/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "common_compiler_test.h" #if defined(__arm__) #include #endif #include #include "class_linker.h" #include "compiled_method.h" #include "dex/quick_compiler_callbacks.h" #include "dex/verification_results.h" #include "dex/quick/dex_file_to_method_inliner_map.h" #include "driver/compiler_driver.h" #include "entrypoints/entrypoint_utils.h" #include "interpreter/interpreter.h" #include "mirror/art_method.h" #include "mirror/dex_cache.h" #include "mirror/object-inl.h" #include "scoped_thread_state_change.h" #include "thread-inl.h" #include "utils.h" namespace art { // Normally the ClassLinker supplies this. extern "C" void art_quick_generic_jni_trampoline(mirror::ArtMethod*); #if defined(__arm__) // A signal handler called when have an illegal instruction. We record the fact in // a global boolean and then increment the PC in the signal context to return to // the next instruction. We know the instruction is an sdiv (4 bytes long). static void baddivideinst(int signo, siginfo *si, void *data) { UNUSED(signo); UNUSED(si); struct ucontext *uc = (struct ucontext *)data; struct sigcontext *sc = &uc->uc_mcontext; sc->arm_r0 = 0; // set R0 to #0 to signal error sc->arm_pc += 4; // skip offending instruction } // This is in arch/arm/arm_sdiv.S. It does the following: // mov r1,#1 // sdiv r0,r1,r1 // bx lr // // the result will be the value 1 if sdiv is supported. If it is not supported // a SIGILL signal will be raised and the signal handler (baddivideinst) called. // The signal handler sets r0 to #0 and then increments pc beyond the failed instruction. // Thus if the instruction is not supported, the result of this function will be #0 extern "C" bool CheckForARMSDIVInstruction(); static InstructionSetFeatures GuessInstructionFeatures() { InstructionSetFeatures f; // Uncomment this for processing of /proc/cpuinfo. if (false) { // Look in /proc/cpuinfo for features we need. Only use this when we can guarantee that // the kernel puts the appropriate feature flags in here. Sometimes it doesn't. std::ifstream in("/proc/cpuinfo"); if (in) { while (!in.eof()) { std::string line; std::getline(in, line); if (!in.eof()) { if (line.find("Features") != std::string::npos) { if (line.find("idivt") != std::string::npos) { f.SetHasDivideInstruction(true); } } } in.close(); } } else { LOG(INFO) << "Failed to open /proc/cpuinfo"; } } // See if have a sdiv instruction. Register a signal handler and try to execute // an sdiv instruction. If we get a SIGILL then it's not supported. We can't use // the /proc/cpuinfo method for this because Krait devices don't always put the idivt // feature in the list. struct sigaction sa, osa; sa.sa_flags = SA_ONSTACK | SA_RESTART | SA_SIGINFO; sa.sa_sigaction = baddivideinst; sigaction(SIGILL, &sa, &osa); if (CheckForARMSDIVInstruction()) { f.SetHasDivideInstruction(true); } // Restore the signal handler. sigaction(SIGILL, &osa, nullptr); // Other feature guesses in here. return f; } #endif // Given a set of instruction features from the build, parse it. The // input 'str' is a comma separated list of feature names. Parse it and // return the InstructionSetFeatures object. static InstructionSetFeatures ParseFeatureList(std::string str) { InstructionSetFeatures result; typedef std::vector FeatureList; FeatureList features; Split(str, ',', features); for (FeatureList::iterator i = features.begin(); i != features.end(); i++) { std::string feature = Trim(*i); if (feature == "default") { // Nothing to do. } else if (feature == "div") { // Supports divide instruction. result.SetHasDivideInstruction(true); } else if (feature == "nodiv") { // Turn off support for divide instruction. result.SetHasDivideInstruction(false); } else { LOG(FATAL) << "Unknown instruction set feature: '" << feature << "'"; } } // Others... return result; } CommonCompilerTest::CommonCompilerTest() {} CommonCompilerTest::~CommonCompilerTest() {} OatFile::OatMethod CommonCompilerTest::CreateOatMethod(const void* code, const uint8_t* gc_map) { CHECK(code != nullptr); const byte* base; uint32_t code_offset, gc_map_offset; if (gc_map == nullptr) { base = reinterpret_cast(code); // Base of data points at code. base -= kPointerSize; // Move backward so that code_offset != 0. code_offset = kPointerSize; gc_map_offset = 0; } else { // TODO: 64bit support. base = nullptr; // Base of data in oat file, ie 0. code_offset = PointerToLowMemUInt32(code); gc_map_offset = PointerToLowMemUInt32(gc_map); } return OatFile::OatMethod(base, code_offset, gc_map_offset); } void CommonCompilerTest::MakeExecutable(mirror::ArtMethod* method) { CHECK(method != nullptr); const CompiledMethod* compiled_method = nullptr; if (!method->IsAbstract()) { mirror::DexCache* dex_cache = method->GetDeclaringClass()->GetDexCache(); const DexFile& dex_file = *dex_cache->GetDexFile(); compiled_method = compiler_driver_->GetCompiledMethod(MethodReference(&dex_file, method->GetDexMethodIndex())); } if (compiled_method != nullptr) { const std::vector* code = compiled_method->GetQuickCode(); const void* code_ptr; if (code != nullptr) { uint32_t code_size = code->size(); CHECK_NE(0u, code_size); const std::vector& vmap_table = compiled_method->GetVmapTable(); uint32_t vmap_table_offset = vmap_table.empty() ? 0u : sizeof(OatQuickMethodHeader) + vmap_table.size(); const std::vector& mapping_table = compiled_method->GetMappingTable(); uint32_t mapping_table_offset = mapping_table.empty() ? 0u : sizeof(OatQuickMethodHeader) + vmap_table.size() + mapping_table.size(); OatQuickMethodHeader method_header(mapping_table_offset, vmap_table_offset, compiled_method->GetFrameSizeInBytes(), compiled_method->GetCoreSpillMask(), compiled_method->GetFpSpillMask(), code_size); header_code_and_maps_chunks_.push_back(std::vector()); std::vector* chunk = &header_code_and_maps_chunks_.back(); size_t size = sizeof(method_header) + code_size + vmap_table.size() + mapping_table.size(); size_t code_offset = compiled_method->AlignCode(size - code_size); size_t padding = code_offset - (size - code_size); chunk->reserve(padding + size); chunk->resize(sizeof(method_header)); memcpy(&(*chunk)[0], &method_header, sizeof(method_header)); chunk->insert(chunk->begin(), vmap_table.begin(), vmap_table.end()); chunk->insert(chunk->begin(), mapping_table.begin(), mapping_table.end()); chunk->insert(chunk->begin(), padding, 0); chunk->insert(chunk->end(), code->begin(), code->end()); CHECK_EQ(padding + size, chunk->size()); code_ptr = &(*chunk)[code_offset]; } else { code = compiled_method->GetPortableCode(); code_ptr = &(*code)[0]; } MakeExecutable(code_ptr, code->size()); const void* method_code = CompiledMethod::CodePointer(code_ptr, compiled_method->GetInstructionSet()); LOG(INFO) << "MakeExecutable " << PrettyMethod(method) << " code=" << method_code; OatFile::OatMethod oat_method = CreateOatMethod(method_code, nullptr); oat_method.LinkMethod(method); method->SetEntryPointFromInterpreter(artInterpreterToCompiledCodeBridge); } else { // No code? You must mean to go into the interpreter. // Or the generic JNI... if (!method->IsNative()) { const void* method_code = kUsePortableCompiler ? GetPortableToInterpreterBridge() : GetQuickToInterpreterBridge(); OatFile::OatMethod oat_method = CreateOatMethod(method_code, nullptr); oat_method.LinkMethod(method); method->SetEntryPointFromInterpreter(interpreter::artInterpreterToInterpreterBridge); } else { const void* method_code = reinterpret_cast(art_quick_generic_jni_trampoline); OatFile::OatMethod oat_method = CreateOatMethod(method_code, nullptr); oat_method.LinkMethod(method); method->SetEntryPointFromInterpreter(artInterpreterToCompiledCodeBridge); } } // Create bridges to transition between different kinds of compiled bridge. if (method->GetEntryPointFromPortableCompiledCode() == nullptr) { method->SetEntryPointFromPortableCompiledCode(GetPortableToQuickBridge()); } else { CHECK(method->GetEntryPointFromQuickCompiledCode() == nullptr); method->SetEntryPointFromQuickCompiledCode(GetQuickToPortableBridge()); method->SetIsPortableCompiled(); } } void CommonCompilerTest::MakeExecutable(const void* code_start, size_t code_length) { CHECK(code_start != nullptr); CHECK_NE(code_length, 0U); uintptr_t data = reinterpret_cast(code_start); uintptr_t base = RoundDown(data, kPageSize); uintptr_t limit = RoundUp(data + code_length, kPageSize); uintptr_t len = limit - base; int result = mprotect(reinterpret_cast(base), len, PROT_READ | PROT_WRITE | PROT_EXEC); CHECK_EQ(result, 0); // Flush instruction cache // Only uses __builtin___clear_cache if GCC >= 4.3.3 #if GCC_VERSION >= 40303 __builtin___clear_cache(reinterpret_cast(base), reinterpret_cast(base + len)); #else // Only warn if not Intel as Intel doesn't have cache flush instructions. #if !defined(__i386__) && !defined(__x86_64__) LOG(WARNING) << "UNIMPLEMENTED: cache flush"; #endif #endif } void CommonCompilerTest::MakeExecutable(mirror::ClassLoader* class_loader, const char* class_name) { std::string class_descriptor(DotToDescriptor(class_name)); Thread* self = Thread::Current(); StackHandleScope<1> hs(self); Handle loader(hs.NewHandle(class_loader)); mirror::Class* klass = class_linker_->FindClass(self, class_descriptor.c_str(), loader); CHECK(klass != nullptr) << "Class not found " << class_name; for (size_t i = 0; i < klass->NumDirectMethods(); i++) { MakeExecutable(klass->GetDirectMethod(i)); } for (size_t i = 0; i < klass->NumVirtualMethods(); i++) { MakeExecutable(klass->GetVirtualMethod(i)); } } void CommonCompilerTest::SetUp() { CommonRuntimeTest::SetUp(); { ScopedObjectAccess soa(Thread::Current()); InstructionSet instruction_set = kRuntimeISA; // Take the default set of instruction features from the build. InstructionSetFeatures instruction_set_features = ParseFeatureList(Runtime::GetDefaultInstructionSetFeatures()); #if defined(__arm__) InstructionSetFeatures runtime_features = GuessInstructionFeatures(); // for ARM, do a runtime check to make sure that the features we are passed from // the build match the features we actually determine at runtime. ASSERT_LE(instruction_set_features, runtime_features); #endif runtime_->SetInstructionSet(instruction_set); for (int i = 0; i < Runtime::kLastCalleeSaveType; i++) { Runtime::CalleeSaveType type = Runtime::CalleeSaveType(i); if (!runtime_->HasCalleeSaveMethod(type)) { runtime_->SetCalleeSaveMethod( runtime_->CreateCalleeSaveMethod(type), type); } } // TODO: make selectable Compiler::Kind compiler_kind = (kUsePortableCompiler) ? Compiler::kPortable : Compiler::kQuick; timer_.reset(new CumulativeLogger("Compilation times")); compiler_driver_.reset(new CompilerDriver(compiler_options_.get(), verification_results_.get(), method_inliner_map_.get(), compiler_kind, instruction_set, instruction_set_features, true, new CompilerDriver::DescriptorSet, 2, true, true, timer_.get())); } // We typically don't generate an image in unit tests, disable this optimization by default. compiler_driver_->SetSupportBootImageFixup(false); } void CommonCompilerTest::SetUpRuntimeOptions(RuntimeOptions* options) { CommonRuntimeTest::SetUpRuntimeOptions(options); compiler_options_.reset(new CompilerOptions); verification_results_.reset(new VerificationResults(compiler_options_.get())); method_inliner_map_.reset(new DexFileToMethodInlinerMap); callbacks_.reset(new QuickCompilerCallbacks(verification_results_.get(), method_inliner_map_.get())); options->push_back(std::make_pair("compilercallbacks", callbacks_.get())); } void CommonCompilerTest::TearDown() { timer_.reset(); compiler_driver_.reset(); callbacks_.reset(); method_inliner_map_.reset(); verification_results_.reset(); compiler_options_.reset(); CommonRuntimeTest::TearDown(); } void CommonCompilerTest::CompileClass(mirror::ClassLoader* class_loader, const char* class_name) { std::string class_descriptor(DotToDescriptor(class_name)); Thread* self = Thread::Current(); StackHandleScope<1> hs(self); Handle loader(hs.NewHandle(class_loader)); mirror::Class* klass = class_linker_->FindClass(self, class_descriptor.c_str(), loader); CHECK(klass != nullptr) << "Class not found " << class_name; for (size_t i = 0; i < klass->NumDirectMethods(); i++) { CompileMethod(klass->GetDirectMethod(i)); } for (size_t i = 0; i < klass->NumVirtualMethods(); i++) { CompileMethod(klass->GetVirtualMethod(i)); } } void CommonCompilerTest::CompileMethod(mirror::ArtMethod* method) { CHECK(method != nullptr); TimingLogger timings("CommonTest::CompileMethod", false, false); TimingLogger::ScopedTiming t(__FUNCTION__, &timings); compiler_driver_->CompileOne(method, &timings); TimingLogger::ScopedTiming t2("MakeExecutable", &timings); MakeExecutable(method); } void CommonCompilerTest::CompileDirectMethod(Handle class_loader, const char* class_name, const char* method_name, const char* signature) { std::string class_descriptor(DotToDescriptor(class_name)); Thread* self = Thread::Current(); mirror::Class* klass = class_linker_->FindClass(self, class_descriptor.c_str(), class_loader); CHECK(klass != nullptr) << "Class not found " << class_name; mirror::ArtMethod* method = klass->FindDirectMethod(method_name, signature); CHECK(method != nullptr) << "Direct method not found: " << class_name << "." << method_name << signature; CompileMethod(method); } void CommonCompilerTest::CompileVirtualMethod(Handle class_loader, const char* class_name, const char* method_name, const char* signature) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { std::string class_descriptor(DotToDescriptor(class_name)); Thread* self = Thread::Current(); mirror::Class* klass = class_linker_->FindClass(self, class_descriptor.c_str(), class_loader); CHECK(klass != nullptr) << "Class not found " << class_name; mirror::ArtMethod* method = klass->FindVirtualMethod(method_name, signature); CHECK(method != NULL) << "Virtual method not found: " << class_name << "." << method_name << signature; CompileMethod(method); } void CommonCompilerTest::ReserveImageSpace() { // Reserve where the image will be loaded up front so that other parts of test set up don't // accidentally end up colliding with the fixed memory address when we need to load the image. std::string error_msg; image_reservation_.reset(MemMap::MapAnonymous("image reservation", reinterpret_cast(ART_BASE_ADDRESS), (size_t)100 * 1024 * 1024, // 100MB PROT_NONE, false /* no need for 4gb flag with fixed mmap*/, &error_msg)); CHECK(image_reservation_.get() != nullptr) << error_msg; } void CommonCompilerTest::UnreserveImageSpace() { image_reservation_.reset(); } } // namespace art