summaryrefslogtreecommitdiffstats
path: root/runtime/native/java_lang_System.cc
diff options
context:
space:
mode:
Diffstat (limited to 'runtime/native/java_lang_System.cc')
-rw-r--r--runtime/native/java_lang_System.cc334
1 files changed, 334 insertions, 0 deletions
diff --git a/runtime/native/java_lang_System.cc b/runtime/native/java_lang_System.cc
new file mode 100644
index 0000000..2462f2f
--- /dev/null
+++ b/runtime/native/java_lang_System.cc
@@ -0,0 +1,334 @@
+/*
+ * Copyright (C) 2008 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "common_throws.h"
+#include "gc/accounting/card_table-inl.h"
+#include "jni_internal.h"
+#include "mirror/array.h"
+#include "mirror/class.h"
+#include "mirror/class-inl.h"
+#include "mirror/object-inl.h"
+#include "mirror/object_array-inl.h"
+#include "scoped_thread_state_change.h"
+
+/*
+ * We make guarantees about the atomicity of accesses to primitive
+ * variables. These guarantees also apply to elements of arrays.
+ * In particular, 8-bit, 16-bit, and 32-bit accesses must be atomic and
+ * must not cause "word tearing". Accesses to 64-bit array elements must
+ * either be atomic or treated as two 32-bit operations. References are
+ * always read and written atomically, regardless of the number of bits
+ * used to represent them.
+ *
+ * We can't rely on standard libc functions like memcpy(3) and memmove(3)
+ * in our implementation of System.arraycopy, because they may copy
+ * byte-by-byte (either for the full run or for "unaligned" parts at the
+ * start or end). We need to use functions that guarantee 16-bit or 32-bit
+ * atomicity as appropriate.
+ *
+ * System.arraycopy() is heavily used, so having an efficient implementation
+ * is important. The bionic libc provides a platform-optimized memory move
+ * function that should be used when possible. If it's not available,
+ * the trivial "reference implementation" versions below can be used until
+ * a proper version can be written.
+ *
+ * For these functions, The caller must guarantee that dst/src are aligned
+ * appropriately for the element type, and that n is a multiple of the
+ * element size.
+ */
+
+/*
+ * Works like memmove(), except:
+ * - if all arguments are at least 32-bit aligned, we guarantee that we
+ * will use operations that preserve atomicity of 32-bit values
+ * - if not, we guarantee atomicity of 16-bit values
+ *
+ * If all three arguments are not at least 16-bit aligned, the behavior
+ * of this function is undefined. (We could remove this restriction by
+ * testing for unaligned values and punting to memmove(), but that's
+ * not currently useful.)
+ *
+ * TODO: add loop for 64-bit alignment
+ * TODO: use __builtin_prefetch
+ * TODO: write ARM/MIPS/x86 optimized versions
+ */
+void MemmoveWords(void* dst, const void* src, size_t n) {
+ DCHECK_EQ((((uintptr_t) dst | (uintptr_t) src | n) & 0x01), 0U);
+
+ char* d = reinterpret_cast<char*>(dst);
+ const char* s = reinterpret_cast<const char*>(src);
+ size_t copyCount;
+
+ // If the source and destination pointers are the same, this is
+ // an expensive no-op. Testing for an empty move now allows us
+ // to skip a check later.
+ if (n == 0 || d == s) {
+ return;
+ }
+
+ // Determine if the source and destination buffers will overlap if
+ // we copy data forward (i.e. *dst++ = *src++).
+ //
+ // It's okay if the destination buffer starts before the source and
+ // there is some overlap, because the reader is always ahead of the
+ // writer.
+ if (LIKELY((d < s) || ((size_t)(d - s) >= n))) {
+ // Copy forward. We prefer 32-bit loads and stores even for 16-bit
+ // data, so sort that out.
+ if (((reinterpret_cast<uintptr_t>(d) | reinterpret_cast<uintptr_t>(s)) & 0x03) != 0) {
+ // Not 32-bit aligned. Two possibilities:
+ // (1) Congruent, we can align to 32-bit by copying one 16-bit val
+ // (2) Non-congruent, we can do one of:
+ // a. copy whole buffer as a series of 16-bit values
+ // b. load/store 32 bits, using shifts to ensure alignment
+ // c. just copy the as 32-bit values and assume the CPU
+ // will do a reasonable job
+ //
+ // We're currently using (a), which is suboptimal.
+ if (((reinterpret_cast<uintptr_t>(d) ^ reinterpret_cast<uintptr_t>(s)) & 0x03) != 0) {
+ copyCount = n;
+ } else {
+ copyCount = 2;
+ }
+ n -= copyCount;
+ copyCount /= sizeof(uint16_t);
+
+ while (copyCount--) {
+ *reinterpret_cast<uint16_t*>(d) = *reinterpret_cast<const uint16_t*>(s);
+ d += sizeof(uint16_t);
+ s += sizeof(uint16_t);
+ }
+ }
+
+ // Copy 32-bit aligned words.
+ copyCount = n / sizeof(uint32_t);
+ while (copyCount--) {
+ *reinterpret_cast<uint32_t*>(d) = *reinterpret_cast<const uint32_t*>(s);
+ d += sizeof(uint32_t);
+ s += sizeof(uint32_t);
+ }
+
+ // Check for leftovers. Either we finished exactly, or we have one remaining 16-bit chunk.
+ if ((n & 0x02) != 0) {
+ *(uint16_t*)d = *(uint16_t*)s;
+ }
+ } else {
+ // Copy backward, starting at the end.
+ d += n;
+ s += n;
+
+ if (((reinterpret_cast<uintptr_t>(d) | reinterpret_cast<uintptr_t>(s)) & 0x03) != 0) {
+ // try for 32-bit alignment.
+ if (((reinterpret_cast<uintptr_t>(d) ^ reinterpret_cast<uintptr_t>(s)) & 0x03) != 0) {
+ copyCount = n;
+ } else {
+ copyCount = 2;
+ }
+ n -= copyCount;
+ copyCount /= sizeof(uint16_t);
+
+ while (copyCount--) {
+ d -= sizeof(uint16_t);
+ s -= sizeof(uint16_t);
+ *reinterpret_cast<uint16_t*>(d) = *reinterpret_cast<const uint16_t*>(s);
+ }
+ }
+
+ // Copy 32-bit aligned words.
+ copyCount = n / sizeof(uint32_t);
+ while (copyCount--) {
+ d -= sizeof(uint32_t);
+ s -= sizeof(uint32_t);
+ *reinterpret_cast<uint32_t*>(d) = *reinterpret_cast<const uint32_t*>(s);
+ }
+
+ // Copy leftovers.
+ if ((n & 0x02) != 0) {
+ d -= sizeof(uint16_t);
+ s -= sizeof(uint16_t);
+ *reinterpret_cast<uint16_t*>(d) = *reinterpret_cast<const uint16_t*>(s);
+ }
+ }
+}
+
+#define move16 MemmoveWords
+#define move32 MemmoveWords
+
+namespace art {
+
+static void ThrowArrayStoreException_NotAnArray(const char* identifier, mirror::Object* array)
+ SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
+ std::string actualType(PrettyTypeOf(array));
+ Thread* self = Thread::Current();
+ ThrowLocation throw_location = self->GetCurrentLocationForThrow();
+ self->ThrowNewExceptionF(throw_location, "Ljava/lang/ArrayStoreException;",
+ "%s of type %s is not an array", identifier, actualType.c_str());
+}
+
+static void System_arraycopy(JNIEnv* env, jclass, jobject javaSrc, jint srcPos, jobject javaDst, jint dstPos, jint length) {
+ ScopedObjectAccess soa(env);
+
+ // Null pointer checks.
+ if (UNLIKELY(javaSrc == NULL)) {
+ ThrowNullPointerException(NULL, "src == null");
+ return;
+ }
+ if (UNLIKELY(javaDst == NULL)) {
+ ThrowNullPointerException(NULL, "dst == null");
+ return;
+ }
+
+ // Make sure source and destination are both arrays.
+ mirror::Object* srcObject = soa.Decode<mirror::Object*>(javaSrc);
+ mirror::Object* dstObject = soa.Decode<mirror::Object*>(javaDst);
+ if (UNLIKELY(!srcObject->IsArrayInstance())) {
+ ThrowArrayStoreException_NotAnArray("source", srcObject);
+ return;
+ }
+ if (UNLIKELY(!dstObject->IsArrayInstance())) {
+ ThrowArrayStoreException_NotAnArray("destination", dstObject);
+ return;
+ }
+ mirror::Array* srcArray = srcObject->AsArray();
+ mirror::Array* dstArray = dstObject->AsArray();
+ mirror::Class* srcComponentType = srcArray->GetClass()->GetComponentType();
+ mirror::Class* dstComponentType = dstArray->GetClass()->GetComponentType();
+
+ // Bounds checking.
+ if (UNLIKELY(srcPos < 0 || dstPos < 0 || length < 0 || srcPos > srcArray->GetLength() - length || dstPos > dstArray->GetLength() - length)) {
+ ThrowLocation throw_location = soa.Self()->GetCurrentLocationForThrow();
+ soa.Self()->ThrowNewExceptionF(throw_location, "Ljava/lang/ArrayIndexOutOfBoundsException;",
+ "src.length=%d srcPos=%d dst.length=%d dstPos=%d length=%d",
+ srcArray->GetLength(), srcPos, dstArray->GetLength(), dstPos, length);
+ return;
+ }
+
+ // Handle primitive arrays.
+ if (srcComponentType->IsPrimitive() || dstComponentType->IsPrimitive()) {
+ // If one of the arrays holds a primitive type the other array must hold the exact same type.
+ if (UNLIKELY(srcComponentType != dstComponentType)) {
+ std::string srcType(PrettyTypeOf(srcArray));
+ std::string dstType(PrettyTypeOf(dstArray));
+ ThrowLocation throw_location = soa.Self()->GetCurrentLocationForThrow();
+ soa.Self()->ThrowNewExceptionF(throw_location, "Ljava/lang/ArrayStoreException;",
+ "Incompatible types: src=%s, dst=%s",
+ srcType.c_str(), dstType.c_str());
+ return;
+ }
+
+ size_t width = srcArray->GetClass()->GetComponentSize();
+ uint8_t* dstBytes = reinterpret_cast<uint8_t*>(dstArray->GetRawData(width));
+ const uint8_t* srcBytes = reinterpret_cast<const uint8_t*>(srcArray->GetRawData(width));
+
+ switch (width) {
+ case 1:
+ memmove(dstBytes + dstPos, srcBytes + srcPos, length);
+ break;
+ case 2:
+ move16(dstBytes + dstPos * 2, srcBytes + srcPos * 2, length * 2);
+ break;
+ case 4:
+ move32(dstBytes + dstPos * 4, srcBytes + srcPos * 4, length * 4);
+ break;
+ case 8:
+ // We don't need to guarantee atomicity of the entire 64-bit word.
+ move32(dstBytes + dstPos * 8, srcBytes + srcPos * 8, length * 8);
+ break;
+ default:
+ LOG(FATAL) << "Unknown primitive array type: " << PrettyTypeOf(srcArray);
+ }
+
+ return;
+ }
+
+ // Neither class is primitive. Are the types trivially compatible?
+ const size_t width = sizeof(mirror::Object*);
+ uint8_t* dstBytes = reinterpret_cast<uint8_t*>(dstArray->GetRawData(width));
+ const uint8_t* srcBytes = reinterpret_cast<const uint8_t*>(srcArray->GetRawData(width));
+ if (dstArray == srcArray || dstComponentType->IsAssignableFrom(srcComponentType)) {
+ // Yes. Bulk copy.
+ COMPILE_ASSERT(sizeof(width) == sizeof(uint32_t), move32_assumes_Object_references_are_32_bit);
+ move32(dstBytes + dstPos * width, srcBytes + srcPos * width, length * width);
+ Runtime::Current()->GetHeap()->WriteBarrierArray(dstArray, dstPos, length);
+ return;
+ }
+
+ // The arrays are not trivially compatible. However, we may still be able to copy some or all of
+ // the elements if the source objects are compatible (for example, copying an Object[] to
+ // String[], the Objects being copied might actually be Strings).
+ // We can't do a bulk move because that would introduce a check-use race condition, so we copy
+ // elements one by one.
+
+ // We already dealt with overlapping copies, so we don't need to cope with that case below.
+ CHECK_NE(dstArray, srcArray);
+
+ mirror::Object* const * srcObjects =
+ reinterpret_cast<mirror::Object* const *>(srcBytes + srcPos * width);
+ mirror::Object** dstObjects = reinterpret_cast<mirror::Object**>(dstBytes + dstPos * width);
+ mirror::Class* dstClass = dstArray->GetClass()->GetComponentType();
+
+ // We want to avoid redundant IsAssignableFrom checks where possible, so we cache a class that
+ // we know is assignable to the destination array's component type.
+ mirror::Class* lastAssignableElementClass = dstClass;
+
+ mirror::Object* o = NULL;
+ int i = 0;
+ for (; i < length; ++i) {
+ o = srcObjects[i];
+ if (o != NULL) {
+ mirror::Class* oClass = o->GetClass();
+ if (lastAssignableElementClass == oClass) {
+ dstObjects[i] = o;
+ } else if (dstClass->IsAssignableFrom(oClass)) {
+ lastAssignableElementClass = oClass;
+ dstObjects[i] = o;
+ } else {
+ // Can't put this element into the array.
+ break;
+ }
+ } else {
+ dstObjects[i] = NULL;
+ }
+ }
+
+ Runtime::Current()->GetHeap()->WriteBarrierArray(dstArray, dstPos, length);
+ if (UNLIKELY(i != length)) {
+ std::string actualSrcType(PrettyTypeOf(o));
+ std::string dstType(PrettyTypeOf(dstArray));
+ ThrowLocation throw_location = soa.Self()->GetCurrentLocationForThrow();
+ soa.Self()->ThrowNewExceptionF(throw_location, "Ljava/lang/ArrayStoreException;",
+ "source[%d] of type %s cannot be stored in destination array of type %s",
+ srcPos + i, actualSrcType.c_str(), dstType.c_str());
+ return;
+ }
+}
+
+static jint System_identityHashCode(JNIEnv* env, jclass, jobject javaObject) {
+ ScopedObjectAccess soa(env);
+ mirror::Object* o = soa.Decode<mirror::Object*>(javaObject);
+ return static_cast<jint>(o->IdentityHashCode());
+}
+
+static JNINativeMethod gMethods[] = {
+ NATIVE_METHOD(System, arraycopy, "(Ljava/lang/Object;ILjava/lang/Object;II)V"),
+ NATIVE_METHOD(System, identityHashCode, "(Ljava/lang/Object;)I"),
+};
+
+void register_java_lang_System(JNIEnv* env) {
+ REGISTER_NATIVE_METHODS("java/lang/System");
+}
+
+} // namespace art