i);
for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
HPhi* phi = it.Current()->AsPhi();
- Primitive::Type type = Primitive::kPrimVoid;
for (size_t pred = 0; pred < block->GetPredecessors().Size(); pred++) {
HInstruction* input = ValueOfLocal(block->GetPredecessors().Get(pred), phi->GetRegNumber());
phi->AddInput(input);
- type = MergeTypes(type, input->GetType());
}
- phi->SetType(type);
}
}
- // TODO: Now that the type of loop phis is set, we need a type propagation phase.
- // 3) Clear locals.
+ // 3) Propagate types of phis.
+ SsaTypePropagation type_propagation(GetGraph());
+ type_propagation.Run();
+
+ // 4) Clear locals.
// TODO: Move this to a dead code eliminator phase.
for (HInstructionIterator it(GetGraph()->GetEntryBlock()->GetInstructions());
!it.Done();
@@ -102,8 +92,8 @@ void SsaBuilder::VisitBasicBlock(HBasicBlock* block) {
for (size_t i = 0, e = block->GetPredecessors().Size(); i < e; ++i) {
HInstruction* current = ValueOfLocal(block->GetPredecessors().Get(i), local);
if (current == nullptr) {
-// one_predecessor_has_no_value = true;
-// break;
+ one_predecessor_has_no_value = true;
+ break;
} else if (current != value) {
is_different = true;
}
@@ -118,16 +108,10 @@ void SsaBuilder::VisitBasicBlock(HBasicBlock* block) {
if (is_different) {
HPhi* phi = new (GetGraph()->GetArena()) HPhi(
GetGraph()->GetArena(), local, block->GetPredecessors().Size(), Primitive::kPrimVoid);
- Primitive::Type type = Primitive::kPrimVoid;
for (size_t i = 0; i < block->GetPredecessors().Size(); i++) {
HInstruction* value = ValueOfLocal(block->GetPredecessors().Get(i), local);
- // We need to merge the incoming types, as the Dex format does not
- // guarantee the inputs have the same type. In particular the 0 constant is
- // used for all types, but the graph builder treats it as an int.
- type = MergeTypes(type, value->GetType());
phi->SetRawInputAt(i, value);
}
- phi->SetType(type);
block->AddPhi(phi);
value = phi;
}
diff --git a/compiler/optimizing/ssa_liveness_analysis.cc b/compiler/optimizing/ssa_liveness_analysis.cc
index dc4b2e5..50ea00f 100644
--- a/compiler/optimizing/ssa_liveness_analysis.cc
+++ b/compiler/optimizing/ssa_liveness_analysis.cc
@@ -15,6 +15,8 @@
*/
#include "ssa_liveness_analysis.h"
+
+#include "code_generator.h"
#include "nodes.h"
namespace art {
@@ -80,38 +82,6 @@ static void VisitBlockForLinearization(HBasicBlock* block,
order->Add(block);
}
-class HLinearOrderIterator : public ValueObject {
- public:
- explicit HLinearOrderIterator(const GrowableArray<HBasicBlock*>& post_order)
- : post_order_(post_order), index_(post_order.Size()) {}
-
- bool Done() const { return index_ == 0; }
- HBasicBlock* Current() const { return post_order_.Get(index_ -1); }
- void Advance() { --index_; DCHECK_GE(index_, 0U); }
-
- private:
- const GrowableArray<HBasicBlock*>& post_order_;
- size_t index_;
-
- DISALLOW_COPY_AND_ASSIGN(HLinearOrderIterator);
-};
-
-class HLinearPostOrderIterator : public ValueObject {
- public:
- explicit HLinearPostOrderIterator(const GrowableArray<HBasicBlock*>& post_order)
- : post_order_(post_order), index_(0) {}
-
- bool Done() const { return index_ == post_order_.Size(); }
- HBasicBlock* Current() const { return post_order_.Get(index_); }
- void Advance() { ++index_; }
-
- private:
- const GrowableArray<HBasicBlock*>& post_order_;
- size_t index_;
-
- DISALLOW_COPY_AND_ASSIGN(HLinearPostOrderIterator);
-};
-
void SsaLivenessAnalysis::LinearizeGraph() {
// For simplicity of the implementation, we create post linear order. The order for
// computing live ranges is the reverse of that order.
@@ -131,30 +101,38 @@ void SsaLivenessAnalysis::NumberInstructions() {
// to differentiate between the start and end of an instruction. Adding 2 to
// the lifetime position for each instruction ensures the start of an
// instruction is different than the end of the previous instruction.
- for (HLinearOrderIterator it(linear_post_order_); !it.Done(); it.Advance()) {
+ for (HLinearOrderIterator it(*this); !it.Done(); it.Advance()) {
HBasicBlock* block = it.Current();
block->SetLifetimeStart(lifetime_position);
- lifetime_position += 2;
for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
HInstruction* current = it.Current();
- if (current->HasUses()) {
+ current->Accept(codegen_->GetLocationBuilder());
+ LocationSummary* locations = current->GetLocations();
+ if (locations != nullptr && locations->Out().IsValid()) {
instructions_from_ssa_index_.Add(current);
current->SetSsaIndex(ssa_index++);
current->SetLiveInterval(
- new (graph_.GetArena()) LiveInterval(graph_.GetArena(), current->GetType()));
+ new (graph_.GetArena()) LiveInterval(graph_.GetArena(), current->GetType(), current));
}
current->SetLifetimePosition(lifetime_position);
}
+ lifetime_position += 2;
+
+ // Add a null marker to notify we are starting a block.
+ instructions_from_lifetime_position_.Add(nullptr);
for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
HInstruction* current = it.Current();
- if (current->HasUses()) {
+ current->Accept(codegen_->GetLocationBuilder());
+ LocationSummary* locations = current->GetLocations();
+ if (locations != nullptr && locations->Out().IsValid()) {
instructions_from_ssa_index_.Add(current);
current->SetSsaIndex(ssa_index++);
current->SetLiveInterval(
- new (graph_.GetArena()) LiveInterval(graph_.GetArena(), current->GetType()));
+ new (graph_.GetArena()) LiveInterval(graph_.GetArena(), current->GetType(), current));
}
+ instructions_from_lifetime_position_.Add(current);
current->SetLifetimePosition(lifetime_position);
lifetime_position += 2;
}
@@ -165,7 +143,7 @@ void SsaLivenessAnalysis::NumberInstructions() {
}
void SsaLivenessAnalysis::ComputeLiveness() {
- for (HLinearOrderIterator it(linear_post_order_); !it.Done(); it.Advance()) {
+ for (HLinearOrderIterator it(*this); !it.Done(); it.Advance()) {
HBasicBlock* block = it.Current();
block_infos_.Put(
block->GetBlockId(),
@@ -186,7 +164,7 @@ void SsaLivenessAnalysis::ComputeLiveness() {
void SsaLivenessAnalysis::ComputeLiveRanges() {
// Do a post order visit, adding inputs of instructions live in the block where
// that instruction is defined, and killing instructions that are being visited.
- for (HLinearPostOrderIterator it(linear_post_order_); !it.Done(); it.Advance()) {
+ for (HLinearPostOrderIterator it(*this); !it.Done(); it.Advance()) {
HBasicBlock* block = it.Current();
BitVector* kill = GetKillSet(*block);
@@ -201,7 +179,7 @@ void SsaLivenessAnalysis::ComputeLiveRanges() {
for (HInstructionIterator it(successor->GetPhis()); !it.Done(); it.Advance()) {
HInstruction* phi = it.Current();
HInstruction* input = phi->InputAt(phi_input_index);
- input->GetLiveInterval()->AddPhiUse(phi, block);
+ input->GetLiveInterval()->AddPhiUse(phi, phi_input_index, block);
// A phi input whose last user is the phi dies at the end of the predecessor block,
// and not at the phi's lifetime position.
live_in->SetBit(input->GetSsaIndex());
@@ -228,7 +206,7 @@ void SsaLivenessAnalysis::ComputeLiveRanges() {
HInstruction* input = current->InputAt(i);
DCHECK(input->HasSsaIndex());
live_in->SetBit(input->GetSsaIndex());
- input->GetLiveInterval()->AddUse(current);
+ input->GetLiveInterval()->AddUse(current, i, false);
}
if (current->HasEnvironment()) {
@@ -239,7 +217,7 @@ void SsaLivenessAnalysis::ComputeLiveRanges() {
if (instruction != nullptr) {
DCHECK(instruction->HasSsaIndex());
live_in->SetBit(instruction->GetSsaIndex());
- instruction->GetLiveInterval()->AddUse(current);
+ instruction->GetLiveInterval()->AddUse(current, i, true);
}
}
}
@@ -251,6 +229,10 @@ void SsaLivenessAnalysis::ComputeLiveRanges() {
if (current->HasSsaIndex()) {
kill->SetBit(current->GetSsaIndex());
live_in->ClearBit(current->GetSsaIndex());
+ LiveInterval* interval = current->GetLiveInterval();
+ DCHECK((interval->GetFirstRange() == nullptr)
+ || (interval->GetStart() == current->GetLifetimePosition()));
+ interval->SetFrom(current->GetLifetimePosition());
}
}
diff --git a/compiler/optimizing/ssa_liveness_analysis.h b/compiler/optimizing/ssa_liveness_analysis.h
index 4d56e1f..7903ad6 100644
--- a/compiler/optimizing/ssa_liveness_analysis.h
+++ b/compiler/optimizing/ssa_liveness_analysis.h
@@ -21,6 +21,8 @@
namespace art {
+class CodeGenerator;
+
class BlockInfo : public ArenaObject {
public:
BlockInfo(ArenaAllocator* allocator, const HBasicBlock& block, size_t number_of_ssa_values)
@@ -87,9 +89,17 @@ class LiveRange : public ArenaObject {
*/
class UsePosition : public ArenaObject {
public:
- UsePosition(HInstruction* user, size_t position, UsePosition* next)
- : user_(user), position_(position), next_(next) {
- DCHECK(user->AsPhi() != nullptr || GetPosition() == user->GetLifetimePosition());
+ UsePosition(HInstruction* user,
+ size_t input_index,
+ bool is_environment,
+ size_t position,
+ UsePosition* next)
+ : user_(user),
+ input_index_(input_index),
+ is_environment_(is_environment),
+ position_(position),
+ next_(next) {
+ DCHECK(user->AsPhi() != nullptr || GetPosition() == user->GetLifetimePosition() + 1);
DCHECK(next_ == nullptr || next->GetPosition() >= GetPosition());
}
@@ -99,12 +109,18 @@ class UsePosition : public ArenaObject {
HInstruction* GetUser() const { return user_; }
- void Dump(std::ostream& stream) {
+ bool GetIsEnvironment() const { return is_environment_; }
+
+ size_t GetInputIndex() const { return input_index_; }
+
+ void Dump(std::ostream& stream) const {
stream << position_;
}
private:
HInstruction* const user_;
+ const size_t input_index_;
+ const bool is_environment_;
const size_t position_;
UsePosition* const next_;
@@ -117,17 +133,33 @@ class UsePosition : public ArenaObject {
*/
class LiveInterval : public ArenaObject {
public:
- LiveInterval(ArenaAllocator* allocator, Primitive::Type type)
+ LiveInterval(ArenaAllocator* allocator, Primitive::Type type, HInstruction* defined_by = nullptr)
: allocator_(allocator),
first_range_(nullptr),
last_range_(nullptr),
first_use_(nullptr),
type_(type),
next_sibling_(nullptr),
- register_(kNoRegister) {}
+ parent_(this),
+ register_(kNoRegister),
+ spill_slot_(kNoSpillSlot),
+ is_fixed_(false),
+ defined_by_(defined_by) {}
+
+ static LiveInterval* MakeFixedInterval(ArenaAllocator* allocator, int reg, Primitive::Type type) {
+ LiveInterval* interval = new (allocator) LiveInterval(allocator, type);
+ interval->SetRegister(reg);
+ interval->is_fixed_ = true;
+ return interval;
+ }
+
+ bool IsFixed() const { return is_fixed_; }
- void AddUse(HInstruction* instruction) {
- size_t position = instruction->GetLifetimePosition();
+ void AddUse(HInstruction* instruction, size_t input_index, bool is_environment) {
+ // Set the use within the instruction.
+ // TODO: Use the instruction's location to know whether the instruction can die
+ // at entry, or needs to say alive within the user.
+ size_t position = instruction->GetLifetimePosition() + 1;
size_t start_block_position = instruction->GetBlock()->GetLifetimeStart();
size_t end_block_position = instruction->GetBlock()->GetLifetimeEnd();
if (first_range_ == nullptr) {
@@ -143,12 +175,14 @@ class LiveInterval : public ArenaObject {
// There is a hole in the interval. Create a new range.
first_range_ = new (allocator_) LiveRange(start_block_position, position, first_range_);
}
- first_use_ = new (allocator_) UsePosition(instruction, position, first_use_);
+ first_use_ = new (allocator_) UsePosition(
+ instruction, input_index, is_environment, position, first_use_);
}
- void AddPhiUse(HInstruction* instruction, HBasicBlock* block) {
+ void AddPhiUse(HInstruction* instruction, size_t input_index, HBasicBlock* block) {
DCHECK(instruction->AsPhi() != nullptr);
- first_use_ = new (allocator_) UsePosition(instruction, block->GetLifetimeEnd(), first_use_);
+ first_use_ = new (allocator_) UsePosition(
+ instruction, input_index, false, block->GetLifetimeEnd(), first_use_);
}
void AddRange(size_t start, size_t end) {
@@ -178,11 +212,23 @@ class LiveInterval : public ArenaObject {
}
}
+ bool HasSpillSlot() const { return spill_slot_ != kNoSpillSlot; }
+ void SetSpillSlot(int slot) { spill_slot_ = slot; }
+ int GetSpillSlot() const { return spill_slot_; }
+
void SetFrom(size_t from) {
- DCHECK(first_range_ != nullptr);
- first_range_->start_ = from;
+ if (first_range_ != nullptr) {
+ first_range_->start_ = from;
+ } else {
+ // Instruction without uses.
+ DCHECK(!defined_by_->HasUses());
+ DCHECK(from == defined_by_->GetLifetimePosition());
+ first_range_ = last_range_ = new (allocator_) LiveRange(from, from + 2, nullptr);
+ }
}
+ LiveInterval* GetParent() const { return parent_; }
+
LiveRange* GetFirstRange() const { return first_range_; }
int GetRegister() const { return register_; }
@@ -190,11 +236,11 @@ class LiveInterval : public ArenaObject {
void ClearRegister() { register_ = kNoRegister; }
bool HasRegister() const { return register_ != kNoRegister; }
- bool IsDeadAt(size_t position) {
+ bool IsDeadAt(size_t position) const {
return last_range_->GetEnd() <= position;
}
- bool Covers(size_t position) {
+ bool Covers(size_t position) const {
LiveRange* current = first_range_;
while (current != nullptr) {
if (position >= current->GetStart() && position < current->GetEnd()) {
@@ -208,27 +254,10 @@ class LiveInterval : public ArenaObject {
/**
* Returns the first intersection of this interval with `other`.
*/
- size_t FirstIntersectionWith(LiveInterval* other) {
- // We only call this method if there is a lifetime hole in this interval
- // at the start of `other`.
- DCHECK(!Covers(other->GetStart()));
- DCHECK_LE(GetStart(), other->GetStart());
- // Move to the range in this interval that starts after the other interval.
- size_t other_start = other->GetStart();
- LiveRange* my_range = first_range_;
- while (my_range != nullptr) {
- if (my_range->GetStart() >= other_start) {
- break;
- } else {
- my_range = my_range->GetNext();
- }
- }
- if (my_range == nullptr) {
- return kNoLifetime;
- }
-
+ size_t FirstIntersectionWith(LiveInterval* other) const {
// Advance both intervals and find the first matching range start in
// this interval.
+ LiveRange* my_range = first_range_;
LiveRange* other_range = other->first_range_;
do {
if (my_range->IntersectsWith(*other_range)) {
@@ -252,16 +281,33 @@ class LiveInterval : public ArenaObject {
return first_range_->GetStart();
}
+ size_t GetEnd() const {
+ return last_range_->GetEnd();
+ }
+
size_t FirstRegisterUseAfter(size_t position) const {
+ if (position == GetStart() && defined_by_ != nullptr) {
+ Location location = defined_by_->GetLocations()->Out();
+ // This interval is the first interval of the instruction. If the output
+ // of the instruction requires a register, we return the position of that instruction
+ // as the first register use.
+ if (location.IsUnallocated()) {
+ if ((location.GetPolicy() == Location::kRequiresRegister)
+ || (location.GetPolicy() == Location::kSameAsFirstInput
+ && defined_by_->GetLocations()->InAt(0).GetPolicy() == Location::kRequiresRegister)) {
+ return position;
+ }
+ }
+ }
+
UsePosition* use = first_use_;
while (use != nullptr) {
size_t use_position = use->GetPosition();
- // TODO: Once we plug the Locations builder of the code generator
- // to the register allocator, this method must be adjusted. We
- // test if there is an environment, because these are currently the only
- // instructions that could have more uses than the number of registers.
- if (use_position >= position && !use->GetUser()->NeedsEnvironment()) {
- return use_position;
+ if (use_position >= position && !use->GetIsEnvironment()) {
+ Location location = use->GetUser()->GetLocations()->InAt(use->GetInputIndex());
+ if (location.IsUnallocated() && location.GetPolicy() == Location::kRequiresRegister) {
+ return use_position;
+ }
}
use = use->GetNext();
}
@@ -272,10 +318,18 @@ class LiveInterval : public ArenaObject {
return FirstRegisterUseAfter(GetStart());
}
+ UsePosition* GetFirstUse() const {
+ return first_use_;
+ }
+
Primitive::Type GetType() const {
return type_;
}
+ HInstruction* GetDefinedBy() const {
+ return defined_by_;
+ }
+
/**
* Split this interval at `position`. This interval is changed to:
* [start ... position).
@@ -284,7 +338,7 @@ class LiveInterval : public ArenaObject {
* [position ... end)
*/
LiveInterval* SplitAt(size_t position) {
- DCHECK(next_sibling_ == nullptr);
+ DCHECK(!is_fixed_);
DCHECK_GT(position, GetStart());
if (last_range_->GetEnd() <= position) {
@@ -293,7 +347,9 @@ class LiveInterval : public ArenaObject {
}
LiveInterval* new_interval = new (allocator_) LiveInterval(allocator_, type_);
+ new_interval->next_sibling_ = next_sibling_;
next_sibling_ = new_interval;
+ new_interval->parent_ = parent_;
new_interval->first_use_ = first_use_;
LiveRange* current = first_range_;
@@ -383,21 +439,36 @@ class LiveInterval : public ArenaObject {
// Live interval that is the result of a split.
LiveInterval* next_sibling_;
+ // The first interval from which split intervals come from.
+ LiveInterval* parent_;
+
// The register allocated to this interval.
int register_;
+ // The spill slot allocated to this interval.
+ int spill_slot_;
+
+ // Whether the interval is for a fixed register.
+ bool is_fixed_;
+
+ // The instruction represented by this interval.
+ HInstruction* const defined_by_;
+
static constexpr int kNoRegister = -1;
+ static constexpr int kNoSpillSlot = -1;
DISALLOW_COPY_AND_ASSIGN(LiveInterval);
};
class SsaLivenessAnalysis : public ValueObject {
public:
- explicit SsaLivenessAnalysis(const HGraph& graph)
+ SsaLivenessAnalysis(const HGraph& graph, CodeGenerator* codegen)
: graph_(graph),
+ codegen_(codegen),
linear_post_order_(graph.GetArena(), graph.GetBlocks().Size()),
block_infos_(graph.GetArena(), graph.GetBlocks().Size()),
instructions_from_ssa_index_(graph.GetArena(), 0),
+ instructions_from_lifetime_position_(graph.GetArena(), 0),
number_of_ssa_values_(0) {
block_infos_.SetSize(graph.GetBlocks().Size());
}
@@ -424,6 +495,14 @@ class SsaLivenessAnalysis : public ValueObject {
return instructions_from_ssa_index_.Get(index);
}
+ HInstruction* GetInstructionFromPosition(size_t index) const {
+ return instructions_from_lifetime_position_.Get(index);
+ }
+
+ size_t GetMaxLifetimePosition() const {
+ return instructions_from_lifetime_position_.Size() * 2 - 1;
+ }
+
size_t GetNumberOfSsaValues() const {
return number_of_ssa_values_;
}
@@ -458,14 +537,52 @@ class SsaLivenessAnalysis : public ValueObject {
bool UpdateLiveOut(const HBasicBlock& block);
const HGraph& graph_;
+ CodeGenerator* const codegen_;
GrowableArray<HBasicBlock*> linear_post_order_;
GrowableArray<BlockInfo*> block_infos_;
+
+ // Temporary array used when computing live_in, live_out, and kill sets.
GrowableArray<HInstruction*> instructions_from_ssa_index_;
+
+ // Temporary array used when inserting moves in the graph.
+ GrowableArray<HInstruction*> instructions_from_lifetime_position_;
size_t number_of_ssa_values_;
DISALLOW_COPY_AND_ASSIGN(SsaLivenessAnalysis);
};
+class HLinearOrderIterator : public ValueObject {
+ public:
+ explicit HLinearOrderIterator(const SsaLivenessAnalysis& liveness)
+ : post_order_(liveness.GetLinearPostOrder()), index_(liveness.GetLinearPostOrder().Size()) {}
+
+ bool Done() const { return index_ == 0; }
+ HBasicBlock* Current() const { return post_order_.Get(index_ -1); }
+ void Advance() { --index_; DCHECK_GE(index_, 0U); }
+
+ private:
+ const GrowableArray<HBasicBlock*>& post_order_;
+ size_t index_;
+
+ DISALLOW_COPY_AND_ASSIGN(HLinearOrderIterator);
+};
+
+class HLinearPostOrderIterator : public ValueObject {
+ public:
+ explicit HLinearPostOrderIterator(const SsaLivenessAnalysis& liveness)
+ : post_order_(liveness.GetLinearPostOrder()), index_(0) {}
+
+ bool Done() const { return index_ == post_order_.Size(); }
+ HBasicBlock* Current() const { return post_order_.Get(index_); }
+ void Advance() { ++index_; }
+
+ private:
+ const GrowableArray<HBasicBlock*>& post_order_;
+ size_t index_;
+
+ DISALLOW_COPY_AND_ASSIGN(HLinearPostOrderIterator);
+};
+
} // namespace art
#endif // ART_COMPILER_OPTIMIZING_SSA_LIVENESS_ANALYSIS_H_
diff --git a/compiler/optimizing/ssa_test.cc b/compiler/optimizing/ssa_test.cc
index 485ea27..088a5c4 100644
--- a/compiler/optimizing/ssa_test.cc
+++ b/compiler/optimizing/ssa_test.cc
@@ -87,6 +87,13 @@ static void TestCode(const uint16_t* data, const char* expected) {
graph->TransformToSSA();
ReNumberInstructions(graph);
+ // Test that phis had their type set.
+ for (size_t i = 0, e = graph->GetBlocks().Size(); i < e; ++i) {
+ for (HInstructionIterator it(graph->GetBlocks().Get(i)->GetPhis()); !it.Done(); it.Advance()) {
+ ASSERT_NE(it.Current()->GetType(), Primitive::kPrimVoid);
+ }
+ }
+
SsaPrettyPrinter printer(graph);
printer.VisitInsertionOrder();
@@ -99,7 +106,7 @@ TEST(SsaTest, CFG1) {
"BasicBlock 0, succ: 1\n"
" 0: IntConstant 0 [2, 2]\n"
" 1: Goto\n"
- "BasicBlock 1, pred: 0, succ: 2, 5\n"
+ "BasicBlock 1, pred: 0, succ: 5, 2\n"
" 2: Equal(0, 0) [3]\n"
" 3: If(2)\n"
"BasicBlock 2, pred: 1, succ: 3\n"
@@ -129,7 +136,7 @@ TEST(SsaTest, CFG2) {
" 0: IntConstant 0 [6, 3, 3]\n"
" 1: IntConstant 4 [6]\n"
" 2: Goto\n"
- "BasicBlock 1, pred: 0, succ: 2, 5\n"
+ "BasicBlock 1, pred: 0, succ: 5, 2\n"
" 3: Equal(0, 0) [4]\n"
" 4: If(3)\n"
"BasicBlock 2, pred: 1, succ: 3\n"
@@ -409,7 +416,7 @@ TEST(SsaTest, Loop7) {
" 3: Goto\n"
"BasicBlock 1, pred: 0, succ: 2\n"
" 4: Goto\n"
- "BasicBlock 2, pred: 1, 5, succ: 3, 8\n"
+ "BasicBlock 2, pred: 1, 5, succ: 8, 3\n"
" 5: Phi(0, 1) [12, 6, 6]\n"
" 6: Equal(5, 5) [7]\n"
" 7: If(6)\n"
@@ -467,7 +474,7 @@ TEST(SsaTest, LocalInIf) {
" 0: IntConstant 0 [3, 3]\n"
" 1: IntConstant 4\n"
" 2: Goto\n"
- "BasicBlock 1, pred: 0, succ: 2, 5\n"
+ "BasicBlock 1, pred: 0, succ: 5, 2\n"
" 3: Equal(0, 0) [4]\n"
" 4: If(3)\n"
"BasicBlock 2, pred: 1, succ: 3\n"
@@ -489,4 +496,43 @@ TEST(SsaTest, LocalInIf) {
TestCode(data, expected);
}
+TEST(SsaTest, MultiplePredecessors) {
+ // Test that we do not create a phi when one predecessor
+ // does not update the local.
+ const char* expected =
+ "BasicBlock 0, succ: 1\n"
+ " 0: IntConstant 0 [4, 8, 6, 6, 2, 2, 8, 4]\n"
+ " 1: Goto\n"
+ "BasicBlock 1, pred: 0, succ: 3, 2\n"
+ " 2: Equal(0, 0) [3]\n"
+ " 3: If(2)\n"
+ "BasicBlock 2, pred: 1, succ: 5\n"
+ " 4: Add(0, 0)\n"
+ " 5: Goto\n"
+ "BasicBlock 3, pred: 1, succ: 7, 4\n"
+ " 6: Equal(0, 0) [7]\n"
+ " 7: If(6)\n"
+ "BasicBlock 4, pred: 3, succ: 5\n"
+ " 8: Add(0, 0)\n"
+ " 9: Goto\n"
+ // This block should not get a phi for local 1.
+ "BasicBlock 5, pred: 2, 4, 7, succ: 6\n"
+ " 10: ReturnVoid\n"
+ "BasicBlock 6, pred: 5\n"
+ " 11: Exit\n"
+ "BasicBlock 7, pred: 3, succ: 5\n"
+ " 12: Goto\n";
+
+ const uint16_t data[] = TWO_REGISTERS_CODE_ITEM(
+ Instruction::CONST_4 | 0 | 0,
+ Instruction::IF_EQ, 5,
+ Instruction::ADD_INT_LIT8 | 1 << 8, 0 << 8,
+ Instruction::GOTO | 0x0500,
+ Instruction::IF_EQ, 4,
+ Instruction::ADD_INT_LIT8 | 1 << 8, 0 << 8,
+ Instruction::RETURN_VOID);
+
+ TestCode(data, expected);
+}
+
} // namespace art
diff --git a/compiler/optimizing/ssa_type_propagation.cc b/compiler/optimizing/ssa_type_propagation.cc
new file mode 100644
index 0000000..53fa74e
--- /dev/null
+++ b/compiler/optimizing/ssa_type_propagation.cc
@@ -0,0 +1,97 @@
+/*
+ * Copyright (C) 2014 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "ssa_type_propagation.h"
+
+#include "nodes.h"
+
+namespace art {
+
+static Primitive::Type MergeTypes(Primitive::Type existing, Primitive::Type new_type) {
+ // We trust the verifier has already done the necessary checking.
+ switch (existing) {
+ case Primitive::kPrimFloat:
+ case Primitive::kPrimDouble:
+ case Primitive::kPrimNot:
+ return existing;
+ default:
+ return new_type;
+ }
+}
+
+// Re-compute and update the type of the instruction. Returns
+// whether or not the type was changed.
+static bool UpdateType(HPhi* phi) {
+ Primitive::Type existing = phi->GetType();
+
+ Primitive::Type new_type = Primitive::kPrimVoid;
+ for (size_t i = 0, e = phi->InputCount(); i < e; ++i) {
+ Primitive::Type input_type = phi->InputAt(i)->GetType();
+ new_type = MergeTypes(new_type, input_type);
+ }
+ phi->SetType(new_type);
+ return existing != new_type;
+}
+
+void SsaTypePropagation::Run() {
+ for (HReversePostOrderIterator it(*graph_); !it.Done(); it.Advance()) {
+ VisitBasicBlock(it.Current());
+ }
+ ProcessWorklist();
+}
+
+void SsaTypePropagation::VisitBasicBlock(HBasicBlock* block) {
+ if (block->IsLoopHeader()) {
+ for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
+ HPhi* phi = it.Current()->AsPhi();
+ // Set the initial type for the phi. Use the non back edge input for reaching
+ // a fixed point faster.
+ phi->SetType(phi->InputAt(0)->GetType());
+ AddToWorklist(phi);
+ }
+ } else {
+ for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
+ HPhi* phi = it.Current()->AsPhi();
+ if (UpdateType(phi)) {
+ AddDependentInstructionsToWorklist(phi);
+ }
+ }
+ }
+}
+
+void SsaTypePropagation::ProcessWorklist() {
+ while (!worklist_.IsEmpty()) {
+ HPhi* instruction = worklist_.Pop();
+ if (UpdateType(instruction)) {
+ AddDependentInstructionsToWorklist(instruction);
+ }
+ }
+}
+
+void SsaTypePropagation::AddToWorklist(HPhi* instruction) {
+ worklist_.Add(instruction);
+}
+
+void SsaTypePropagation::AddDependentInstructionsToWorklist(HPhi* instruction) {
+ for (HUseIterator<HInstruction> it(instruction->GetUses()); !it.Done(); it.Advance()) {
+ HPhi* phi = it.Current()->GetUser()->AsPhi();
+ if (phi != nullptr) {
+ AddToWorklist(phi);
+ }
+ }
+}
+
+} // namespace art
diff --git a/compiler/optimizing/ssa_type_propagation.h b/compiler/optimizing/ssa_type_propagation.h
new file mode 100644
index 0000000..5f471a9
--- /dev/null
+++ b/compiler/optimizing/ssa_type_propagation.h
@@ -0,0 +1,48 @@
+/*
+ * Copyright (C) 2014 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef ART_COMPILER_OPTIMIZING_SSA_TYPE_PROPAGATION_H_
+#define ART_COMPILER_OPTIMIZING_SSA_TYPE_PROPAGATION_H_
+
+#include "nodes.h"
+
+namespace art {
+
+// Compute and propagate types of phis in the graph.
+class SsaTypePropagation : public ValueObject {
+ public:
+ explicit SsaTypePropagation(HGraph* graph)
+ : graph_(graph), worklist_(graph->GetArena(), kDefaultWorklistSize) {}
+
+ void Run();
+
+ private:
+ void VisitBasicBlock(HBasicBlock* block);
+ void ProcessWorklist();
+ void AddToWorklist(HPhi* phi);
+ void AddDependentInstructionsToWorklist(HPhi* phi);
+
+ HGraph* const graph_;
+ GrowableArray<HPhi*> worklist_;
+
+ static constexpr size_t kDefaultWorklistSize = 8;
+
+ DISALLOW_COPY_AND_ASSIGN(SsaTypePropagation);
+};
+
+} // namespace art
+
+#endif // ART_COMPILER_OPTIMIZING_SSA_TYPE_PROPAGATION_H_
diff --git a/compiler/utils/arena_allocator.cc b/compiler/utils/arena_allocator.cc
index ca4635d..6a39641 100644
--- a/compiler/utils/arena_allocator.cc
+++ b/compiler/utils/arena_allocator.cc
@@ -215,7 +215,7 @@ void ArenaAllocator::UpdateBytesAllocated() {
}
void* ArenaAllocator::AllocValgrind(size_t bytes, ArenaAllocKind kind) {
- size_t rounded_bytes = (bytes + 3 + kValgrindRedZoneBytes) & ~3;
+ size_t rounded_bytes = RoundUp(bytes + kValgrindRedZoneBytes, 8);
if (UNLIKELY(ptr_ + rounded_bytes > end_)) {
// Obtain a new block.
ObtainNewArenaForAllocation(rounded_bytes);
diff --git a/compiler/utils/arena_allocator.h b/compiler/utils/arena_allocator.h
index dbe482d..ac3938f 100644
--- a/compiler/utils/arena_allocator.h
+++ b/compiler/utils/arena_allocator.h
@@ -156,7 +156,7 @@ class ArenaAllocator : private ArenaAllocatorStats {
if (UNLIKELY(running_on_valgrind_)) {
return AllocValgrind(bytes, kind);
}
- bytes = RoundUp(bytes, 4);
+ bytes = RoundUp(bytes, 8);
if (UNLIKELY(ptr_ + bytes > end_)) {
// Obtain a new block.
ObtainNewArenaForAllocation(bytes);
diff --git a/compiler/utils/scoped_arena_allocator.cc b/compiler/utils/scoped_arena_allocator.cc
index b8b0e6e..aeb2f76 100644
--- a/compiler/utils/scoped_arena_allocator.cc
+++ b/compiler/utils/scoped_arena_allocator.cc
@@ -92,7 +92,7 @@ void ArenaStack::UpdateBytesAllocated() {
}
void* ArenaStack::AllocValgrind(size_t bytes, ArenaAllocKind kind) {
- size_t rounded_bytes = RoundUp(bytes + kValgrindRedZoneBytes, 4);
+ size_t rounded_bytes = RoundUp(bytes + kValgrindRedZoneBytes, 8);
uint8_t* ptr = top_ptr_;
if (UNLIKELY(static_cast<size_t>(top_end_ - ptr) < rounded_bytes)) {
ptr = AllocateFromNextArena(rounded_bytes);
diff --git a/compiler/utils/scoped_arena_allocator.h b/compiler/utils/scoped_arena_allocator.h
index c090062..37799cb 100644
--- a/compiler/utils/scoped_arena_allocator.h
+++ b/compiler/utils/scoped_arena_allocator.h
@@ -67,7 +67,7 @@ class ArenaStack : private DebugStackRefCounter {
if (UNLIKELY(running_on_valgrind_)) {
return AllocValgrind(bytes, kind);
}
- size_t rounded_bytes = RoundUp(bytes, 4);
+ size_t rounded_bytes = RoundUp(bytes, 8);
uint8_t* ptr = top_ptr_;
if (UNLIKELY(static_cast<size_t>(top_end_ - ptr) < rounded_bytes)) {
ptr = AllocateFromNextArena(rounded_bytes);
diff --git a/disassembler/disassembler_x86.cc b/disassembler/disassembler_x86.cc
index 456e3b5..e6a6860 100644
--- a/disassembler/disassembler_x86.cc
+++ b/disassembler/disassembler_x86.cc
@@ -258,6 +258,17 @@ DISASSEMBLER_ENTRY(cmp,
reg_in_opcode = true;
target_specific = true;
break;
+ case 0x63:
+ if (rex == 0x48) {
+ opcode << "movsxd";
+ has_modrm = true;
+ load = true;
+ } else {
+ // In 32-bit mode (!supports_rex_) this is ARPL, with no REX prefix the functionality is the
+ // same as 'mov' but the use of the instruction is discouraged.
+ opcode << StringPrintf("unknown opcode '%02X'", *instr);
+ }
+ break;
case 0x68: opcode << "push"; immediate_bytes = 4; break;
case 0x69: opcode << "imul"; load = true; has_modrm = true; immediate_bytes = 4; break;
case 0x6A: opcode << "push"; immediate_bytes = 1; break;
diff --git a/runtime/Android.mk b/runtime/Android.mk
index 7a832c1..8d532c7 100644
--- a/runtime/Android.mk
+++ b/runtime/Android.mk
@@ -26,6 +26,7 @@ LIBART_COMMON_SRC_FILES := \
base/hex_dump.cc \
base/logging.cc \
base/mutex.cc \
+ base/scoped_flock.cc \
base/stringpiece.cc \
base/stringprintf.cc \
base/timing_logger.cc \
diff --git a/runtime/arch/arm64/quick_entrypoints_arm64.S b/runtime/arch/arm64/quick_entrypoints_arm64.S
index 00b94ec..9a877f6 100644
--- a/runtime/arch/arm64/quick_entrypoints_arm64.S
+++ b/runtime/arch/arm64/quick_entrypoints_arm64.S
@@ -484,7 +484,7 @@ ENTRY \c_name
// Helper signature is always
// (method_idx, *this_object, *caller_method, *self, sp)
- ldr x2, [sp, #FRAME_SIZE_REFS_AND_ARGS_CALLEE_SAVE] // pass caller Method*
+ ldr w2, [sp, #FRAME_SIZE_REFS_AND_ARGS_CALLEE_SAVE] // pass caller Method*
mov x3, xSELF // pass Thread::Current
mov x4, sp
bl \cxx_name // (method_idx, this, caller, Thread*, SP)
diff --git a/runtime/arch/stub_test.cc b/runtime/arch/stub_test.cc
index 56d51e2..3be0faf 100644
--- a/runtime/arch/stub_test.cc
+++ b/runtime/arch/stub_test.cc
@@ -82,9 +82,9 @@ class StubTest : public CommonRuntimeTest {
"addl $4, %%esp" // Pop referrer
: "=a" (result)
// Use the result from eax
- : "a"(arg0), "c"(arg1), "d"(arg2), "D"(code), [referrer]"r"(referrer)
- // This places code into edi, arg0 into eax, arg1 into ecx, and arg2 into edx
- : ); // clobber.
+ : "a"(arg0), "c"(arg1), "d"(arg2), "D"(code), [referrer]"r"(referrer)
+ // This places code into edi, arg0 into eax, arg1 into ecx, and arg2 into edx
+ : "memory"); // clobber.
// TODO: Should we clobber the other registers? EBX gets clobbered by some of the stubs,
// but compilation fails when declaring that.
#elif defined(__arm__)
@@ -122,7 +122,7 @@ class StubTest : public CommonRuntimeTest {
// Use the result from r0
: [arg0] "r"(arg0), [arg1] "r"(arg1), [arg2] "r"(arg2), [code] "r"(code), [self] "r"(self),
[referrer] "r"(referrer)
- : ); // clobber.
+ : "memory"); // clobber.
#elif defined(__aarch64__)
__asm__ __volatile__(
// Spill x0-x7 which we say we don't clobber. May contain args.
@@ -255,7 +255,8 @@ class StubTest : public CommonRuntimeTest {
"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
"d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15",
"d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23",
- "d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31"); // clobber.
+ "d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31",
+ "memory"); // clobber.
#elif defined(__x86_64__)
// Note: Uses the native convention
// TODO: Set the thread?
@@ -268,9 +269,10 @@ class StubTest : public CommonRuntimeTest {
".cfi_adjust_cfa_offset -16\n\t"
: "=a" (result)
// Use the result from rax
- : "D"(arg0), "S"(arg1), "d"(arg2), "a"(code), [referrer] "m"(referrer)
- // This places arg0 into rdi, arg1 into rsi, arg2 into rdx, and code into rax
- : "rbx", "rcx", "rbp", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"); // clobber all
+ : "D"(arg0), "S"(arg1), "d"(arg2), "a"(code), [referrer] "m"(referrer)
+ // This places arg0 into rdi, arg1 into rsi, arg2 into rdx, and code into rax
+ : "rbx", "rcx", "rbp", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
+ "memory"); // clobber all
// TODO: Should we clobber the other registers?
#else
LOG(WARNING) << "Was asked to invoke for an architecture I do not understand.";
@@ -303,9 +305,9 @@ class StubTest : public CommonRuntimeTest {
"addl $4, %%esp" // Pop referrer
: "=a" (result)
// Use the result from eax
- : "a"(arg0), "c"(arg1), "d"(arg2), "D"(code), [referrer]"m"(referrer), [hidden]"r"(hidden)
- // This places code into edi, arg0 into eax, arg1 into ecx, and arg2 into edx
- : ); // clobber.
+ : "a"(arg0), "c"(arg1), "d"(arg2), "D"(code), [referrer]"m"(referrer), [hidden]"r"(hidden)
+ // This places code into edi, arg0 into eax, arg1 into ecx, and arg2 into edx
+ : "memory"); // clobber.
// TODO: Should we clobber the other registers? EBX gets clobbered by some of the stubs,
// but compilation fails when declaring that.
#elif defined(__arm__)
@@ -343,9 +345,9 @@ class StubTest : public CommonRuntimeTest {
"mov %[result], r0\n\t" // Save the result
: [result] "=r" (result)
// Use the result from r0
- : [arg0] "r"(arg0), [arg1] "r"(arg1), [arg2] "r"(arg2), [code] "r"(code), [self] "r"(self),
- [referrer] "r"(referrer), [hidden] "r"(hidden)
- : ); // clobber.
+ : [arg0] "r"(arg0), [arg1] "r"(arg1), [arg2] "r"(arg2), [code] "r"(code), [self] "r"(self),
+ [referrer] "r"(referrer), [hidden] "r"(hidden)
+ : "memory"); // clobber.
#elif defined(__aarch64__)
__asm__ __volatile__(
// Spill x0-x7 which we say we don't clobber. May contain args.
@@ -477,7 +479,8 @@ class StubTest : public CommonRuntimeTest {
"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
"d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15",
"d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23",
- "d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31"); // clobber.
+ "d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31",
+ "memory"); // clobber.
#elif defined(__x86_64__)
// Note: Uses the native convention
// TODO: Set the thread?
@@ -494,7 +497,8 @@ class StubTest : public CommonRuntimeTest {
// Use the result from rax
: "D"(arg0), "S"(arg1), "d"(arg2), "a"(code), [referrer] "m"(referrer), [hidden] "m"(hidden)
// This places arg0 into rdi, arg1 into rsi, arg2 into rdx, and code into rax
- : "rbx", "rcx", "rbp", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"); // clobber all
+ : "rbx", "rcx", "rbp", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
+ "memory"); // clobber all
// TODO: Should we clobber the other registers?
#else
LOG(WARNING) << "Was asked to invoke for an architecture I do not understand.";
diff --git a/runtime/arch/x86/quick_entrypoints_x86.S b/runtime/arch/x86/quick_entrypoints_x86.S
index 07268ea..989ecf9 100644
--- a/runtime/arch/x86/quick_entrypoints_x86.S
+++ b/runtime/arch/x86/quick_entrypoints_x86.S
@@ -1152,8 +1152,92 @@ DEFINE_FUNCTION art_quick_resolution_trampoline
END_FUNCTION art_quick_resolution_trampoline
DEFINE_FUNCTION art_quick_generic_jni_trampoline
- int3
- int3
+ SETUP_REF_AND_ARGS_CALLEE_SAVE_FRAME
+ // This also stores the native ArtMethod reference at the bottom of the stack.
+
+ movl %esp, %ebp // save SP at callee-save frame
+ movl %esp, %edi
+ CFI_DEF_CFA_REGISTER(edi)
+ subl LITERAL(5120), %esp
+ // prepare for artQuickGenericJniTrampoline call
+ // (Thread*, SP)
+ // (esp) 4(esp) <= C calling convention
+ // fs:... ebp <= where they are
+ // Also: PLT, so need GOT in ebx.
+
+ subl LITERAL(8), %esp // Padding for 16B alignment.
+ pushl %ebp // Pass SP (to ArtMethod).
+ pushl %fs:THREAD_SELF_OFFSET // Pass Thread::Current().
+ SETUP_GOT_NOSAVE // Clobbers ebx.
+ call PLT_SYMBOL(artQuickGenericJniTrampoline) // (Thread*, sp)
+ // Drop call stack.
+ addl LITERAL(16), %esp
+
+ // At the bottom of the alloca we now have the name pointer to the method=bottom of callee-save
+ // get the adjusted frame pointer
+ popl %ebp
+
+ // Check for error, negative value.
+ test %eax, %eax
+ js .Lentry_error
+
+ // release part of the alloca, get the code pointer
+ addl %eax, %esp
+ popl %eax
+
+ // On x86 there are no registers passed, so nothing to pop here.
+
+ // Native call.
+ call *%eax
+
+ // Pop native stack, but keep the space that was reserved cookie.
+ movl %ebp, %esp
+ subl LITERAL(16), %esp // Alignment.
+
+ // result sign extension is handled in C code
+ // prepare for artQuickGenericJniEndTrampoline call
+ // (Thread*, SP, result, result_f)
+ // (esp) 4(esp) 8(esp) 16(esp) <= C calling convention
+ // fs:... ebp eax:edx xmm0 <= where they are
+
+ subl LITERAL(8), %esp // Pass float result.
+ movsd %xmm0, (%esp)
+ pushl %edx // Pass int result.
+ pushl %eax
+ pushl %ebp // Pass SP (to ArtMethod).
+ pushl %fs:THREAD_SELF_OFFSET // Pass Thread::Current().
+ call PLT_SYMBOL(artQuickGenericJniEndTrampoline)
+
+ // Tear down the alloca.
+ movl %edi, %esp
+ CFI_DEF_CFA_REGISTER(esp)
+
+ // Pending exceptions possible.
+ mov %fs:THREAD_EXCEPTION_OFFSET, %ebx
+ testl %ebx, %ebx
+ jnz .Lexception_in_native
+
+ // Tear down the callee-save frame.
+ addl MACRO_LITERAL(4), %esp // Remove padding
+ CFI_ADJUST_CFA_OFFSET(-4)
+ POP ecx
+ addl MACRO_LITERAL(4), %esp // Avoid edx, as it may be part of the result.
+ CFI_ADJUST_CFA_OFFSET(-4)
+ POP ebx
+ POP ebp // Restore callee saves
+ POP esi
+ POP edi
+ // store into fpr, for when it's a fpr return...
+ movd %eax, %xmm0
+ movd %edx, %xmm1
+ punpckldq %xmm1, %xmm0
+ ret
+.Lentry_error:
+ movl %edi, %esp
+ CFI_DEF_CFA_REGISTER(esp)
+.Lexception_in_native:
+ RESTORE_REF_AND_ARGS_CALLEE_SAVE_FRAME
+ DELIVER_PENDING_EXCEPTION
END_FUNCTION art_quick_generic_jni_trampoline
DEFINE_FUNCTION art_quick_to_interpreter_bridge
diff --git a/runtime/arch/x86_64/quick_entrypoints_x86_64.S b/runtime/arch/x86_64/quick_entrypoints_x86_64.S
index d2ac0ad..c9220c8 100644
--- a/runtime/arch/x86_64/quick_entrypoints_x86_64.S
+++ b/runtime/arch/x86_64/quick_entrypoints_x86_64.S
@@ -1002,15 +1002,12 @@ DEFINE_FUNCTION art_quick_proxy_invoke_handler
END_FUNCTION art_quick_proxy_invoke_handler
/*
- * Called to resolve an imt conflict. Clobbers %rax (which will be clobbered later anyways).
- *
- * xmm0 is a hidden argument that holds the target method's dex method index.
- * TODO: With proper hard-float support, this needs to be kept in sync with the quick compiler.
+ * Called to resolve an imt conflict.
+ * rax is a hidden argument that holds the target method's dex method index.
*/
DEFINE_FUNCTION art_quick_imt_conflict_trampoline
movl 8(%rsp), %edi // load caller Method*
movl METHOD_DEX_CACHE_METHODS_OFFSET(%rdi), %edi // load dex_cache_resolved_methods
- movd %xmm0, %rax // get target method index stored in xmm0
movl OBJECT_ARRAY_DATA_OFFSET(%rdi, %rax, 4), %edi // load the target method
jmp art_quick_invoke_interface_trampoline_local
END_FUNCTION art_quick_imt_conflict_trampoline
diff --git a/runtime/atomic.h b/runtime/atomic.h
index 04daea8..ed83a33 100644
--- a/runtime/atomic.h
+++ b/runtime/atomic.h
@@ -392,7 +392,7 @@ template<class T> struct AtomicHelper<8, T> {
// sizeof(T) == 8
volatile const int64_t* loc_ptr =
reinterpret_cast<volatile const int64_t*>(loc);
- return reinterpret_cast<T>(QuasiAtomic::Read64(loc_ptr));
+ return static_cast<T>(QuasiAtomic::Read64(loc_ptr));
}
static void StoreRelaxed(volatile T* loc, T desired) {
@@ -400,7 +400,7 @@ template<class T> struct AtomicHelper<8, T> {
volatile int64_t* loc_ptr =
reinterpret_cast<volatile int64_t*>(loc);
QuasiAtomic::Write64(loc_ptr,
- reinterpret_cast<int64_t>(desired));
+ static_cast<int64_t>(desired));
}
@@ -409,8 +409,8 @@ template<class T> struct AtomicHelper<8, T> {
// sizeof(T) == 8
volatile int64_t* loc_ptr = reinterpret_cast<volatile int64_t*>(loc);
return QuasiAtomic::Cas64(
- reinterpret_cast<int64_t>(expected_value),
- reinterpret_cast<int64_t>(desired_value), loc_ptr);
+ static_cast<int64_t>(reinterpret_cast<uintptr_t>(expected_value)),
+ static_cast<int64_t>(reinterpret_cast<uintptr_t>(desired_value)), loc_ptr);
}
};
diff --git a/runtime/base/scoped_flock.cc b/runtime/base/scoped_flock.cc
new file mode 100644
index 0000000..c0bce84
--- /dev/null
+++ b/runtime/base/scoped_flock.cc
@@ -0,0 +1,75 @@
+/*
+ * Copyright (C) 2011 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "scoped_flock.h"
+
+#include <sys/file.h>
+#include <sys/stat.h>
+
+#include "base/logging.h"
+#include "base/stringprintf.h"
+#include "base/unix_file/fd_file.h"
+
+namespace art {
+
+bool ScopedFlock::Init(const char* filename, std::string* error_msg) {
+ while (true) {
+ file_.reset(OS::OpenFileWithFlags(filename, O_CREAT | O_RDWR));
+ if (file_.get() == NULL) {
+ *error_msg = StringPrintf("Failed to open file '%s': %s", filename, strerror(errno));
+ return false;
+ }
+ int flock_result = TEMP_FAILURE_RETRY(flock(file_->Fd(), LOCK_EX));
+ if (flock_result != 0) {
+ *error_msg = StringPrintf("Failed to lock file '%s': %s", filename, strerror(errno));
+ return false;
+ }
+ struct stat fstat_stat;
+ int fstat_result = TEMP_FAILURE_RETRY(fstat(file_->Fd(), &fstat_stat));
+ if (fstat_result != 0) {
+ *error_msg = StringPrintf("Failed to fstat file '%s': %s", filename, strerror(errno));
+ return false;
+ }
+ struct stat stat_stat;
+ int stat_result = TEMP_FAILURE_RETRY(stat(filename, &stat_stat));
+ if (stat_result != 0) {
+ PLOG(WARNING) << "Failed to stat, will retry: " << filename;
+ // ENOENT can happen if someone racing with us unlinks the file we created so just retry.
+ continue;
+ }
+ if (fstat_stat.st_dev != stat_stat.st_dev || fstat_stat.st_ino != stat_stat.st_ino) {
+ LOG(WARNING) << "File changed while locking, will retry: " << filename;
+ continue;
+ }
+ return true;
+ }
+}
+
+File* ScopedFlock::GetFile() {
+ CHECK(file_.get() != NULL);
+ return file_.get();
+}
+
+ScopedFlock::ScopedFlock() { }
+
+ScopedFlock::~ScopedFlock() {
+ if (file_.get() != NULL) {
+ int flock_result = TEMP_FAILURE_RETRY(flock(file_->Fd(), LOCK_UN));
+ CHECK_EQ(0, flock_result);
+ }
+}
+
+} // namespace art
diff --git a/runtime/base/scoped_flock.h b/runtime/base/scoped_flock.h
new file mode 100644
index 0000000..26b4eb0
--- /dev/null
+++ b/runtime/base/scoped_flock.h
@@ -0,0 +1,51 @@
+/*
+ * Copyright (C) 2011 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef ART_RUNTIME_BASE_SCOPED_FLOCK_H_
+#define ART_RUNTIME_BASE_SCOPED_FLOCK_H_
+
+#include <memory>
+#include <string>
+
+#include "base/macros.h"
+#include "os.h"
+
+namespace art {
+
+class ScopedFlock {
+ public:
+ ScopedFlock();
+
+ // Attempts to acquire an exclusive file lock (see flock(2)) on the file
+ // at filename, and blocks until it can do so.
+ //
+ // Returns true if the lock could be acquired, or false if an error
+ // occurred. It is an error if the file does not exist, or if its inode
+ // changed (usually due to a new file being created at the same path)
+ // between attempts to lock it.
+ bool Init(const char* filename, std::string* error_msg);
+
+ // Returns the (locked) file associated with this instance.
+ File* GetFile();
+ ~ScopedFlock();
+ private:
+ std::unique_ptr<File> file_;
+ DISALLOW_COPY_AND_ASSIGN(ScopedFlock);
+};
+
+} // namespace art
+
+#endif // ART_RUNTIME_BASE_SCOPED_FLOCK_H_
diff --git a/runtime/base/scoped_flock_test.cc b/runtime/base/scoped_flock_test.cc
new file mode 100644
index 0000000..8fa181a
--- /dev/null
+++ b/runtime/base/scoped_flock_test.cc
@@ -0,0 +1,41 @@
+/*
+ * Copyright (C) 2014 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "scoped_flock.h"
+#include "common_runtime_test.h"
+
+#include "gtest/gtest.h"
+
+namespace art {
+
+class ScopedFlockTest : public CommonRuntimeTest {};
+
+TEST_F(ScopedFlockTest, TestLocking) {
+ ScratchFile scratch_file;
+ std::string error_msg;
+
+ // NOTE: Locks applied using flock(2) and fcntl(2) are oblivious
+ // to each other, so attempting to query locks set by flock using
+ // using fcntl(,F_GETLK,) will not work. see kernel doc at
+ // Documentation/filesystems/locks.txt.
+ ScopedFlock file_lock;
+ ASSERT_TRUE(file_lock.Init(scratch_file.GetFilename().c_str(),
+ &error_msg));
+
+ ASSERT_FALSE(file_lock.Init("/guaranteed/not/to/exist", &error_msg));
+}
+
+} // namespace art
diff --git a/runtime/class_linker.cc b/runtime/class_linker.cc
index 330b110..28164cd 100644
--- a/runtime/class_linker.cc
+++ b/runtime/class_linker.cc
@@ -27,6 +27,7 @@
#include "base/casts.h"
#include "base/logging.h"
+#include "base/scoped_flock.h"
#include "base/stl_util.h"
#include "base/unix_file/fd_file.h"
#include "class_linker-inl.h"
@@ -701,60 +702,6 @@ const DexFile* ClassLinker::FindDexFileInOatLocation(const char* dex_location,
return dex_file;
}
-class ScopedFlock {
- public:
- ScopedFlock() {}
-
- bool Init(const char* filename, std::string* error_msg) {
- while (true) {
- file_.reset(OS::OpenFileWithFlags(filename, O_CREAT | O_RDWR));
- if (file_.get() == NULL) {
- *error_msg = StringPrintf("Failed to open file '%s': %s", filename, strerror(errno));
- return false;
- }
- int flock_result = TEMP_FAILURE_RETRY(flock(file_->Fd(), LOCK_EX));
- if (flock_result != 0) {
- *error_msg = StringPrintf("Failed to lock file '%s': %s", filename, strerror(errno));
- return false;
- }
- struct stat fstat_stat;
- int fstat_result = TEMP_FAILURE_RETRY(fstat(file_->Fd(), &fstat_stat));
- if (fstat_result != 0) {
- *error_msg = StringPrintf("Failed to fstat file '%s': %s", filename, strerror(errno));
- return false;
- }
- struct stat stat_stat;
- int stat_result = TEMP_FAILURE_RETRY(stat(filename, &stat_stat));
- if (stat_result != 0) {
- PLOG(WARNING) << "Failed to stat, will retry: " << filename;
- // ENOENT can happen if someone racing with us unlinks the file we created so just retry.
- continue;
- }
- if (fstat_stat.st_dev != stat_stat.st_dev || fstat_stat.st_ino != stat_stat.st_ino) {
- LOG(WARNING) << "File changed while locking, will retry: " << filename;
- continue;
- }
- return true;
- }
- }
-
- File& GetFile() {
- return *file_;
- }
-
- ~ScopedFlock() {
- if (file_.get() != NULL) {
- int flock_result = TEMP_FAILURE_RETRY(flock(file_->Fd(), LOCK_UN));
- CHECK_EQ(0, flock_result);
- }
- }
-
- private:
- std::unique_ptr<File> file_;
-
- DISALLOW_COPY_AND_ASSIGN(ScopedFlock);
-};
-
const DexFile* ClassLinker::FindOrCreateOatFileForDexLocation(
const char* dex_location,
uint32_t dex_location_checksum,
@@ -785,7 +732,7 @@ const DexFile* ClassLinker::FindOrCreateOatFileForDexLocation(
// Generate the output oat file for the dex file
VLOG(class_linker) << "Generating oat file " << oat_location << " for " << dex_location;
- if (!GenerateOatFile(dex_location, scoped_flock.GetFile().Fd(), oat_location, &error_msg)) {
+ if (!GenerateOatFile(dex_location, scoped_flock.GetFile()->Fd(), oat_location, &error_msg)) {
CHECK(!error_msg.empty());
error_msgs->push_back(error_msg);
return nullptr;
diff --git a/runtime/entrypoints/quick/callee_save_frame.h b/runtime/entrypoints/quick/callee_save_frame.h
index b582abb..e573d6d 100644
--- a/runtime/entrypoints/quick/callee_save_frame.h
+++ b/runtime/entrypoints/quick/callee_save_frame.h
@@ -18,8 +18,17 @@
#define ART_RUNTIME_ENTRYPOINTS_QUICK_CALLEE_SAVE_FRAME_H_
#include "base/mutex.h"
+#include "instruction_set.h"
#include "thread-inl.h"
+// Specific frame size code is in architecture-specific files. We include this to compile-time
+// specialize the code.
+#include "arch/arm/quick_method_frame_info_arm.h"
+#include "arch/arm64/quick_method_frame_info_arm64.h"
+#include "arch/mips/quick_method_frame_info_mips.h"
+#include "arch/x86/quick_method_frame_info_x86.h"
+#include "arch/x86_64/quick_method_frame_info_x86_64.h"
+
namespace art {
namespace mirror {
class ArtMethod;
@@ -36,6 +45,34 @@ static inline void FinishCalleeSaveFrameSetup(Thread* self, StackReference<mirro
self->VerifyStack();
}
+static constexpr size_t GetCalleeSaveFrameSize(InstructionSet isa, Runtime::CalleeSaveType type) {
+ // constexpr must be a return statement.
+ return (isa == kArm || isa == kThumb2) ? arm::ArmCalleeSaveFrameSize(type) :
+ isa == kArm64 ? arm64::Arm64CalleeSaveFrameSize(type) :
+ isa == kMips ? mips::MipsCalleeSaveFrameSize(type) :
+ isa == kX86 ? x86::X86CalleeSaveFrameSize(type) :
+ isa == kX86_64 ? x86_64::X86_64CalleeSaveFrameSize(type) :
+ isa == kNone ? (LOG(FATAL) << "kNone has no frame size", 0) :
+ (LOG(FATAL) << "Unknown instruction set" << isa, 0);
+}
+
+// Note: this specialized statement is sanity-checked in the quick-trampoline gtest.
+static constexpr size_t GetConstExprPointerSize(InstructionSet isa) {
+ // constexpr must be a return statement.
+ return (isa == kArm || isa == kThumb2) ? kArmPointerSize :
+ isa == kArm64 ? kArm64PointerSize :
+ isa == kMips ? kMipsPointerSize :
+ isa == kX86 ? kX86PointerSize :
+ isa == kX86_64 ? kX86_64PointerSize :
+ isa == kNone ? (LOG(FATAL) << "kNone has no pointer size", 0) :
+ (LOG(FATAL) << "Unknown instruction set" << isa, 0);
+}
+
+// Note: this specialized statement is sanity-checked in the quick-trampoline gtest.
+static constexpr size_t GetCalleeSavePCOffset(InstructionSet isa, Runtime::CalleeSaveType type) {
+ return GetCalleeSaveFrameSize(isa, type) - GetConstExprPointerSize(isa);
+}
+
} // namespace art
#endif // ART_RUNTIME_ENTRYPOINTS_QUICK_CALLEE_SAVE_FRAME_H_
diff --git a/runtime/entrypoints/quick/quick_field_entrypoints.cc b/runtime/entrypoints/quick/quick_field_entrypoints.cc
index 3178cde..5cb0f36 100644
--- a/runtime/entrypoints/quick/quick_field_entrypoints.cc
+++ b/runtime/entrypoints/quick/quick_field_entrypoints.cc
@@ -248,10 +248,7 @@ extern "C" int artSet32InstanceFromCode(uint32_t field_idx, mirror::Object* obj,
extern "C" int artSet64InstanceFromCode(uint32_t field_idx, mirror::Object* obj, uint64_t new_value,
Thread* self, StackReference<mirror::ArtMethod>* sp)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
- Runtime* runtime = Runtime::Current();
- mirror::ArtMethod* callee_save = runtime->GetCalleeSaveMethod(Runtime::kRefsOnly);
- uint32_t frame_size =
- runtime->GetCalleeSaveMethodFrameInfo(Runtime::kRefsOnly).FrameSizeInBytes();
+ constexpr size_t frame_size = GetCalleeSaveFrameSize(kRuntimeISA, Runtime::kRefsOnly);
mirror::ArtMethod* referrer =
reinterpret_cast<StackReference<mirror::ArtMethod>*>(
reinterpret_cast<uint8_t*>(sp) + frame_size)->AsMirrorPtr();
@@ -262,7 +259,7 @@ extern "C" int artSet64InstanceFromCode(uint32_t field_idx, mirror::Object* obj,
field->Set64<false>(obj, new_value);
return 0; // success
}
- sp->Assign(callee_save);
+ sp->Assign(Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsOnly));
self->SetTopOfStack(sp, 0);
field = FindFieldFromCode<InstancePrimitiveWrite, true>(field_idx, referrer, self,
sizeof(int64_t));
diff --git a/runtime/entrypoints/quick/quick_instrumentation_entrypoints.cc b/runtime/entrypoints/quick/quick_instrumentation_entrypoints.cc
index 5febcb7..d161d0b 100644
--- a/runtime/entrypoints/quick/quick_instrumentation_entrypoints.cc
+++ b/runtime/entrypoints/quick/quick_instrumentation_entrypoints.cc
@@ -52,10 +52,8 @@ extern "C" TwoWordReturn artInstrumentationMethodExitFromCode(Thread* self,
// Be aware the store below may well stomp on an incoming argument.
Locks::mutator_lock_->AssertSharedHeld(self);
Runtime* runtime = Runtime::Current();
- mirror::ArtMethod* callee_save = runtime->GetCalleeSaveMethod(Runtime::kRefsOnly);
- sp->Assign(callee_save);
- uint32_t return_pc_offset = callee_save->GetReturnPcOffsetInBytes(
- runtime->GetCalleeSaveMethodFrameInfo(Runtime::kRefsOnly).FrameSizeInBytes());
+ sp->Assign(runtime->GetCalleeSaveMethod(Runtime::kRefsOnly));
+ uint32_t return_pc_offset = GetCalleeSavePCOffset(kRuntimeISA, Runtime::kRefsOnly);
uintptr_t* return_pc = reinterpret_cast<uintptr_t*>(reinterpret_cast<byte*>(sp) +
return_pc_offset);
CHECK_EQ(*return_pc, 0U);
diff --git a/runtime/entrypoints/quick/quick_trampoline_entrypoints.cc b/runtime/entrypoints/quick/quick_trampoline_entrypoints.cc
index c41c090..63010cf 100644
--- a/runtime/entrypoints/quick/quick_trampoline_entrypoints.cc
+++ b/runtime/entrypoints/quick/quick_trampoline_entrypoints.cc
@@ -37,6 +37,9 @@ namespace art {
class QuickArgumentVisitor {
// Number of bytes for each out register in the caller method's frame.
static constexpr size_t kBytesStackArgLocation = 4;
+ // Frame size in bytes of a callee-save frame for RefsAndArgs.
+ static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize =
+ GetCalleeSaveFrameSize(kRuntimeISA, Runtime::kRefsAndArgs);
#if defined(__arm__)
// The callee save frame is pointed to by SP.
// | argN | |
@@ -59,7 +62,6 @@ class QuickArgumentVisitor {
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 0; // Offset of first FPR arg.
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 8; // Offset of first GPR arg.
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 44; // Offset of return address.
- static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize = 48; // Frame size.
static size_t GprIndexToGprOffset(uint32_t gpr_index) {
return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
}
@@ -87,10 +89,9 @@ class QuickArgumentVisitor {
static constexpr bool kQuickSoftFloatAbi = false; // This is a hard float ABI.
static constexpr size_t kNumQuickGprArgs = 7; // 7 arguments passed in GPRs.
static constexpr size_t kNumQuickFprArgs = 8; // 8 arguments passed in FPRs.
- static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =16; // Offset of first FPR arg.
+ static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 16; // Offset of first FPR arg.
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 144; // Offset of first GPR arg.
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 296; // Offset of return address.
- static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize = 304; // Frame size.
static size_t GprIndexToGprOffset(uint32_t gpr_index) {
return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
}
@@ -115,7 +116,6 @@ class QuickArgumentVisitor {
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 0; // Offset of first FPR arg.
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4; // Offset of first GPR arg.
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 60; // Offset of return address.
- static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize = 64; // Frame size.
static size_t GprIndexToGprOffset(uint32_t gpr_index) {
return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
}
@@ -140,7 +140,6 @@ class QuickArgumentVisitor {
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 0; // Offset of first FPR arg.
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4; // Offset of first GPR arg.
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 28; // Offset of return address.
- static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize = 32; // Frame size.
static size_t GprIndexToGprOffset(uint32_t gpr_index) {
return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
}
@@ -173,12 +172,11 @@ class QuickArgumentVisitor {
// | Padding |
// | RDI/Method* | <- sp
static constexpr bool kQuickSoftFloatAbi = false; // This is a hard float ABI.
- static constexpr size_t kNumQuickGprArgs = 5; // 3 arguments passed in GPRs.
- static constexpr size_t kNumQuickFprArgs = 8; // 0 arguments passed in FPRs.
+ static constexpr size_t kNumQuickGprArgs = 5; // 5 arguments passed in GPRs.
+ static constexpr size_t kNumQuickFprArgs = 8; // 8 arguments passed in FPRs.
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 16; // Offset of first FPR arg.
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80; // Offset of first GPR arg.
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 168; // Offset of return address.
- static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize = 176; // Frame size.
static size_t GprIndexToGprOffset(uint32_t gpr_index) {
switch (gpr_index) {
case 0: return (4 * GetBytesPerGprSpillLocation(kRuntimeISA));
@@ -220,10 +218,7 @@ class QuickArgumentVisitor {
stack_args_(reinterpret_cast<byte*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize
+ StackArgumentStartFromShorty(is_static, shorty, shorty_len)),
gpr_index_(0), fpr_index_(0), stack_index_(0), cur_type_(Primitive::kPrimVoid),
- is_split_long_or_double_(false) {
- DCHECK_EQ(kQuickCalleeSaveFrame_RefAndArgs_FrameSize,
- Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs)->GetFrameSizeInBytes());
- }
+ is_split_long_or_double_(false) { }
virtual ~QuickArgumentVisitor() {}
@@ -1199,10 +1194,8 @@ class ComputeGenericJniFrameSize FINAL {
size_t scope_and_method = handle_scope_size + sizeof(StackReference<mirror::ArtMethod>);
sp8 -= scope_and_method;
- // Align by kStackAlignment
- uintptr_t sp_to_align = reinterpret_cast<uintptr_t>(sp8);
- sp_to_align = RoundDown(sp_to_align, kStackAlignment);
- sp8 = reinterpret_cast<uint8_t*>(sp_to_align);
+ // Align by kStackAlignment.
+ sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
uint8_t* sp8_table = sp8 + sizeof(StackReference<mirror::ArtMethod>);
*table = reinterpret_cast<HandleScope*>(sp8_table);
@@ -1222,9 +1215,8 @@ class ComputeGenericJniFrameSize FINAL {
// Next comes the native call stack.
sp8 -= GetStackSize();
- // Now align the call stack below. This aligns by 16, as AArch64 seems to require.
- uintptr_t mask = ~0x0F;
- sp8 = reinterpret_cast<uint8_t*>(reinterpret_cast<uintptr_t>(sp8) & mask);
+ // Align by kStackAlignment.
+ sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
*start_stack = reinterpret_cast<uintptr_t*>(sp8);
// put fprs and gprs below
@@ -1756,66 +1748,12 @@ extern "C" TwoWordReturn artInvokeInterfaceTrampoline(mirror::ArtMethod* interfa
} else {
FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs);
DCHECK(interface_method == Runtime::Current()->GetResolutionMethod());
- // Determine method index from calling dex instruction.
-#if defined(__arm__)
- // On entry the stack pointed by sp is:
- // | argN | |
- // | ... | |
- // | arg4 | |
- // | arg3 spill | | Caller's frame
- // | arg2 spill | |
- // | arg1 spill | |
- // | Method* | ---
- // | LR |
- // | ... | callee saves
- // | R3 | arg3
- // | R2 | arg2
- // | R1 | arg1
- // | R0 |
- // | Method* | <- sp
- DCHECK_EQ(48U, Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs)->GetFrameSizeInBytes());
- uintptr_t* regs = reinterpret_cast<uintptr_t*>(reinterpret_cast<byte*>(sp) + kPointerSize);
- uintptr_t caller_pc = regs[10];
-#elif defined(__i386__)
- // On entry the stack pointed by sp is:
- // | argN | |
- // | ... | |
- // | arg4 | |
- // | arg3 spill | | Caller's frame
- // | arg2 spill | |
- // | arg1 spill | |
- // | Method* | ---
- // | Return |
- // | EBP,ESI,EDI | callee saves
- // | EBX | arg3
- // | EDX | arg2
- // | ECX | arg1
- // | EAX/Method* | <- sp
- DCHECK_EQ(32U, Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs)->GetFrameSizeInBytes());
- uintptr_t* regs = reinterpret_cast<uintptr_t*>(reinterpret_cast<byte*>(sp));
- uintptr_t caller_pc = regs[7];
-#elif defined(__mips__)
- // On entry the stack pointed by sp is:
- // | argN | |
- // | ... | |
- // | arg4 | |
- // | arg3 spill | | Caller's frame
- // | arg2 spill | |
- // | arg1 spill | |
- // | Method* | ---
- // | RA |
- // | ... | callee saves
- // | A3 | arg3
- // | A2 | arg2
- // | A1 | arg1
- // | A0/Method* | <- sp
- DCHECK_EQ(64U, Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs)->GetFrameSizeInBytes());
- uintptr_t* regs = reinterpret_cast<uintptr_t*>(reinterpret_cast<byte*>(sp));
- uintptr_t caller_pc = regs[15];
-#else
- UNIMPLEMENTED(FATAL);
- uintptr_t caller_pc = 0;
-#endif
+
+ // Find the caller PC.
+ constexpr size_t pc_offset = GetCalleeSavePCOffset(kRuntimeISA, Runtime::kRefsAndArgs);
+ uintptr_t caller_pc = *reinterpret_cast<uintptr_t*>(reinterpret_cast<byte*>(sp) + pc_offset);
+
+ // Map the caller PC to a dex PC.
uint32_t dex_pc = caller_method->ToDexPc(caller_pc);
const DexFile::CodeItem* code = MethodHelper(caller_method).GetCodeItem();
CHECK_LT(dex_pc, code->insns_size_in_code_units_);
diff --git a/runtime/entrypoints/quick/quick_trampoline_entrypoints_test.cc b/runtime/entrypoints/quick/quick_trampoline_entrypoints_test.cc
new file mode 100644
index 0000000..66ee218
--- /dev/null
+++ b/runtime/entrypoints/quick/quick_trampoline_entrypoints_test.cc
@@ -0,0 +1,107 @@
+/*
+ * Copyright (C) 2014 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include <stdint.h>
+
+#include "callee_save_frame.h"
+#include "common_runtime_test.h"
+#include "mirror/art_method-inl.h"
+#include "quick/quick_method_frame_info.h"
+
+namespace art {
+
+class QuickTrampolineEntrypointsTest : public CommonRuntimeTest {
+ protected:
+ static mirror::ArtMethod* CreateCalleeSaveMethod(InstructionSet isa,
+ Runtime::CalleeSaveType type)
+ NO_THREAD_SAFETY_ANALYSIS {
+ Runtime* r = Runtime::Current();
+
+ Thread* t = Thread::Current();
+ t->TransitionFromSuspendedToRunnable(); // So we can create callee-save methods.
+
+ r->SetInstructionSet(isa);
+ mirror::ArtMethod* save_method = r->CreateCalleeSaveMethod(type);
+ r->SetCalleeSaveMethod(save_method, type);
+
+ t->TransitionFromRunnableToSuspended(ThreadState::kNative); // So we can shut down.
+
+ return save_method;
+ }
+
+ static void CheckFrameSize(InstructionSet isa, Runtime::CalleeSaveType type, uint32_t save_size)
+ NO_THREAD_SAFETY_ANALYSIS {
+ mirror::ArtMethod* save_method = CreateCalleeSaveMethod(isa, type);
+ QuickMethodFrameInfo frame_info = save_method->GetQuickFrameInfo();
+ EXPECT_EQ(frame_info.FrameSizeInBytes(), save_size) << "Expected and real size differs for "
+ << type << " core spills=" << std::hex << frame_info.CoreSpillMask() << " fp spills="
+ << frame_info.FpSpillMask() << std::dec << " ISA " << isa;
+ }
+
+ static void CheckPCOffset(InstructionSet isa, Runtime::CalleeSaveType type, size_t pc_offset)
+ NO_THREAD_SAFETY_ANALYSIS {
+ mirror::ArtMethod* save_method = CreateCalleeSaveMethod(isa, type);
+ QuickMethodFrameInfo frame_info = save_method->GetQuickFrameInfo();
+ EXPECT_EQ(save_method->GetReturnPcOffsetInBytes(), pc_offset) << "Expected and real pc offset"
+ " differs for " << type << " core spills=" << std::hex << frame_info.CoreSpillMask() <<
+ " fp spills=" << frame_info.FpSpillMask() << std::dec << " ISA " << isa;
+ }
+};
+
+// Note: these tests are all runtime tests. They let the Runtime create the corresponding ArtMethod
+// and check against it. Technically we know and expect certain values, but the Runtime code is
+// not constexpr, so we cannot make this compile-time checks (and I want the Runtime code tested).
+
+// This test ensures that kQuickCalleeSaveFrame_RefAndArgs_FrameSize is correct.
+TEST_F(QuickTrampolineEntrypointsTest, FrameSize) {
+ // We have to use a define here as the callee_save_frame.h functions are constexpr.
+#define CHECK_FRAME_SIZE(isa) \
+ CheckFrameSize(isa, Runtime::kRefsAndArgs, GetCalleeSaveFrameSize(isa, Runtime::kRefsAndArgs)); \
+ CheckFrameSize(isa, Runtime::kRefsOnly, GetCalleeSaveFrameSize(isa, Runtime::kRefsOnly)); \
+ CheckFrameSize(isa, Runtime::kSaveAll, GetCalleeSaveFrameSize(isa, Runtime::kSaveAll))
+
+ CHECK_FRAME_SIZE(kArm);
+ CHECK_FRAME_SIZE(kArm64);
+ CHECK_FRAME_SIZE(kMips);
+ CHECK_FRAME_SIZE(kX86);
+ CHECK_FRAME_SIZE(kX86_64);
+}
+
+// This test ensures that GetConstExprPointerSize is correct with respect to
+// GetInstructionSetPointerSize.
+TEST_F(QuickTrampolineEntrypointsTest, PointerSize) {
+ EXPECT_EQ(GetInstructionSetPointerSize(kArm), GetConstExprPointerSize(kArm));
+ EXPECT_EQ(GetInstructionSetPointerSize(kArm64), GetConstExprPointerSize(kArm64));
+ EXPECT_EQ(GetInstructionSetPointerSize(kMips), GetConstExprPointerSize(kMips));
+ EXPECT_EQ(GetInstructionSetPointerSize(kX86), GetConstExprPointerSize(kX86));
+ EXPECT_EQ(GetInstructionSetPointerSize(kX86_64), GetConstExprPointerSize(kX86_64));
+}
+
+// This test ensures that the constexpr specialization of the return PC offset computation in
+// GetCalleeSavePCOffset is correct.
+TEST_F(QuickTrampolineEntrypointsTest, ReturnPC) {
+ // Ensure that the computation in callee_save_frame.h correct.
+ // Note: we can only check against the kRuntimeISA, because the ArtMethod computation uses
+ // kPointerSize, which is wrong when the target bitwidth is not the same as the host's.
+ CheckPCOffset(kRuntimeISA, Runtime::kRefsAndArgs,
+ GetCalleeSavePCOffset(kRuntimeISA, Runtime::kRefsAndArgs));
+ CheckPCOffset(kRuntimeISA, Runtime::kRefsOnly,
+ GetCalleeSavePCOffset(kRuntimeISA, Runtime::kRefsOnly));
+ CheckPCOffset(kRuntimeISA, Runtime::kSaveAll,
+ GetCalleeSavePCOffset(kRuntimeISA, Runtime::kSaveAll));
+}
+
+} // namespace art
diff --git a/runtime/gc/heap.cc b/runtime/gc/heap.cc
index d7b673e..f5f7a86 100644
--- a/runtime/gc/heap.cc
+++ b/runtime/gc/heap.cc
@@ -2464,7 +2464,7 @@ void Heap::DumpForSigQuit(std::ostream& os) {
}
size_t Heap::GetPercentFree() {
- return static_cast<size_t>(100.0f * static_cast<float>(GetFreeMemory()) / GetMaxMemory());
+ return static_cast<size_t>(100.0f * static_cast<float>(GetFreeMemory()) / max_allowed_footprint_);
}
void Heap::SetIdealFootprint(size_t max_allowed_footprint) {
diff --git a/runtime/gc/heap.h b/runtime/gc/heap.h
index e568b36..9b49373 100644
--- a/runtime/gc/heap.h
+++ b/runtime/gc/heap.h
@@ -408,7 +408,7 @@ class Heap {
// Implements java.lang.Runtime.freeMemory.
size_t GetFreeMemory() const {
- return GetMaxMemory() - num_bytes_allocated_.LoadSequentiallyConsistent();
+ return max_allowed_footprint_ - num_bytes_allocated_.LoadSequentiallyConsistent();
}
// get the space that corresponds to an object's address. Current implementation searches all
diff --git a/runtime/gc/reference_processor.cc b/runtime/gc/reference_processor.cc
index a58df8e..7988af7 100644
--- a/runtime/gc/reference_processor.cc
+++ b/runtime/gc/reference_processor.cc
@@ -61,15 +61,20 @@ mirror::Object* ReferenceProcessor::GetReferent(Thread* self, mirror::Reference*
}
// Try to see if the referent is already marked by using the is_marked_callback. We can return
// it to the mutator as long as the GC is not preserving references. If the GC is
- // preserving references, the mutator could take a white field and move it somewhere else
- // in the heap causing corruption since this field would get swept.
IsMarkedCallback* const is_marked_callback = process_references_args_.is_marked_callback_;
- if (!preserving_references_ && is_marked_callback != nullptr) {
+ if (LIKELY(is_marked_callback != nullptr)) {
mirror::Object* const obj = is_marked_callback(referent, process_references_args_.arg_);
// If it's null it means not marked, but it could become marked if the referent is reachable
- // by finalizer referents. So we can not return in this case and must block.
+ // by finalizer referents. So we can not return in this case and must block. Otherwise, we
+ // can return it to the mutator as long as the GC is not preserving references, in which
+ // case only black nodes can be safely returned. If the GC is preserving references, the
+ // mutator could take a white field from a grey or white node and move it somewhere else
+ // in the heap causing corruption since this field would get swept.
if (obj != nullptr) {
- return obj;
+ if (!preserving_references_ ||
+ (LIKELY(!reference->IsFinalizerReferenceInstance()) && !reference->IsEnqueued())) {
+ return obj;
+ }
}
}
condition_.WaitHoldingLocks(self);
@@ -113,14 +118,14 @@ void ReferenceProcessor::ProcessReferences(bool concurrent, TimingLogger* timing
timings->StartSplit(concurrent ? "ProcessReferences" : "(Paused)ProcessReferences");
// Unless required to clear soft references with white references, preserve some white referents.
if (!clear_soft_references) {
- TimingLogger::ScopedSplit split(concurrent ? "PreserveSomeSoftReferences" :
- "(Paused)PreserveSomeSoftReferences", timings);
+ TimingLogger::ScopedSplit split(concurrent ? "ForwardSoftReferences" :
+ "(Paused)ForwardSoftReferences", timings);
if (concurrent) {
StartPreservingReferences(self);
}
- // References with a marked referent are removed from the list.
- soft_reference_queue_.PreserveSomeSoftReferences(&PreserveSoftReferenceCallback,
- &process_references_args_);
+
+ soft_reference_queue_.ForwardSoftReferences(&PreserveSoftReferenceCallback,
+ &process_references_args_);
process_mark_stack_callback(arg);
if (concurrent) {
StopPreservingReferences(self);
diff --git a/runtime/gc/reference_queue.cc b/runtime/gc/reference_queue.cc
index caacef5..3910c29 100644
--- a/runtime/gc/reference_queue.cc
+++ b/runtime/gc/reference_queue.cc
@@ -160,22 +160,23 @@ void ReferenceQueue::EnqueueFinalizerReferences(ReferenceQueue& cleared_referenc
}
}
-void ReferenceQueue::PreserveSomeSoftReferences(IsMarkedCallback* preserve_callback, void* arg) {
- ReferenceQueue cleared;
- while (!IsEmpty()) {
- mirror::Reference* ref = DequeuePendingReference();
+void ReferenceQueue::ForwardSoftReferences(IsMarkedCallback* preserve_callback,
+ void* arg) {
+ if (UNLIKELY(IsEmpty())) {
+ return;
+ }
+ mirror::Reference* const head = list_;
+ mirror::Reference* ref = head;
+ do {
mirror::Object* referent = ref->GetReferent<kWithoutReadBarrier>();
if (referent != nullptr) {
mirror::Object* forward_address = preserve_callback(referent, arg);
- if (forward_address == nullptr) {
- // Either the reference isn't marked or we don't wish to preserve it.
- cleared.EnqueuePendingReference(ref);
- } else if (forward_address != referent) {
+ if (forward_address != nullptr && forward_address != referent) {
ref->SetReferent<false>(forward_address);
}
}
- }
- list_ = cleared.GetList();
+ ref = ref->GetPendingNext();
+ } while (LIKELY(ref != head));
}
} // namespace gc
diff --git a/runtime/gc/reference_queue.h b/runtime/gc/reference_queue.h
index 4f223e2..1d8cc1a 100644
--- a/runtime/gc/reference_queue.h
+++ b/runtime/gc/reference_queue.h
@@ -65,7 +65,7 @@ class ReferenceQueue {
// Walks the reference list marking any references subject to the reference clearing policy.
// References with a black referent are removed from the list. References with white referents
// biased toward saving are blackened and also removed from the list.
- void PreserveSomeSoftReferences(IsMarkedCallback* preserve_callback, void* arg)
+ void ForwardSoftReferences(IsMarkedCallback* preserve_callback, void* arg)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Unlink the reference list clearing references objects with white referents. Cleared references
// registered to a reference queue are scheduled for appending by the heap worker thread.
diff --git a/runtime/gc/space/image_space.cc b/runtime/gc/space/image_space.cc
index 3d35c00..61633cd 100644
--- a/runtime/gc/space/image_space.cc
+++ b/runtime/gc/space/image_space.cc
@@ -18,6 +18,7 @@
#include "base/stl_util.h"
#include "base/unix_file/fd_file.h"
+#include "base/scoped_flock.h"
#include "gc/accounting/space_bitmap-inl.h"
#include "mirror/art_method.h"
#include "mirror/class-inl.h"
@@ -148,7 +149,17 @@ ImageSpace* ImageSpace::Create(const char* image_location,
std::string image_filename;
std::string error_msg;
bool is_system = false;
- if (FindImageFilename(image_location, image_isa, &image_filename, &is_system)) {
+ const bool found_image = FindImageFilename(image_location, image_isa, &image_filename,
+ &is_system);
+
+ // Note that we must not use the file descriptor associated with
+ // ScopedFlock::GetFile to Init the image file. We want the file
+ // descriptor (and the associated exclusive lock) to be released when
+ // we leave Create.
+ ScopedFlock image_lock;
+ image_lock.Init(image_filename.c_str(), &error_msg);
+
+ if (found_image) {
ImageSpace* space = ImageSpace::Init(image_filename.c_str(), image_location, !is_system,
&error_msg);
if (space != nullptr) {
diff --git a/runtime/globals.h b/runtime/globals.h
index 07fadb9..58c2118 100644
--- a/runtime/globals.h
+++ b/runtime/globals.h
@@ -36,13 +36,6 @@ static constexpr size_t GB = KB * KB * KB;
static constexpr size_t kWordSize = sizeof(word);
static constexpr size_t kPointerSize = sizeof(void*);
-// Architecture-specific pointer sizes
-static constexpr size_t kArmPointerSize = 4;
-static constexpr size_t kArm64PointerSize = 8;
-static constexpr size_t kMipsPointerSize = 4;
-static constexpr size_t kX86PointerSize = 4;
-static constexpr size_t kX86_64PointerSize = 8;
-
static constexpr size_t kBitsPerByte = 8;
static constexpr size_t kBitsPerByteLog2 = 3;
static constexpr int kBitsPerWord = kWordSize * kBitsPerByte;
@@ -51,20 +44,6 @@ static constexpr size_t kWordHighBitMask = static_cast<size_t>(1) << (kBitsPerWo
// Required stack alignment
static constexpr size_t kStackAlignment = 16;
-// ARM instruction alignment. ARM processors require code to be 4-byte aligned,
-// but ARM ELF requires 8..
-static constexpr size_t kArmAlignment = 8;
-
-// ARM64 instruction alignment. This is the recommended alignment for maximum performance.
-static constexpr size_t kArm64Alignment = 16;
-
-// MIPS instruction alignment. MIPS processors require code to be 4-byte aligned.
-// TODO: Can this be 4?
-static constexpr size_t kMipsAlignment = 8;
-
-// X86 instruction alignment. This is the recommended alignment for maximum performance.
-static constexpr size_t kX86Alignment = 16;
-
// System page size. We check this against sysconf(_SC_PAGE_SIZE) at runtime, but use a simple
// compile-time constant so the compiler can generate better code.
static constexpr int kPageSize = 4096;
diff --git a/runtime/instruction_set.cc b/runtime/instruction_set.cc
index c1931a9..5b60396 100644
--- a/runtime/instruction_set.cc
+++ b/runtime/instruction_set.cc
@@ -16,9 +16,6 @@
#include "instruction_set.h"
-#include "globals.h"
-#include "base/logging.h" // Logging is required for FATAL in the helper functions.
-
namespace art {
const char* GetInstructionSetString(const InstructionSet isa) {
@@ -63,75 +60,6 @@ InstructionSet GetInstructionSetFromString(const char* isa_str) {
return kNone;
}
-size_t GetInstructionSetPointerSize(InstructionSet isa) {
- switch (isa) {
- case kArm:
- // Fall-through.
- case kThumb2:
- return kArmPointerSize;
- case kArm64:
- return kArm64PointerSize;
- case kX86:
- return kX86PointerSize;
- case kX86_64:
- return kX86_64PointerSize;
- case kMips:
- return kMipsPointerSize;
- case kNone:
- LOG(FATAL) << "ISA kNone does not have pointer size.";
- return 0;
- default:
- LOG(FATAL) << "Unknown ISA " << isa;
- return 0;
- }
-}
-
-size_t GetBytesPerGprSpillLocation(InstructionSet isa) {
- switch (isa) {
- case kArm:
- // Fall-through.
- case kThumb2:
- return 4;
- case kArm64:
- return 8;
- case kX86:
- return 4;
- case kX86_64:
- return 8;
- case kMips:
- return 4;
- case kNone:
- LOG(FATAL) << "ISA kNone does not have spills.";
- return 0;
- default:
- LOG(FATAL) << "Unknown ISA " << isa;
- return 0;
- }
-}
-
-size_t GetBytesPerFprSpillLocation(InstructionSet isa) {
- switch (isa) {
- case kArm:
- // Fall-through.
- case kThumb2:
- return 4;
- case kArm64:
- return 8;
- case kX86:
- return 8;
- case kX86_64:
- return 8;
- case kMips:
- return 4;
- case kNone:
- LOG(FATAL) << "ISA kNone does not have spills.";
- return 0;
- default:
- LOG(FATAL) << "Unknown ISA " << isa;
- return 0;
- }
-}
-
size_t GetInstructionSetAlignment(InstructionSet isa) {
switch (isa) {
case kArm:
@@ -155,27 +83,6 @@ size_t GetInstructionSetAlignment(InstructionSet isa) {
}
}
-bool Is64BitInstructionSet(InstructionSet isa) {
- switch (isa) {
- case kArm:
- case kThumb2:
- case kX86:
- case kMips:
- return false;
-
- case kArm64:
- case kX86_64:
- return true;
-
- case kNone:
- LOG(FATAL) << "ISA kNone does not have bit width.";
- return 0;
- default:
- LOG(FATAL) << "Unknown ISA " << isa;
- return 0;
- }
-}
-
std::string InstructionSetFeatures::GetFeatureString() const {
std::string result;
if ((mask_ & kHwDiv) != 0) {
diff --git a/runtime/instruction_set.h b/runtime/instruction_set.h
index 7231733..67e7100 100644
--- a/runtime/instruction_set.h
+++ b/runtime/instruction_set.h
@@ -20,6 +20,7 @@
#include <iosfwd>
#include <string>
+#include "base/logging.h" // Logging is required for FATAL in the helper functions.
#include "base/macros.h"
namespace art {
@@ -35,14 +36,122 @@ enum InstructionSet {
};
std::ostream& operator<<(std::ostream& os, const InstructionSet& rhs);
+// Architecture-specific pointer sizes
+static constexpr size_t kArmPointerSize = 4;
+static constexpr size_t kArm64PointerSize = 8;
+static constexpr size_t kMipsPointerSize = 4;
+static constexpr size_t kX86PointerSize = 4;
+static constexpr size_t kX86_64PointerSize = 8;
+
+// ARM instruction alignment. ARM processors require code to be 4-byte aligned,
+// but ARM ELF requires 8..
+static constexpr size_t kArmAlignment = 8;
+
+// ARM64 instruction alignment. This is the recommended alignment for maximum performance.
+static constexpr size_t kArm64Alignment = 16;
+
+// MIPS instruction alignment. MIPS processors require code to be 4-byte aligned.
+// TODO: Can this be 4?
+static constexpr size_t kMipsAlignment = 8;
+
+// X86 instruction alignment. This is the recommended alignment for maximum performance.
+static constexpr size_t kX86Alignment = 16;
+
+
const char* GetInstructionSetString(InstructionSet isa);
InstructionSet GetInstructionSetFromString(const char* instruction_set);
-size_t GetInstructionSetPointerSize(InstructionSet isa);
+static inline size_t GetInstructionSetPointerSize(InstructionSet isa) {
+ switch (isa) {
+ case kArm:
+ // Fall-through.
+ case kThumb2:
+ return kArmPointerSize;
+ case kArm64:
+ return kArm64PointerSize;
+ case kX86:
+ return kX86PointerSize;
+ case kX86_64:
+ return kX86_64PointerSize;
+ case kMips:
+ return kMipsPointerSize;
+ case kNone:
+ LOG(FATAL) << "ISA kNone does not have pointer size.";
+ return 0;
+ default:
+ LOG(FATAL) << "Unknown ISA " << isa;
+ return 0;
+ }
+}
+
size_t GetInstructionSetAlignment(InstructionSet isa);
-bool Is64BitInstructionSet(InstructionSet isa);
-size_t GetBytesPerGprSpillLocation(InstructionSet isa);
-size_t GetBytesPerFprSpillLocation(InstructionSet isa);
+
+static inline bool Is64BitInstructionSet(InstructionSet isa) {
+ switch (isa) {
+ case kArm:
+ case kThumb2:
+ case kX86:
+ case kMips:
+ return false;
+
+ case kArm64:
+ case kX86_64:
+ return true;
+
+ case kNone:
+ LOG(FATAL) << "ISA kNone does not have bit width.";
+ return 0;
+ default:
+ LOG(FATAL) << "Unknown ISA " << isa;
+ return 0;
+ }
+}
+
+static inline size_t GetBytesPerGprSpillLocation(InstructionSet isa) {
+ switch (isa) {
+ case kArm:
+ // Fall-through.
+ case kThumb2:
+ return 4;
+ case kArm64:
+ return 8;
+ case kX86:
+ return 4;
+ case kX86_64:
+ return 8;
+ case kMips:
+ return 4;
+ case kNone:
+ LOG(FATAL) << "ISA kNone does not have spills.";
+ return 0;
+ default:
+ LOG(FATAL) << "Unknown ISA " << isa;
+ return 0;
+ }
+}
+
+static inline size_t GetBytesPerFprSpillLocation(InstructionSet isa) {
+ switch (isa) {
+ case kArm:
+ // Fall-through.
+ case kThumb2:
+ return 4;
+ case kArm64:
+ return 8;
+ case kX86:
+ return 8;
+ case kX86_64:
+ return 8;
+ case kMips:
+ return 4;
+ case kNone:
+ LOG(FATAL) << "ISA kNone does not have spills.";
+ return 0;
+ default:
+ LOG(FATAL) << "Unknown ISA " << isa;
+ return 0;
+ }
+}
#if defined(__arm__)
static constexpr InstructionSet kRuntimeISA = kArm;
diff --git a/runtime/instruction_set_test.cc b/runtime/instruction_set_test.cc
index cd6337c..ece3238 100644
--- a/runtime/instruction_set_test.cc
+++ b/runtime/instruction_set_test.cc
@@ -45,4 +45,8 @@ TEST_F(InstructionSetTest, TestRoundTrip) {
EXPECT_EQ(kRuntimeISA, GetInstructionSetFromString(GetInstructionSetString(kRuntimeISA)));
}
+TEST_F(InstructionSetTest, PointerSize) {
+ EXPECT_EQ(kPointerSize, GetInstructionSetPointerSize(kRuntimeISA));
+}
+
} // namespace art
diff --git a/runtime/oat_file.cc b/runtime/oat_file.cc
index 74dfe91..6c44aa9 100644
--- a/runtime/oat_file.cc
+++ b/runtime/oat_file.cc
@@ -292,11 +292,14 @@ bool OatFile::Setup(std::string* error_msg) {
return false;
}
- oat_dex_files_.Put(dex_file_location, new OatDexFile(this,
- dex_file_location,
- dex_file_checksum,
- dex_file_pointer,
- methods_offsets_pointer));
+ OatDexFile* oat_dex_file = new OatDexFile(this,
+ dex_file_location,
+ dex_file_checksum,
+ dex_file_pointer,
+ methods_offsets_pointer);
+ // Use a StringPiece backed by the oat_dex_file's internal std::string as the key.
+ StringPiece key(oat_dex_file->GetDexFileLocation());
+ oat_dex_files_.Put(key, oat_dex_file);
}
return true;
}
diff --git a/runtime/oat_file.h b/runtime/oat_file.h
index d703731..eae0418 100644
--- a/runtime/oat_file.h
+++ b/runtime/oat_file.h
@@ -20,6 +20,7 @@
#include <string>
#include <vector>
+#include "base/stringpiece.h"
#include "dex_file.h"
#include "invoke_type.h"
#include "mem_map.h"
@@ -206,11 +207,11 @@ class OatFile {
const byte* dex_file_pointer,
const uint32_t* oat_class_offsets_pointer);
- const OatFile* oat_file_;
- std::string dex_file_location_;
- uint32_t dex_file_location_checksum_;
- const byte* dex_file_pointer_;
- const uint32_t* oat_class_offsets_pointer_;
+ const OatFile* const oat_file_;
+ const std::string dex_file_location_;
+ const uint32_t dex_file_location_checksum_;
+ const byte* const dex_file_pointer_;
+ const uint32_t* const oat_class_offsets_pointer_;
friend class OatFile;
DISALLOW_COPY_AND_ASSIGN(OatDexFile);
@@ -270,7 +271,9 @@ class OatFile {
// dlopen handle during runtime.
void* dlopen_handle_;
- typedef SafeMap<std::string, const OatDexFile*> Table;
+ // NOTE: We use a StringPiece as the key type to avoid a memory allocation on every lookup
+ // with a const char* key.
+ typedef SafeMap<StringPiece, const OatDexFile*> Table;
Table oat_dex_files_;
friend class OatClass;
diff --git a/test/107-int-math2/src/Main.java b/test/107-int-math2/src/Main.java
index 1ce4a04..f0fe934 100644
--- a/test/107-int-math2/src/Main.java
+++ b/test/107-int-math2/src/Main.java
@@ -979,7 +979,7 @@ class Main extends IntMathBase {
if (lres == 0x96deff00aa010000L) {
System.out.println("longShiftTest PASSED");
} else {
- System.out.println("longShiftTest FAILED: " + res);
+ System.out.println("longShiftTest FAILED: " + lres);
failure = true;
}
diff --git a/test/700-LoadArgRegs/expected.txt b/test/700-LoadArgRegs/expected.txt
new file mode 100644
index 0000000..4908e5b
--- /dev/null
+++ b/test/700-LoadArgRegs/expected.txt
@@ -0,0 +1,75 @@
+11
+21, 22
+31, 32, 33
+41, 42, 43, 44
+51, 52, 53, 54, 55
+61, 62, 63, 64, 65, 66
+71, 72, 73, 74, 75, 76, 77
+81, 82, 83, 84, 85, 86, 87, 88
+91, 92, 93, 94, 95, 96, 97, 98, 99
+101, 102, 103, 104, 105, 106, 107, 108, 109, 110
+111, 112, 113, 114, 115, 116, 117, 118, 119, 1110, 1111
+121, 122, 123, 124, 125, 126, 127, 128, 129, 1210, 1211, 1212
+61, 62, 63, 64, 65, 66
+true
+true, false
+true, false, true
+true, false, true, false
+true, false, true, false, true
+true, false, true, false, true, false
+true, false, true, false, true, false, true
+a
+a, b
+a, b, c
+a, b, c, d
+a, b, c, d, e
+a, b, c, d, e, f
+a, b, c, d, e, f, g
+11
+11, b
+11, b, true
+11, b, true, 12
+11, b, true, 12, e
+11, b, true, 12, e, false
+11, b, true, 12, e, false, 13
+1.1
+2.1, 2.2
+3.1, 3.2, 3.3
+4.1, 4.2, 4.3, 4.4
+5.1, 5.2, 5.3, 5.4, 5.5
+6.1, 6.2, 6.3, 6.4, 6.5, 6.6
+7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7
+8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8
+9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9
+10.1, 10.2, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8, 10.9, 10.1
+1.01
+2.01, 2.02
+3.01, 3.02, 3.03
+4.01, 4.02, 4.03, 4.04
+5.01, 5.02, 5.03, 5.04, 5.05
+6.01, 6.02, 6.03, 6.04, 6.05, 6.06
+7.01, 7.02, 7.03, 7.04, 7.05, 7.06, 7.07
+8.01, 8.02, 8.03, 8.04, 8.05, 8.06, 8.07, 8.08
+9.01, 9.02, 9.03, 9.04, 9.05, 9.06, 9.07, 9.08, 9.09
+-1.1, 9.01, 9.02, 9.03, 9.04, 9.05, 9.06, 9.07, 9.08, 9.09
+10.01, 10.02, 10.03, 10.04, 10.05, 10.06, 10.07, 10.08, 10.09, 10.01
+100011
+100021, 100022
+100031, 100032, 100033
+100041, 100042, 100043, 100044
+100051, 100052, 100053, 100054, 100055
+100061, 100062, 100063, 100064, 100065, 100066
+100071, 100072, 100073, 100074, 100075, 100076, 100077
+100081, 100082, 100083, 100084, 100085, 100086, 100087, 100088
+100091, 100092, 100093, 100094, 100095, 100096, 100097, 100098, 100099
+100100100100011
+-11
+-21, -22
+-31, -32, -33
+-41, -42, -43, -44
+-51, -52, -53, -54, -55
+-61, -62, -63, -64, -65, -66
+-71, -72, -73, -74, -75, -76, -77
+-81, -82, -83, -84, -85, -86, -87, -88
+-91, -92, -93, -94, -95, -96, -97, -98, -99
+-1, -91, -92, -93, -94, -95, -96, -97, -98, -99
diff --git a/test/700-LoadArgRegs/info.txt b/test/700-LoadArgRegs/info.txt
new file mode 100644
index 0000000..dcaa46e
--- /dev/null
+++ b/test/700-LoadArgRegs/info.txt
@@ -0,0 +1 @@
+Simple tests for passing int/float/long/double arguments.
diff --git a/test/700-LoadArgRegs/src/Main.java b/test/700-LoadArgRegs/src/Main.java
new file mode 100644
index 0000000..281ab16
--- /dev/null
+++ b/test/700-LoadArgRegs/src/Main.java
@@ -0,0 +1,288 @@
+public class Main {
+
+ static void testI1(int p1) {
+ System.out.println(p1);
+ }
+ static void testI2(int p1, int p2) {
+ System.out.println(p1+", "+p2);
+ }
+ static void testI3(int p1, int p2, int p3) {
+ System.out.println(p1+", "+p2+", "+p3);
+ }
+ static void testI4(int p1, int p2, int p3, int p4) {
+ System.out.println(p1+", "+p2+", "+p3+", "+p4);
+ }
+ static void testI5(int p1, int p2, int p3, int p4, int p5) {
+ System.out.println(p1+", "+p2+", "+p3+", "+p4+", "+p5);
+ }
+ static void testI6(int p1, int p2, int p3, int p4, int p5, int p6) {
+ System.out.println(p1+", "+p2+", "+p3+", "+p4+", "+p5+", "+p6);
+ }
+ static void testI7(int p1, int p2, int p3, int p4, int p5, int p6, int p7) {
+ System.out.println(p1+", "+p2+", "+p3+", "+p4+", "+p5+", "+p6+", "+p7);
+ }
+ static void testI8(int p1, int p2, int p3, int p4, int p5, int p6, int p7, int p8) {
+ System.out.println(p1+", "+p2+", "+p3+", "+p4+", "+p5+", "+p6+", "+p7+", "+p8);
+ }
+ static void testI9(int p1, int p2, int p3, int p4, int p5, int p6, int p7, int p8, int p9) {
+ System.out.println(p1+", "+p2+", "+p3+", "+p4+", "+p5+", "+p6+", "+p7+", "+p8+", "+p9);
+ }
+ static void testI10(int p1, int p2, int p3, int p4, int p5, int p6, int p7, int p8, int p9, int p10) {
+ System.out.println(p1+", "+p2+", "+p3+", "+p4+", "+p5+", "+p6+", "+p7+", "+p8+", "+p9+", "+p10);
+ }
+ static void testI11(int p1, int p2, int p3, int p4, int p5, int p6, int p7, int p8, int p9, int p10, int p11) {
+ System.out.println(p1+", "+p2+", "+p3+", "+p4+", "+p5+", "+p6+", "+p7+", "+p8+", "+p9+", "+p10+", "+p11);
+ }
+ static void testI12(int p1, int p2, int p3, int p4, int p5, int p6, int p7, int p8, int p9, int p10, int p11, int p12) {
+ System.out.println(p1+", "+p2+", "+p3+", "+p4+", "+p5+", "+p6+", "+p7+", "+p8+", "+p9+", "+p10+", "+p11+", "+p12);
+ }
+ void testI6_nonstatic(int p1, int p2, int p3, int p4, int p5, int p6) {
+ System.out.println(p1+", "+p2+", "+p3+", "+p4+", "+p5+", "+p6);
+ }
+
+ static void testB1(boolean p1) {
+ System.out.println(p1);
+ }
+ static void testB2(boolean p1, boolean p2) {
+ System.out.println(p1+", "+p2);
+ }
+ static void testB3(boolean p1, boolean p2, boolean p3) {
+ System.out.println(p1+", "+p2+", "+p3);
+ }
+ static void testB4(boolean p1, boolean p2, boolean p3, boolean p4) {
+ System.out.println(p1+", "+p2+", "+p3+", "+p4);
+ }
+ static void testB5(boolean p1, boolean p2, boolean p3, boolean p4, boolean p5) {
+ System.out.println(p1+", "+p2+", "+p3+", "+p4+", "+p5);
+ }
+ static void testB6(boolean p1, boolean p2, boolean p3, boolean p4, boolean p5, boolean p6) {
+ System.out.println(p1+", "+p2+", "+p3+", "+p4+", "+p5+", "+p6);
+ }
+ static void testB7(boolean p1, boolean p2, boolean p3, boolean p4, boolean p5, boolean p6, boolean p7) {
+ System.out.println(p1+", "+p2+", "+p3+", "+p4+", "+p5+", "+p6+", "+p7);
+ }
+
+ static void testO1(Object p1) {
+ System.out.println(p1);
+ }
+ static void testO2(Object p1, Object p2) {
+ System.out.println(p1+", "+p2);
+ }
+ static void testO3(Object p1, Object p2, Object p3) {
+ System.out.println(p1+", "+p2+", "+p3);
+ }
+ static void testO4(Object p1, Object p2, Object p3, Object p4) {
+ System.out.println(p1+", "+p2+", "+p3+", "+p4);
+ }
+ static void testO5(Object p1, Object p2, Object p3, Object p4, Object p5) {
+ System.out.println(p1+", "+p2+", "+p3+", "+p4+", "+p5);
+ }
+ static void testO6(Object p1, Object p2, Object p3, Object p4, Object p5, Object p6) {
+ System.out.println(p1+", "+p2+", "+p3+", "+p4+", "+p5+", "+p6);
+ }
+ static void testO7(Object p1, Object p2, Object p3, Object p4, Object p5, Object p6, Object p7) {
+ System.out.println(p1+", "+p2+", "+p3+", "+p4+", "+p5+", "+p6+", "+p7);
+ }
+
+ static void testIOB1(int p1) {
+ System.out.println(p1);
+ }
+ static void testIOB2(int p1, Object p2) {
+ System.out.println(p1+", "+p2);
+ }
+ static void testIOB3(int p1, Object p2, boolean p3) {
+ System.out.println(p1+", "+p2+", "+p3);
+ }
+ static void testIOB4(int p1, Object p2, boolean p3, int p4) {
+ System.out.println(p1+", "+p2+", "+p3+", "+p4);
+ }
+ static void testIOB5(int p1, Object p2, boolean p3, int p4, Object p5) {
+ System.out.println(p1+", "+p2+", "+p3+", "+p4+", "+p5);
+ }
+ static void testIOB6(int p1, Object p2, boolean p3, int p4, Object p5, boolean p6) {
+ System.out.println(p1+", "+p2+", "+p3+", "+p4+", "+p5+", "+p6);
+ }
+ static void testIOB7(int p1, Object p2, boolean p3, int p4, Object p5, boolean p6, int p7) {
+ System.out.println(p1+", "+p2+", "+p3+", "+p4+", "+p5+", "+p6+", "+p7);
+ }
+
+ static void testF1(float p1) {
+ System.out.println(p1);
+ }
+ static void testF2(float p1, float p2) {
+ System.out.println(p1+", "+p2);
+ }
+ static void testF3(float p1, float p2, float p3) {
+ System.out.println(p1+", "+p2+", "+p3);
+ }
+ static void testF4(float p1, float p2, float p3, float p4) {
+ System.out.println(p1+", "+p2+", "+p3+", "+p4);
+ }
+ static void testF5(float p1, float p2, float p3, float p4, float p5) {
+ System.out.println(p1+", "+p2+", "+p3+", "+p4+", "+p5);
+ }
+ static void testF6(float p1, float p2, float p3, float p4, float p5, float p6) {
+ System.out.println(p1+", "+p2+", "+p3+", "+p4+", "+p5+", "+p6);
+ }
+ static void testF7(float p1, float p2, float p3, float p4, float p5, float p6, float p7) {
+ System.out.println(p1+", "+p2+", "+p3+", "+p4+", "+p5+", "+p6+", "+p7);
+ }
+ static void testF8(float p1, float p2, float p3, float p4, float p5, float p6, float p7, float p8) {
+ System.out.println(p1+", "+p2+", "+p3+", "+p4+", "+p5+", "+p6+", "+p7+", "+p8);
+ }
+ static void testF9(float p1, float p2, float p3, float p4, float p5, float p6, float p7, float p8, float p9) {
+ System.out.println(p1+", "+p2+", "+p3+", "+p4+", "+p5+", "+p6+", "+p7+", "+p8+", "+p9);
+ }
+ static void testF10(float p1, float p2, float p3, float p4, float p5, float p6, float p7, float p8, float p9, float p10) {
+ System.out.println(p1+", "+p2+", "+p3+", "+p4+", "+p5+", "+p6+", "+p7+", "+p8+", "+p9+", "+p10);
+ }
+
+ static void testD1 (double p1) { System.out.println(p1); }
+ static void testD2 (double p1, double p2) { System.out.println(p1+", "+p2); }
+ static void testD3 (double p1, double p2, double p3) { System.out.println(p1+", "+p2+", "+p3); }
+ static void testD4 (double p1, double p2, double p3, double p4) { System.out.println(p1+", "+p2+", "+p3+", "+p4); }
+ static void testD5 (double p1, double p2, double p3, double p4, double p5) { System.out.println(p1+", "+p2+", "+p3+", "+p4+", "+p5); }
+ static void testD6 (double p1, double p2, double p3, double p4, double p5, double p6) { System.out.println(p1+", "+p2+", "+p3+", "+p4+", "+p5+", "+p6); }
+ static void testD7 (double p1, double p2, double p3, double p4, double p5, double p6, double p7) { System.out.println(p1+", "+p2+", "+p3+", "+p4+", "+p5+", "+p6+", "+p7); }
+ static void testD8 (double p1, double p2, double p3, double p4, double p5, double p6, double p7, double p8) { System.out.println(p1+", "+p2+", "+p3+", "+p4+", "+p5+", "+p6+", "+p7+", "+p8); }
+ static void testD9 (double p1, double p2, double p3, double p4, double p5, double p6, double p7, double p8, double p9) { System.out.println(p1+", "+p2+", "+p3+", "+p4+", "+p5+", "+p6+", "+p7+", "+p8+", "+p9); }
+ static void testD9f (float p0, double p1, double p2, double p3, double p4, double p5, double p6, double p7, double p8, double p9) { System.out.println(p0+", "+p1+", "+p2+", "+p3+", "+p4+", "+p5+", "+p6+", "+p7+", "+p8+", "+p9); }
+ static void testD10(double p1, double p2, double p3, double p4, double p5, double p6, double p7, double p8, double p9, double p10) { System.out.println(p1+", "+p2+", "+p3+", "+p4+", "+p5+", "+p6+", "+p7+", "+p8+", "+p9+", "+p10); }
+
+ static void testI() {
+ testI1(11);
+ testI2(21, 22);
+ testI3(31, 32, 33);
+ testI4(41, 42, 43, 44);
+ testI5(51, 52, 53, 54, 55);
+ testI6(61, 62, 63, 64, 65, 66);
+ testI7(71, 72, 73, 74, 75, 76, 77);
+ testI8(81, 82, 83, 84, 85, 86, 87, 88);
+ testI9(91, 92, 93, 94, 95, 96, 97, 98, 99);
+ testI10(101, 102, 103, 104, 105, 106, 107, 108, 109, 110);
+ testI11(111, 112, 113, 114, 115, 116, 117, 118, 119, 1110, 1111);
+ testI12(121, 122, 123, 124, 125, 126, 127, 128, 129, 1210, 1211, 1212);
+ new Main().testI6_nonstatic(61, 62, 63, 64, 65, 66);
+ }
+
+ static void testB() {
+ testB1(true);
+ testB2(true, false);
+ testB3(true, false, true);
+ testB4(true, false, true, false);
+ testB5(true, false, true, false, true);
+ testB6(true, false, true, false, true, false);
+ testB7(true, false, true, false, true, false, true);
+ }
+
+ static void testO() {
+ testO1("a");
+ testO2("a", "b");
+ testO3("a", "b", "c");
+ testO4("a", "b", "c", "d");
+ testO5("a", "b", "c", "d", "e");
+ testO6("a", "b", "c", "d", "e", "f");
+ testO7("a", "b", "c", "d", "e", "f", "g");
+ }
+
+ static void testIOB() {
+ testIOB1(11);
+ testIOB2(11, "b");
+ testIOB3(11, "b", true);
+ testIOB4(11, "b", true, 12);
+ testIOB5(11, "b", true, 12, "e");
+ testIOB6(11, "b", true, 12, "e", false);
+ testIOB7(11, "b", true, 12, "e", false, 13);
+ }
+
+ static void testF() {
+ testF1(1.1f);
+ testF2(2.1f, 2.2f);
+ testF3(3.1f, 3.2f, 3.3f);
+ testF4(4.1f, 4.2f, 4.3f, 4.4f);
+ testF5(5.1f, 5.2f, 5.3f, 5.4f, 5.5f);
+ testF6(6.1f, 6.2f, 6.3f, 6.4f, 6.5f, 6.6f);
+ testF7(7.1f, 7.2f, 7.3f, 7.4f, 7.5f, 7.6f, 7.7f);
+ testF8(8.1f, 8.2f, 8.3f, 8.4f, 8.5f, 8.6f, 8.7f, 8.8f);
+ testF9(9.1f, 9.2f, 9.3f, 9.4f, 9.5f, 9.6f, 9.7f, 9.8f, 9.9f);
+ testF10(10.1f, 10.2f, 10.3f, 10.4f, 10.5f, 10.6f, 10.7f, 10.8f, 10.9f, 10.1f);
+ }
+
+ static void testD() {
+
+ testD1(1.01);
+ testD2(2.01, 2.02);
+ testD3(3.01, 3.02, 3.03);
+ testD4(4.01, 4.02, 4.03, 4.04);
+ testD5(5.01, 5.02, 5.03, 5.04, 5.05);
+ testD6(6.01, 6.02, 6.03, 6.04, 6.05, 6.06);
+ testD7(7.01, 7.02, 7.03, 7.04, 7.05, 7.06, 7.07);
+ testD8(8.01, 8.02, 8.03, 8.04, 8.05, 8.06, 8.07, 8.08);
+ testD9(9.01, 9.02, 9.03, 9.04, 9.05, 9.06, 9.07, 9.08, 9.09);
+ testD9f(-1.1f, 9.01, 9.02, 9.03, 9.04, 9.05, 9.06, 9.07, 9.08, 9.09);
+
+ // TODO: 10.01 as first arg fails: 10.009994506835938
+ testD10(10.01, 10.02, 10.03, 10.04, 10.05, 10.06, 10.07, 10.08, 10.09, 10.01);
+ }
+
+ static void testL1(long p1) { System.out.println(p1); }
+// static void testL2x(long p1, long p2) { testL2(p1+p2, p2); } // TODO(64) GenAddLong 64BIT_TEMP
+ static void testL2(long p1, long p2) { System.out.println(p1+", "+p2); }
+ static void testL3(long p1, long p2, long p3) { System.out.println(p1+", "+p2+", "+p3); }
+ static void testL4(long p1, long p2, long p3, long p4) { System.out.println(p1+", "+p2+", "+p3+", "+p4); }
+ static void testL5(long p1, long p2, long p3, long p4, long p5) { System.out.println(p1+", "+p2+", "+p3+", "+p4+", "+p5); }
+ static void testL6(long p1, long p2, long p3, long p4, long p5, long p6) { System.out.println(p1+", "+p2+", "+p3+", "+p4+", "+p5+", "+p6); }
+ static void testL7(long p1, long p2, long p3, long p4, long p5, long p6, long p7) { System.out.println(p1+", "+p2+", "+p3+", "+p4+", "+p5+", "+p6+", "+p7); }
+ static void testL8(long p1, long p2, long p3, long p4, long p5, long p6, long p7, long p8) { System.out.println(p1+", "+p2+", "+p3+", "+p4+", "+p5+", "+p6+", "+p7+", "+p8); }
+ static void testL9(long p1, long p2, long p3, long p4, long p5, long p6, long p7, long p8, long p9) { System.out.println(p1+", "+p2+", "+p3+", "+p4+", "+p5+", "+p6+", "+p7+", "+p8+", "+p9); }
+
+ static void testL9i(int p0, long p1, long p2, long p3, long p4, long p5, long p6, long p7, long p8, long p9) { System.out.println(p0+", "+p1+", "+p2+", "+p3+", "+p4+", "+p5+", "+p6+", "+p7+", "+p8+", "+p9); }
+
+ static void testL() {
+// testL2x(100021, 100022);
+ testL1(100011);
+ testL2(100021, 100022);
+ testL3(100031, 100032, 100033);
+ testL4(100041, 100042, 100043, 100044);
+ testL5(100051, 100052, 100053, 100054, 100055);
+ testL6(100061, 100062, 100063, 100064, 100065, 100066);
+ testL7(100071, 100072, 100073, 100074, 100075, 100076, 100077);
+ testL8(100081, 100082, 100083, 100084, 100085, 100086, 100087, 100088);
+ testL9(100091, 100092, 100093, 100094, 100095, 100096, 100097, 100098, 100099);
+ }
+
+ static void testLL() {
+ testL1(100100100100011L);
+
+ testL1(-11L);
+ testL2(-21L, -22L);
+ testL3(-31L, -32L, -33L);
+ testL4(-41L, -42L, -43L, -44L);
+ testL5(-51L, -52L, -53L, -54L, -55L);
+ testL6(-61L, -62L, -63L, -64L, -65L, -66L);
+ testL7(-71L, -72L, -73L, -74L, -75L, -76L, -77L);
+ testL8(-81L, -82L, -83L, -84L, -85L, -86L, -87L, -88L);
+ testL9(-91L, -92L, -93L, -94L, -95L, -96L, -97L, -98L, -99L);
+ testL9i(-1, -91L, -92L, -93L, -94L, -95L, -96L, -97L, -98L, -99L);
+
+ // TODO(64) GenAddLong 64BIT_TEMP
+// testL2x(100100100100011L, 1L);
+// testL2x(100100100100011L, 100100100100011L);
+ }
+
+ static public void main(String[] args) throws Exception {
+
+ testI();
+ testB();
+ testO();
+ testIOB();
+ testF();
+
+ testD();
+
+ testL();
+
+ testLL();
+
+ }
+}