/* * Copyright (C) 2013 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "mir_graph.h" #include #include #include #include "base/bit_vector-inl.h" #include "base/logging.h" #include "base/stl_util.h" #include "base/stringprintf.h" #include "base/scoped_arena_containers.h" #include "compiler_ir.h" #include "dex_file-inl.h" #include "dex_flags.h" #include "dex_instruction-inl.h" #include "driver/compiler_driver.h" #include "driver/dex_compilation_unit.h" #include "dex/quick/quick_compiler.h" #include "leb128.h" #include "pass_driver_me_post_opt.h" #include "stack.h" namespace art { #define MAX_PATTERN_LEN 5 const char* MIRGraph::extended_mir_op_names_[kMirOpLast - kMirOpFirst] = { "Phi", "Copy", "FusedCmplFloat", "FusedCmpgFloat", "FusedCmplDouble", "FusedCmpgDouble", "FusedCmpLong", "Nop", "OpNullCheck", "OpRangeCheck", "OpDivZeroCheck", "Check1", "Check2", "Select", "ConstVector", "MoveVector", "PackedMultiply", "PackedAddition", "PackedSubtract", "PackedShiftLeft", "PackedSignedShiftRight", "PackedUnsignedShiftRight", "PackedAnd", "PackedOr", "PackedXor", "PackedAddReduce", "PackedReduce", "PackedSet", "ReserveVectorRegisters", "ReturnVectorRegisters", "MemBarrier", "PackedArrayGet", "PackedArrayPut", "MaddInt", "MsubInt", "MaddLong", "MsubLong", }; MIRGraph::MIRGraph(CompilationUnit* cu, ArenaAllocator* arena) : reg_location_(NULL), block_id_map_(std::less(), arena->Adapter()), cu_(cu), ssa_base_vregs_(arena->Adapter(kArenaAllocSSAToDalvikMap)), ssa_subscripts_(arena->Adapter(kArenaAllocSSAToDalvikMap)), vreg_to_ssa_map_(NULL), ssa_last_defs_(NULL), is_constant_v_(NULL), constant_values_(NULL), use_counts_(arena->Adapter()), raw_use_counts_(arena->Adapter()), num_reachable_blocks_(0), max_num_reachable_blocks_(0), dfs_orders_up_to_date_(false), domination_up_to_date_(false), mir_ssa_rep_up_to_date_(false), topological_order_up_to_date_(false), dfs_order_(arena->Adapter(kArenaAllocDfsPreOrder)), dfs_post_order_(arena->Adapter(kArenaAllocDfsPostOrder)), dom_post_order_traversal_(arena->Adapter(kArenaAllocDomPostOrder)), topological_order_(arena->Adapter(kArenaAllocTopologicalSortOrder)), topological_order_loop_ends_(arena->Adapter(kArenaAllocTopologicalSortOrder)), topological_order_indexes_(arena->Adapter(kArenaAllocTopologicalSortOrder)), topological_order_loop_head_stack_(arena->Adapter(kArenaAllocTopologicalSortOrder)), max_nested_loops_(0u), i_dom_list_(NULL), temp_scoped_alloc_(), block_list_(arena->Adapter(kArenaAllocBBList)), try_block_addr_(NULL), entry_block_(NULL), exit_block_(NULL), current_code_item_(NULL), m_units_(arena->Adapter()), method_stack_(arena->Adapter()), current_method_(kInvalidEntry), current_offset_(kInvalidEntry), def_count_(0), opcode_count_(NULL), num_ssa_regs_(0), extended_basic_blocks_(arena->Adapter()), method_sreg_(0), attributes_(METHOD_IS_LEAF), // Start with leaf assumption, change on encountering invoke. checkstats_(NULL), arena_(arena), backward_branches_(0), forward_branches_(0), num_non_special_compiler_temps_(0), max_available_special_compiler_temps_(1), // We only need the method ptr as a special temp for now. requested_backend_temp_(false), compiler_temps_committed_(false), punt_to_interpreter_(false), merged_df_flags_(0u), ifield_lowering_infos_(arena->Adapter(kArenaAllocLoweringInfo)), sfield_lowering_infos_(arena->Adapter(kArenaAllocLoweringInfo)), method_lowering_infos_(arena->Adapter(kArenaAllocLoweringInfo)), suspend_checks_in_loops_(nullptr) { memset(&temp_, 0, sizeof(temp_)); use_counts_.reserve(256); raw_use_counts_.reserve(256); block_list_.reserve(100); try_block_addr_ = new (arena_) ArenaBitVector(arena_, 0, true /* expandable */); if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) { // X86 requires a temp to keep track of the method address. // TODO For x86_64, addressing can be done with RIP. When that is implemented, // this needs to be updated to reserve 0 temps for BE. max_available_non_special_compiler_temps_ = cu_->target64 ? 2 : 1; reserved_temps_for_backend_ = max_available_non_special_compiler_temps_; } else { // Other architectures do not have a known lower bound for non-special temps. // We allow the update of the max to happen at BE initialization stage and simply set 0 for now. max_available_non_special_compiler_temps_ = 0; reserved_temps_for_backend_ = 0; } } MIRGraph::~MIRGraph() { STLDeleteElements(&block_list_); STLDeleteElements(&m_units_); } /* * Parse an instruction, return the length of the instruction */ int MIRGraph::ParseInsn(const uint16_t* code_ptr, MIR::DecodedInstruction* decoded_instruction) { const Instruction* inst = Instruction::At(code_ptr); decoded_instruction->opcode = inst->Opcode(); decoded_instruction->vA = inst->HasVRegA() ? inst->VRegA() : 0; decoded_instruction->vB = inst->HasVRegB() ? inst->VRegB() : 0; decoded_instruction->vB_wide = inst->HasWideVRegB() ? inst->WideVRegB() : 0; decoded_instruction->vC = inst->HasVRegC() ? inst->VRegC() : 0; if (inst->HasVarArgs()) { inst->GetVarArgs(decoded_instruction->arg); } return inst->SizeInCodeUnits(); } /* Split an existing block from the specified code offset into two */ BasicBlock* MIRGraph::SplitBlock(DexOffset code_offset, BasicBlock* orig_block, BasicBlock** immed_pred_block_p) { DCHECK_GT(code_offset, orig_block->start_offset); MIR* insn = orig_block->first_mir_insn; MIR* prev = NULL; // Will be set to instruction before split. while (insn) { if (insn->offset == code_offset) break; prev = insn; insn = insn->next; } if (insn == NULL) { LOG(FATAL) << "Break split failed"; } // Now insn is at the instruction where we want to split, namely // insn will be the first instruction of the "bottom" block. // Similarly, prev will be the last instruction of the "top" block BasicBlock* bottom_block = CreateNewBB(kDalvikByteCode); bottom_block->start_offset = code_offset; bottom_block->first_mir_insn = insn; bottom_block->last_mir_insn = orig_block->last_mir_insn; /* If this block was terminated by a return, conditional branch or throw, * the flag needs to go with the bottom block */ bottom_block->terminated_by_return = orig_block->terminated_by_return; orig_block->terminated_by_return = false; bottom_block->conditional_branch = orig_block->conditional_branch; orig_block->conditional_branch = false; bottom_block->explicit_throw = orig_block->explicit_throw; orig_block->explicit_throw = false; /* Handle the taken path */ bottom_block->taken = orig_block->taken; if (bottom_block->taken != NullBasicBlockId) { orig_block->taken = NullBasicBlockId; BasicBlock* bb_taken = GetBasicBlock(bottom_block->taken); bb_taken->ErasePredecessor(orig_block->id); bb_taken->predecessors.push_back(bottom_block->id); } /* Handle the fallthrough path */ bottom_block->fall_through = orig_block->fall_through; orig_block->fall_through = bottom_block->id; bottom_block->predecessors.push_back(orig_block->id); if (bottom_block->fall_through != NullBasicBlockId) { BasicBlock* bb_fall_through = GetBasicBlock(bottom_block->fall_through); bb_fall_through->ErasePredecessor(orig_block->id); bb_fall_through->predecessors.push_back(bottom_block->id); } /* Handle the successor list */ if (orig_block->successor_block_list_type != kNotUsed) { bottom_block->successor_block_list_type = orig_block->successor_block_list_type; bottom_block->successor_blocks.swap(orig_block->successor_blocks); orig_block->successor_block_list_type = kNotUsed; DCHECK(orig_block->successor_blocks.empty()); // Empty after the swap() above. for (SuccessorBlockInfo* successor_block_info : bottom_block->successor_blocks) { BasicBlock* bb = GetBasicBlock(successor_block_info->block); if (bb != nullptr) { bb->ErasePredecessor(orig_block->id); bb->predecessors.push_back(bottom_block->id); } } } orig_block->last_mir_insn = prev; prev->next = nullptr; /* * Update the immediate predecessor block pointer so that outgoing edges * can be applied to the proper block. */ if (immed_pred_block_p) { DCHECK_EQ(*immed_pred_block_p, orig_block); *immed_pred_block_p = bottom_block; } // Associate dex instructions in the bottom block with the new container. DCHECK(insn != nullptr); DCHECK(insn != orig_block->first_mir_insn); DCHECK(insn == bottom_block->first_mir_insn); DCHECK_EQ(insn->offset, bottom_block->start_offset); // Scan the "bottom" instructions, remapping them to the // newly created "bottom" block. MIR* p = insn; p->bb = bottom_block->id; while (p != bottom_block->last_mir_insn) { p = p->next; DCHECK(p != nullptr); p->bb = bottom_block->id; } return bottom_block; } /* * Given a code offset, find out the block that starts with it. If the offset * is in the middle of an existing block, split it into two. If immed_pred_block_p * is not non-null and is the block being split, update *immed_pred_block_p to * point to the bottom block so that outgoing edges can be set up properly * (by the caller) * Utilizes a map for fast lookup of the typical cases. */ BasicBlock* MIRGraph::FindBlock(DexOffset code_offset, bool create, BasicBlock** immed_pred_block_p, ScopedArenaVector* dex_pc_to_block_map) { if (code_offset >= current_code_item_->insns_size_in_code_units_) { return nullptr; } int block_id = (*dex_pc_to_block_map)[code_offset]; BasicBlock* bb = GetBasicBlock(block_id); if ((bb != nullptr) && (bb->start_offset == code_offset)) { // Does this containing block start with the desired instruction? return bb; } // No direct hit. if (!create) { return nullptr; } if (bb != nullptr) { // The target exists somewhere in an existing block. BasicBlock* bottom_block = SplitBlock(code_offset, bb, bb == *immed_pred_block_p ? immed_pred_block_p : nullptr); DCHECK(bottom_block != nullptr); MIR* p = bottom_block->first_mir_insn; BasicBlock* orig_block = bb; DCHECK_EQ((*dex_pc_to_block_map)[p->offset], orig_block->id); // Scan the "bottom" instructions, remapping them to the // newly created "bottom" block. (*dex_pc_to_block_map)[p->offset] = bottom_block->id; while (p != bottom_block->last_mir_insn) { p = p->next; DCHECK(p != nullptr); int opcode = p->dalvikInsn.opcode; /* * Some messiness here to ensure that we only enter real opcodes and only the * first half of a potentially throwing instruction that has been split into * CHECK and work portions. Since the 2nd half of a split operation is always * the first in a BasicBlock, we can't hit it here. */ if ((opcode == kMirOpCheck) || !MIR::DecodedInstruction::IsPseudoMirOp(opcode)) { BasicBlockId mapped_id = (*dex_pc_to_block_map)[p->offset]; // At first glance the instructions should all be mapped to orig_block. // However, multiple instructions may correspond to the same dex, hence an earlier // instruction may have already moved the mapping for dex to bottom_block. DCHECK((mapped_id == orig_block->id) || (mapped_id == bottom_block->id)); (*dex_pc_to_block_map)[p->offset] = bottom_block->id; } } return bottom_block; } // Create a new block. bb = CreateNewBB(kDalvikByteCode); bb->start_offset = code_offset; (*dex_pc_to_block_map)[bb->start_offset] = bb->id; return bb; } /* Identify code range in try blocks and set up the empty catch blocks */ void MIRGraph::ProcessTryCatchBlocks(ScopedArenaVector* dex_pc_to_block_map) { int tries_size = current_code_item_->tries_size_; DexOffset offset; if (tries_size == 0) { return; } for (int i = 0; i < tries_size; i++) { const DexFile::TryItem* pTry = DexFile::GetTryItems(*current_code_item_, i); DexOffset start_offset = pTry->start_addr_; DexOffset end_offset = start_offset + pTry->insn_count_; for (offset = start_offset; offset < end_offset; offset++) { try_block_addr_->SetBit(offset); } } // Iterate over each of the handlers to enqueue the empty Catch blocks. const uint8_t* handlers_ptr = DexFile::GetCatchHandlerData(*current_code_item_, 0); uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr); for (uint32_t idx = 0; idx < handlers_size; idx++) { CatchHandlerIterator iterator(handlers_ptr); for (; iterator.HasNext(); iterator.Next()) { uint32_t address = iterator.GetHandlerAddress(); FindBlock(address, true /*create*/, /* immed_pred_block_p */ nullptr, dex_pc_to_block_map); } handlers_ptr = iterator.EndDataPointer(); } } bool MIRGraph::IsBadMonitorExitCatch(NarrowDexOffset monitor_exit_offset, NarrowDexOffset catch_offset) { // Catches for monitor-exit during stack unwinding have the pattern // move-exception (move)* (goto)? monitor-exit throw // In the currently generated dex bytecode we see these catching a bytecode range including // either its own or an identical monitor-exit, http://b/15745363 . This function checks if // it's the case for a given monitor-exit and catch block so that we can ignore it. // (We don't want to ignore all monitor-exit catches since one could enclose a synchronized // block in a try-block and catch the NPE, Error or Throwable and we should let it through; // even though a throwing monitor-exit certainly indicates a bytecode error.) const Instruction* monitor_exit = Instruction::At(current_code_item_->insns_ + monitor_exit_offset); DCHECK(monitor_exit->Opcode() == Instruction::MONITOR_EXIT); int monitor_reg = monitor_exit->VRegA_11x(); const Instruction* check_insn = Instruction::At(current_code_item_->insns_ + catch_offset); DCHECK(check_insn->Opcode() == Instruction::MOVE_EXCEPTION); if (check_insn->VRegA_11x() == monitor_reg) { // Unexpected move-exception to the same register. Probably not the pattern we're looking for. return false; } check_insn = check_insn->Next(); while (true) { int dest = -1; bool wide = false; switch (check_insn->Opcode()) { case Instruction::MOVE_WIDE: wide = true; FALLTHROUGH_INTENDED; case Instruction::MOVE_OBJECT: case Instruction::MOVE: dest = check_insn->VRegA_12x(); break; case Instruction::MOVE_WIDE_FROM16: wide = true; FALLTHROUGH_INTENDED; case Instruction::MOVE_OBJECT_FROM16: case Instruction::MOVE_FROM16: dest = check_insn->VRegA_22x(); break; case Instruction::MOVE_WIDE_16: wide = true; FALLTHROUGH_INTENDED; case Instruction::MOVE_OBJECT_16: case Instruction::MOVE_16: dest = check_insn->VRegA_32x(); break; case Instruction::GOTO: case Instruction::GOTO_16: case Instruction::GOTO_32: check_insn = check_insn->RelativeAt(check_insn->GetTargetOffset()); FALLTHROUGH_INTENDED; default: return check_insn->Opcode() == Instruction::MONITOR_EXIT && check_insn->VRegA_11x() == monitor_reg; } if (dest == monitor_reg || (wide && dest + 1 == monitor_reg)) { return false; } check_insn = check_insn->Next(); } } /* Process instructions with the kBranch flag */ BasicBlock* MIRGraph::ProcessCanBranch(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset, int width, int flags, const uint16_t* code_ptr, const uint16_t* code_end, ScopedArenaVector* dex_pc_to_block_map) { DexOffset target = cur_offset; switch (insn->dalvikInsn.opcode) { case Instruction::GOTO: case Instruction::GOTO_16: case Instruction::GOTO_32: target += insn->dalvikInsn.vA; break; case Instruction::IF_EQ: case Instruction::IF_NE: case Instruction::IF_LT: case Instruction::IF_GE: case Instruction::IF_GT: case Instruction::IF_LE: cur_block->conditional_branch = true; target += insn->dalvikInsn.vC; break; case Instruction::IF_EQZ: case Instruction::IF_NEZ: case Instruction::IF_LTZ: case Instruction::IF_GEZ: case Instruction::IF_GTZ: case Instruction::IF_LEZ: cur_block->conditional_branch = true; target += insn->dalvikInsn.vB; break; default: LOG(FATAL) << "Unexpected opcode(" << insn->dalvikInsn.opcode << ") with kBranch set"; } CountBranch(target); BasicBlock* taken_block = FindBlock(target, /* create */ true, /* immed_pred_block_p */ &cur_block, dex_pc_to_block_map); cur_block->taken = taken_block->id; taken_block->predecessors.push_back(cur_block->id); /* Always terminate the current block for conditional branches */ if (flags & Instruction::kContinue) { BasicBlock* fallthrough_block = FindBlock(cur_offset + width, /* create */ true, /* immed_pred_block_p */ &cur_block, dex_pc_to_block_map); cur_block->fall_through = fallthrough_block->id; fallthrough_block->predecessors.push_back(cur_block->id); } else if (code_ptr < code_end) { FindBlock(cur_offset + width, /* create */ true, /* immed_pred_block_p */ nullptr, dex_pc_to_block_map); } return cur_block; } /* Process instructions with the kSwitch flag */ BasicBlock* MIRGraph::ProcessCanSwitch(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset, int width, int flags, ScopedArenaVector* dex_pc_to_block_map) { UNUSED(flags); const uint16_t* switch_data = reinterpret_cast(GetCurrentInsns() + cur_offset + insn->dalvikInsn.vB); int size; const int* keyTable; const int* target_table; int i; int first_key; /* * Packed switch data format: * ushort ident = 0x0100 magic value * ushort size number of entries in the table * int first_key first (and lowest) switch case value * int targets[size] branch targets, relative to switch opcode * * Total size is (4+size*2) 16-bit code units. */ if (insn->dalvikInsn.opcode == Instruction::PACKED_SWITCH) { DCHECK_EQ(static_cast(switch_data[0]), static_cast(Instruction::kPackedSwitchSignature)); size = switch_data[1]; first_key = switch_data[2] | (switch_data[3] << 16); target_table = reinterpret_cast(&switch_data[4]); keyTable = NULL; // Make the compiler happy. /* * Sparse switch data format: * ushort ident = 0x0200 magic value * ushort size number of entries in the table; > 0 * int keys[size] keys, sorted low-to-high; 32-bit aligned * int targets[size] branch targets, relative to switch opcode * * Total size is (2+size*4) 16-bit code units. */ } else { DCHECK_EQ(static_cast(switch_data[0]), static_cast(Instruction::kSparseSwitchSignature)); size = switch_data[1]; keyTable = reinterpret_cast(&switch_data[2]); target_table = reinterpret_cast(&switch_data[2 + size*2]); first_key = 0; // To make the compiler happy. } if (cur_block->successor_block_list_type != kNotUsed) { LOG(FATAL) << "Successor block list already in use: " << static_cast(cur_block->successor_block_list_type); } cur_block->successor_block_list_type = (insn->dalvikInsn.opcode == Instruction::PACKED_SWITCH) ? kPackedSwitch : kSparseSwitch; cur_block->successor_blocks.reserve(size); for (i = 0; i < size; i++) { BasicBlock* case_block = FindBlock(cur_offset + target_table[i], /* create */ true, /* immed_pred_block_p */ &cur_block, dex_pc_to_block_map); SuccessorBlockInfo* successor_block_info = static_cast(arena_->Alloc(sizeof(SuccessorBlockInfo), kArenaAllocSuccessor)); successor_block_info->block = case_block->id; successor_block_info->key = (insn->dalvikInsn.opcode == Instruction::PACKED_SWITCH) ? first_key + i : keyTable[i]; cur_block->successor_blocks.push_back(successor_block_info); case_block->predecessors.push_back(cur_block->id); } /* Fall-through case */ BasicBlock* fallthrough_block = FindBlock(cur_offset + width, /* create */ true, /* immed_pred_block_p */ nullptr, dex_pc_to_block_map); cur_block->fall_through = fallthrough_block->id; fallthrough_block->predecessors.push_back(cur_block->id); return cur_block; } /* Process instructions with the kThrow flag */ BasicBlock* MIRGraph::ProcessCanThrow(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset, int width, int flags, ArenaBitVector* try_block_addr, const uint16_t* code_ptr, const uint16_t* code_end, ScopedArenaVector* dex_pc_to_block_map) { UNUSED(flags); bool in_try_block = try_block_addr->IsBitSet(cur_offset); bool is_throw = (insn->dalvikInsn.opcode == Instruction::THROW); /* In try block */ if (in_try_block) { CatchHandlerIterator iterator(*current_code_item_, cur_offset); if (cur_block->successor_block_list_type != kNotUsed) { LOG(INFO) << PrettyMethod(cu_->method_idx, *cu_->dex_file); LOG(FATAL) << "Successor block list already in use: " << static_cast(cur_block->successor_block_list_type); } for (; iterator.HasNext(); iterator.Next()) { BasicBlock* catch_block = FindBlock(iterator.GetHandlerAddress(), false /* create */, nullptr /* immed_pred_block_p */, dex_pc_to_block_map); if (insn->dalvikInsn.opcode == Instruction::MONITOR_EXIT && IsBadMonitorExitCatch(insn->offset, catch_block->start_offset)) { // Don't allow monitor-exit to catch its own exception, http://b/15745363 . continue; } if (cur_block->successor_block_list_type == kNotUsed) { cur_block->successor_block_list_type = kCatch; } catch_block->catch_entry = true; if (kIsDebugBuild) { catches_.insert(catch_block->start_offset); } SuccessorBlockInfo* successor_block_info = reinterpret_cast (arena_->Alloc(sizeof(SuccessorBlockInfo), kArenaAllocSuccessor)); successor_block_info->block = catch_block->id; successor_block_info->key = iterator.GetHandlerTypeIndex(); cur_block->successor_blocks.push_back(successor_block_info); catch_block->predecessors.push_back(cur_block->id); } in_try_block = (cur_block->successor_block_list_type != kNotUsed); } bool build_all_edges = (cu_->disable_opt & (1 << kSuppressExceptionEdges)) || is_throw || in_try_block; if (!in_try_block && build_all_edges) { BasicBlock* eh_block = CreateNewBB(kExceptionHandling); cur_block->taken = eh_block->id; eh_block->start_offset = cur_offset; eh_block->predecessors.push_back(cur_block->id); } if (is_throw) { cur_block->explicit_throw = true; if (code_ptr < code_end) { // Force creation of new block following THROW via side-effect. FindBlock(cur_offset + width, /* create */ true, /* immed_pred_block_p */ nullptr, dex_pc_to_block_map); } if (!in_try_block) { // Don't split a THROW that can't rethrow - we're done. return cur_block; } } if (!build_all_edges) { /* * Even though there is an exception edge here, control cannot return to this * method. Thus, for the purposes of dataflow analysis and optimization, we can * ignore the edge. Doing this reduces compile time, and increases the scope * of the basic-block level optimization pass. */ return cur_block; } /* * Split the potentially-throwing instruction into two parts. * The first half will be a pseudo-op that captures the exception * edges and terminates the basic block. It always falls through. * Then, create a new basic block that begins with the throwing instruction * (minus exceptions). Note: this new basic block must NOT be entered into * the block_map. If the potentially-throwing instruction is the target of a * future branch, we need to find the check psuedo half. The new * basic block containing the work portion of the instruction should * only be entered via fallthrough from the block containing the * pseudo exception edge MIR. Note also that this new block is * not automatically terminated after the work portion, and may * contain following instructions. * * Note also that the dex_pc_to_block_map entry for the potentially * throwing instruction will refer to the original basic block. */ BasicBlock* new_block = CreateNewBB(kDalvikByteCode); new_block->start_offset = insn->offset; cur_block->fall_through = new_block->id; new_block->predecessors.push_back(cur_block->id); MIR* new_insn = NewMIR(); *new_insn = *insn; insn->dalvikInsn.opcode = static_cast(kMirOpCheck); // Associate the two halves. insn->meta.throw_insn = new_insn; new_block->AppendMIR(new_insn); return new_block; } /* Parse a Dex method and insert it into the MIRGraph at the current insert point. */ void MIRGraph::InlineMethod(const DexFile::CodeItem* code_item, uint32_t access_flags, InvokeType invoke_type ATTRIBUTE_UNUSED, uint16_t class_def_idx, uint32_t method_idx, jobject class_loader, const DexFile& dex_file) { current_code_item_ = code_item; method_stack_.push_back(std::make_pair(current_method_, current_offset_)); current_method_ = m_units_.size(); current_offset_ = 0; // TODO: will need to snapshot stack image and use that as the mir context identification. m_units_.push_back(new DexCompilationUnit(cu_, class_loader, Runtime::Current()->GetClassLinker(), dex_file, current_code_item_, class_def_idx, method_idx, access_flags, cu_->compiler_driver->GetVerifiedMethod(&dex_file, method_idx))); const uint16_t* code_ptr = current_code_item_->insns_; const uint16_t* code_end = current_code_item_->insns_ + current_code_item_->insns_size_in_code_units_; // TODO: need to rework expansion of block list & try_block_addr when inlining activated. // TUNING: use better estimate of basic blocks for following resize. block_list_.reserve(block_list_.size() + current_code_item_->insns_size_in_code_units_); // FindBlock lookup cache. ScopedArenaAllocator allocator(&cu_->arena_stack); ScopedArenaVector dex_pc_to_block_map(allocator.Adapter()); dex_pc_to_block_map.resize(dex_pc_to_block_map.size() + current_code_item_->insns_size_in_code_units_); // TODO: replace with explicit resize routine. Using automatic extension side effect for now. try_block_addr_->SetBit(current_code_item_->insns_size_in_code_units_); try_block_addr_->ClearBit(current_code_item_->insns_size_in_code_units_); // If this is the first method, set up default entry and exit blocks. if (current_method_ == 0) { DCHECK(entry_block_ == NULL); DCHECK(exit_block_ == NULL); DCHECK_EQ(GetNumBlocks(), 0U); // Use id 0 to represent a null block. BasicBlock* null_block = CreateNewBB(kNullBlock); DCHECK_EQ(null_block->id, NullBasicBlockId); null_block->hidden = true; entry_block_ = CreateNewBB(kEntryBlock); exit_block_ = CreateNewBB(kExitBlock); } else { UNIMPLEMENTED(FATAL) << "Nested inlining not implemented."; /* * Will need to manage storage for ins & outs, push prevous state and update * insert point. */ } /* Current block to record parsed instructions */ BasicBlock* cur_block = CreateNewBB(kDalvikByteCode); DCHECK_EQ(current_offset_, 0U); cur_block->start_offset = current_offset_; // TODO: for inlining support, insert at the insert point rather than entry block. entry_block_->fall_through = cur_block->id; cur_block->predecessors.push_back(entry_block_->id); /* Identify code range in try blocks and set up the empty catch blocks */ ProcessTryCatchBlocks(&dex_pc_to_block_map); uint64_t merged_df_flags = 0u; /* Parse all instructions and put them into containing basic blocks */ while (code_ptr < code_end) { MIR *insn = NewMIR(); insn->offset = current_offset_; insn->m_unit_index = current_method_; int width = ParseInsn(code_ptr, &insn->dalvikInsn); Instruction::Code opcode = insn->dalvikInsn.opcode; if (opcode_count_ != NULL) { opcode_count_[static_cast(opcode)]++; } int flags = insn->dalvikInsn.FlagsOf(); int verify_flags = Instruction::VerifyFlagsOf(insn->dalvikInsn.opcode); uint64_t df_flags = GetDataFlowAttributes(insn); merged_df_flags |= df_flags; if (df_flags & DF_HAS_DEFS) { def_count_ += (df_flags & DF_A_WIDE) ? 2 : 1; } if (df_flags & DF_LVN) { cur_block->use_lvn = true; // Run local value numbering on this basic block. } // Check for inline data block signatures. if (opcode == Instruction::NOP) { // A simple NOP will have a width of 1 at this point, embedded data NOP > 1. if ((width == 1) && ((current_offset_ & 0x1) == 0x1) && ((code_end - code_ptr) > 1)) { // Could be an aligning nop. If an embedded data NOP follows, treat pair as single unit. uint16_t following_raw_instruction = code_ptr[1]; if ((following_raw_instruction == Instruction::kSparseSwitchSignature) || (following_raw_instruction == Instruction::kPackedSwitchSignature) || (following_raw_instruction == Instruction::kArrayDataSignature)) { width += Instruction::At(code_ptr + 1)->SizeInCodeUnits(); } } if (width == 1) { // It is a simple nop - treat normally. cur_block->AppendMIR(insn); } else { DCHECK(cur_block->fall_through == NullBasicBlockId); DCHECK(cur_block->taken == NullBasicBlockId); // Unreachable instruction, mark for no continuation and end basic block. flags &= ~Instruction::kContinue; FindBlock(current_offset_ + width, /* create */ true, /* immed_pred_block_p */ nullptr, &dex_pc_to_block_map); } } else { cur_block->AppendMIR(insn); } // Associate the starting dex_pc for this opcode with its containing basic block. dex_pc_to_block_map[insn->offset] = cur_block->id; code_ptr += width; if (flags & Instruction::kBranch) { cur_block = ProcessCanBranch(cur_block, insn, current_offset_, width, flags, code_ptr, code_end, &dex_pc_to_block_map); } else if (flags & Instruction::kReturn) { cur_block->terminated_by_return = true; cur_block->fall_through = exit_block_->id; exit_block_->predecessors.push_back(cur_block->id); /* * Terminate the current block if there are instructions * afterwards. */ if (code_ptr < code_end) { /* * Create a fallthrough block for real instructions * (incl. NOP). */ FindBlock(current_offset_ + width, /* create */ true, /* immed_pred_block_p */ nullptr, &dex_pc_to_block_map); } } else if (flags & Instruction::kThrow) { cur_block = ProcessCanThrow(cur_block, insn, current_offset_, width, flags, try_block_addr_, code_ptr, code_end, &dex_pc_to_block_map); } else if (flags & Instruction::kSwitch) { cur_block = ProcessCanSwitch(cur_block, insn, current_offset_, width, flags, &dex_pc_to_block_map); } if (verify_flags & Instruction::kVerifyVarArgRange || verify_flags & Instruction::kVerifyVarArgRangeNonZero) { /* * The Quick backend's runtime model includes a gap between a method's * argument ("in") vregs and the rest of its vregs. Handling a range instruction * which spans the gap is somewhat complicated, and should not happen * in normal usage of dx. Punt to the interpreter. */ int first_reg_in_range = insn->dalvikInsn.vC; int last_reg_in_range = first_reg_in_range + insn->dalvikInsn.vA - 1; if (IsInVReg(first_reg_in_range) != IsInVReg(last_reg_in_range)) { punt_to_interpreter_ = true; } } current_offset_ += width; BasicBlock* next_block = FindBlock(current_offset_, /* create */ false, /* immed_pred_block_p */ nullptr, &dex_pc_to_block_map); if (next_block) { /* * The next instruction could be the target of a previously parsed * forward branch so a block is already created. If the current * instruction is not an unconditional branch, connect them through * the fall-through link. */ DCHECK(cur_block->fall_through == NullBasicBlockId || GetBasicBlock(cur_block->fall_through) == next_block || GetBasicBlock(cur_block->fall_through) == exit_block_); if ((cur_block->fall_through == NullBasicBlockId) && (flags & Instruction::kContinue)) { cur_block->fall_through = next_block->id; next_block->predecessors.push_back(cur_block->id); } cur_block = next_block; } } merged_df_flags_ = merged_df_flags; if (cu_->enable_debug & (1 << kDebugDumpCFG)) { DumpCFG("/sdcard/1_post_parse_cfg/", true); } if (cu_->verbose) { DumpMIRGraph(); } } void MIRGraph::ShowOpcodeStats() { DCHECK(opcode_count_ != NULL); LOG(INFO) << "Opcode Count"; for (int i = 0; i < kNumPackedOpcodes; i++) { if (opcode_count_[i] != 0) { LOG(INFO) << "-C- " << Instruction::Name(static_cast(i)) << " " << opcode_count_[i]; } } } uint64_t MIRGraph::GetDataFlowAttributes(Instruction::Code opcode) { DCHECK_LT((size_t) opcode, (sizeof(oat_data_flow_attributes_) / sizeof(oat_data_flow_attributes_[0]))); return oat_data_flow_attributes_[opcode]; } uint64_t MIRGraph::GetDataFlowAttributes(MIR* mir) { DCHECK(mir != nullptr); Instruction::Code opcode = mir->dalvikInsn.opcode; return GetDataFlowAttributes(opcode); } // The path can easily surpass FS limits because of parameters etc. Use pathconf to get FS // restrictions here. Note that a successful invocation will return an actual value. If the path // is too long for some reason, the return will be ENAMETOOLONG. Then cut off part of the name. // // It's possible the path is not valid, or some other errors appear. In that case return false. static bool CreateDumpFile(std::string& fname, const char* dir_prefix, NarrowDexOffset start_offset, const char *suffix, int nr, std::string* output) { std::string dir = StringPrintf("./%s", dir_prefix); int64_t max_name_length = pathconf(dir.c_str(), _PC_NAME_MAX); if (max_name_length <= 0) { PLOG(ERROR) << "Could not get file name restrictions for " << dir; return false; } std::string name = StringPrintf("%s%x%s_%d.dot", fname.c_str(), start_offset, suffix == nullptr ? "" : suffix, nr); std::string fpath; if (static_cast(name.size()) > max_name_length) { std::string suffix_str = StringPrintf("_%d.dot", nr); name = name.substr(0, static_cast(max_name_length) - suffix_str.size()) + suffix_str; } // Sanity check. DCHECK_LE(name.size(), static_cast(max_name_length)); *output = StringPrintf("%s%s", dir_prefix, name.c_str()); return true; } // TODO: use a configurable base prefix, and adjust callers to supply pass name. /* Dump the CFG into a DOT graph */ void MIRGraph::DumpCFG(const char* dir_prefix, bool all_blocks, const char *suffix) { FILE* file; static AtomicInteger cnt(0); // Increment counter to get a unique file number. cnt++; int nr = cnt.LoadRelaxed(); std::string fname(PrettyMethod(cu_->method_idx, *cu_->dex_file)); ReplaceSpecialChars(fname); std::string fpath; if (!CreateDumpFile(fname, dir_prefix, GetBasicBlock(GetEntryBlock()->fall_through)->start_offset, suffix, nr, &fpath)) { LOG(ERROR) << "Could not create dump file name for " << fname; return; } file = fopen(fpath.c_str(), "w"); if (file == NULL) { PLOG(ERROR) << "Could not open " << fpath << " for DumpCFG."; return; } fprintf(file, "digraph G {\n"); fprintf(file, " rankdir=TB\n"); int num_blocks = all_blocks ? GetNumBlocks() : num_reachable_blocks_; int idx; for (idx = 0; idx < num_blocks; idx++) { int block_idx = all_blocks ? idx : dfs_order_[idx]; BasicBlock* bb = GetBasicBlock(block_idx); if (bb == NULL) continue; if (bb->block_type == kDead) continue; if (bb->hidden) continue; if (bb->block_type == kEntryBlock) { fprintf(file, " entry_%d [shape=Mdiamond];\n", bb->id); } else if (bb->block_type == kExitBlock) { fprintf(file, " exit_%d [shape=Mdiamond];\n", bb->id); } else if (bb->block_type == kDalvikByteCode) { fprintf(file, " block%04x_%d [shape=record,label = \"{ \\\n", bb->start_offset, bb->id); const MIR* mir; fprintf(file, " {block id %d\\l}%s\\\n", bb->id, bb->first_mir_insn ? " | " : " "); for (mir = bb->first_mir_insn; mir; mir = mir->next) { int opcode = mir->dalvikInsn.opcode; fprintf(file, " {%04x %s %s %s %s %s %s %s %s %s\\l}%s\\\n", mir->offset, mir->ssa_rep ? GetDalvikDisassembly(mir) : !MIR::DecodedInstruction::IsPseudoMirOp(opcode) ? Instruction::Name(mir->dalvikInsn.opcode) : extended_mir_op_names_[opcode - kMirOpFirst], (mir->optimization_flags & MIR_IGNORE_RANGE_CHECK) != 0 ? " no_rangecheck" : " ", (mir->optimization_flags & MIR_IGNORE_NULL_CHECK) != 0 ? " no_nullcheck" : " ", (mir->optimization_flags & MIR_IGNORE_SUSPEND_CHECK) != 0 ? " no_suspendcheck" : " ", (mir->optimization_flags & MIR_STORE_NON_TEMPORAL) != 0 ? " non_temporal" : " ", (mir->optimization_flags & MIR_CALLEE) != 0 ? " inlined" : " ", (mir->optimization_flags & MIR_CLASS_IS_INITIALIZED) != 0 ? " cl_inited" : " ", (mir->optimization_flags & MIR_CLASS_IS_IN_DEX_CACHE) != 0 ? " cl_in_cache" : " ", (mir->optimization_flags & MIR_IGNORE_DIV_ZERO_CHECK) != 0 ? " no_div_check" : " ", mir->next ? " | " : " "); } fprintf(file, " }\"];\n\n"); } else if (bb->block_type == kExceptionHandling) { char block_name[BLOCK_NAME_LEN]; GetBlockName(bb, block_name); fprintf(file, " %s [shape=invhouse];\n", block_name); } char block_name1[BLOCK_NAME_LEN], block_name2[BLOCK_NAME_LEN]; if (bb->taken != NullBasicBlockId) { GetBlockName(bb, block_name1); GetBlockName(GetBasicBlock(bb->taken), block_name2); fprintf(file, " %s:s -> %s:n [style=dotted]\n", block_name1, block_name2); } if (bb->fall_through != NullBasicBlockId) { GetBlockName(bb, block_name1); GetBlockName(GetBasicBlock(bb->fall_through), block_name2); fprintf(file, " %s:s -> %s:n\n", block_name1, block_name2); } if (bb->successor_block_list_type != kNotUsed) { fprintf(file, " succ%04x_%d [shape=%s,label = \"{ \\\n", bb->start_offset, bb->id, (bb->successor_block_list_type == kCatch) ? "Mrecord" : "record"); int last_succ_id = static_cast(bb->successor_blocks.size() - 1u); int succ_id = 0; for (SuccessorBlockInfo* successor_block_info : bb->successor_blocks) { BasicBlock* dest_block = GetBasicBlock(successor_block_info->block); fprintf(file, " { %04x: %04x\\l}%s\\\n", succ_id, successor_block_info->key, dest_block->start_offset, (succ_id != last_succ_id) ? " | " : " "); ++succ_id; } fprintf(file, " }\"];\n\n"); GetBlockName(bb, block_name1); fprintf(file, " %s:s -> succ%04x_%d:n [style=dashed]\n", block_name1, bb->start_offset, bb->id); // Link the successor pseudo-block with all of its potential targets. succ_id = 0; for (SuccessorBlockInfo* successor_block_info : bb->successor_blocks) { BasicBlock* dest_block = GetBasicBlock(successor_block_info->block); GetBlockName(dest_block, block_name2); fprintf(file, " succ%04x_%d:f%d:e -> %s:n\n", bb->start_offset, bb->id, succ_id++, block_name2); } } fprintf(file, "\n"); if (cu_->verbose) { /* Display the dominator tree */ GetBlockName(bb, block_name1); fprintf(file, " cfg%s [label=\"%s\", shape=none];\n", block_name1, block_name1); if (bb->i_dom) { GetBlockName(GetBasicBlock(bb->i_dom), block_name2); fprintf(file, " cfg%s:s -> cfg%s:n\n\n", block_name2, block_name1); } } } fprintf(file, "}\n"); fclose(file); } /* Insert an MIR instruction to the end of a basic block. */ void BasicBlock::AppendMIR(MIR* mir) { // Insert it after the last MIR. InsertMIRListAfter(last_mir_insn, mir, mir); } void BasicBlock::AppendMIRList(MIR* first_list_mir, MIR* last_list_mir) { // Insert it after the last MIR. InsertMIRListAfter(last_mir_insn, first_list_mir, last_list_mir); } void BasicBlock::AppendMIRList(const std::vector& insns) { for (std::vector::const_iterator it = insns.begin(); it != insns.end(); it++) { MIR* new_mir = *it; // Add a copy of each MIR. InsertMIRListAfter(last_mir_insn, new_mir, new_mir); } } /* Insert a MIR instruction after the specified MIR. */ void BasicBlock::InsertMIRAfter(MIR* current_mir, MIR* new_mir) { InsertMIRListAfter(current_mir, new_mir, new_mir); } void BasicBlock::InsertMIRListAfter(MIR* insert_after, MIR* first_list_mir, MIR* last_list_mir) { // If no MIR, we are done. if (first_list_mir == nullptr || last_list_mir == nullptr) { return; } // If insert_after is null, assume BB is empty. if (insert_after == nullptr) { first_mir_insn = first_list_mir; last_mir_insn = last_list_mir; last_list_mir->next = nullptr; } else { MIR* after_list = insert_after->next; insert_after->next = first_list_mir; last_list_mir->next = after_list; if (after_list == nullptr) { last_mir_insn = last_list_mir; } } // Set this BB to be the basic block of the MIRs. MIR* last = last_list_mir->next; for (MIR* mir = first_list_mir; mir != last; mir = mir->next) { mir->bb = id; } } /* Insert an MIR instruction to the head of a basic block. */ void BasicBlock::PrependMIR(MIR* mir) { InsertMIRListBefore(first_mir_insn, mir, mir); } void BasicBlock::PrependMIRList(MIR* first_list_mir, MIR* last_list_mir) { // Insert it before the first MIR. InsertMIRListBefore(first_mir_insn, first_list_mir, last_list_mir); } void BasicBlock::PrependMIRList(const std::vector& to_add) { for (std::vector::const_iterator it = to_add.begin(); it != to_add.end(); it++) { MIR* mir = *it; InsertMIRListBefore(first_mir_insn, mir, mir); } } /* Insert a MIR instruction before the specified MIR. */ void BasicBlock::InsertMIRBefore(MIR* current_mir, MIR* new_mir) { // Insert as a single element list. return InsertMIRListBefore(current_mir, new_mir, new_mir); } MIR* BasicBlock::FindPreviousMIR(MIR* mir) { MIR* current = first_mir_insn; while (current != nullptr) { MIR* next = current->next; if (next == mir) { return current; } current = next; } return nullptr; } void BasicBlock::InsertMIRListBefore(MIR* insert_before, MIR* first_list_mir, MIR* last_list_mir) { // If no MIR, we are done. if (first_list_mir == nullptr || last_list_mir == nullptr) { return; } // If insert_before is null, assume BB is empty. if (insert_before == nullptr) { first_mir_insn = first_list_mir; last_mir_insn = last_list_mir; last_list_mir->next = nullptr; } else { if (first_mir_insn == insert_before) { last_list_mir->next = first_mir_insn; first_mir_insn = first_list_mir; } else { // Find the preceding MIR. MIR* before_list = FindPreviousMIR(insert_before); DCHECK(before_list != nullptr); before_list->next = first_list_mir; last_list_mir->next = insert_before; } } // Set this BB to be the basic block of the MIRs. for (MIR* mir = first_list_mir; mir != last_list_mir->next; mir = mir->next) { mir->bb = id; } } bool BasicBlock::RemoveMIR(MIR* mir) { // Remove as a single element list. return RemoveMIRList(mir, mir); } bool BasicBlock::RemoveMIRList(MIR* first_list_mir, MIR* last_list_mir) { if (first_list_mir == nullptr) { return false; } // Try to find the MIR. MIR* before_list = nullptr; MIR* after_list = nullptr; // If we are removing from the beginning of the MIR list. if (first_mir_insn == first_list_mir) { before_list = nullptr; } else { before_list = FindPreviousMIR(first_list_mir); if (before_list == nullptr) { // We did not find the mir. return false; } } // Remove the BB information and also find the after_list. for (MIR* mir = first_list_mir; mir != last_list_mir->next; mir = mir->next) { mir->bb = NullBasicBlockId; } after_list = last_list_mir->next; // If there is nothing before the list, after_list is the first_mir. if (before_list == nullptr) { first_mir_insn = after_list; } else { before_list->next = after_list; } // If there is nothing after the list, before_list is last_mir. if (after_list == nullptr) { last_mir_insn = before_list; } return true; } MIR* BasicBlock::GetFirstNonPhiInsn() { MIR* mir = first_mir_insn; while (mir != nullptr && static_cast(mir->dalvikInsn.opcode) == kMirOpPhi) { mir = mir->next; } return mir; } MIR* BasicBlock::GetNextUnconditionalMir(MIRGraph* mir_graph, MIR* current) { MIR* next_mir = nullptr; if (current != nullptr) { next_mir = current->next; } if (next_mir == nullptr) { // Only look for next MIR that follows unconditionally. if ((taken == NullBasicBlockId) && (fall_through != NullBasicBlockId)) { next_mir = mir_graph->GetBasicBlock(fall_through)->first_mir_insn; } } return next_mir; } static void FillTypeSizeString(uint32_t type_size, std::string* decoded_mir) { DCHECK(decoded_mir != nullptr); OpSize type = static_cast(type_size >> 16); uint16_t vect_size = (type_size & 0xFFFF); // Now print the type and vector size. std::stringstream ss; ss << " (type:"; ss << type; ss << " vectsize:"; ss << vect_size; ss << ")"; decoded_mir->append(ss.str()); } void MIRGraph::DisassembleExtendedInstr(const MIR* mir, std::string* decoded_mir) { DCHECK(decoded_mir != nullptr); int opcode = mir->dalvikInsn.opcode; SSARepresentation* ssa_rep = mir->ssa_rep; int defs = (ssa_rep != nullptr) ? ssa_rep->num_defs : 0; int uses = (ssa_rep != nullptr) ? ssa_rep->num_uses : 0; if (opcode < kMirOpFirst) { return; // It is not an extended instruction. } decoded_mir->append(extended_mir_op_names_[opcode - kMirOpFirst]); switch (opcode) { case kMirOpPhi: { if (defs > 0 && uses > 0) { BasicBlockId* incoming = mir->meta.phi_incoming; decoded_mir->append(StringPrintf(" %s = (%s", GetSSANameWithConst(ssa_rep->defs[0], true).c_str(), GetSSANameWithConst(ssa_rep->uses[0], true).c_str())); decoded_mir->append(StringPrintf(":%d", incoming[0])); for (int i = 1; i < uses; i++) { decoded_mir->append(StringPrintf(", %s:%d", GetSSANameWithConst(ssa_rep->uses[i], true).c_str(), incoming[i])); } decoded_mir->append(")"); } break; } case kMirOpCopy: if (ssa_rep != nullptr) { decoded_mir->append(" "); decoded_mir->append(GetSSANameWithConst(ssa_rep->defs[0], false)); if (defs > 1) { decoded_mir->append(", "); decoded_mir->append(GetSSANameWithConst(ssa_rep->defs[1], false)); } decoded_mir->append(" = "); decoded_mir->append(GetSSANameWithConst(ssa_rep->uses[0], false)); if (uses > 1) { decoded_mir->append(", "); decoded_mir->append(GetSSANameWithConst(ssa_rep->uses[1], false)); } } else { decoded_mir->append(StringPrintf(" v%d = v%d", mir->dalvikInsn.vA, mir->dalvikInsn.vB)); } break; case kMirOpFusedCmplFloat: case kMirOpFusedCmpgFloat: case kMirOpFusedCmplDouble: case kMirOpFusedCmpgDouble: case kMirOpFusedCmpLong: if (ssa_rep != nullptr) { decoded_mir->append(" "); decoded_mir->append(GetSSANameWithConst(ssa_rep->uses[0], false)); for (int i = 1; i < uses; i++) { decoded_mir->append(", "); decoded_mir->append(GetSSANameWithConst(ssa_rep->uses[i], false)); } } else { decoded_mir->append(StringPrintf(" v%d, v%d", mir->dalvikInsn.vA, mir->dalvikInsn.vB)); } break; case kMirOpMoveVector: decoded_mir->append(StringPrintf(" vect%d = vect%d", mir->dalvikInsn.vA, mir->dalvikInsn.vB)); FillTypeSizeString(mir->dalvikInsn.vC, decoded_mir); break; case kMirOpPackedAddition: decoded_mir->append(StringPrintf(" vect%d = vect%d + vect%d", mir->dalvikInsn.vA, mir->dalvikInsn.vA, mir->dalvikInsn.vB)); FillTypeSizeString(mir->dalvikInsn.vC, decoded_mir); break; case kMirOpPackedMultiply: decoded_mir->append(StringPrintf(" vect%d = vect%d * vect%d", mir->dalvikInsn.vA, mir->dalvikInsn.vA, mir->dalvikInsn.vB)); FillTypeSizeString(mir->dalvikInsn.vC, decoded_mir); break; case kMirOpPackedSubtract: decoded_mir->append(StringPrintf(" vect%d = vect%d - vect%d", mir->dalvikInsn.vA, mir->dalvikInsn.vA, mir->dalvikInsn.vB)); FillTypeSizeString(mir->dalvikInsn.vC, decoded_mir); break; case kMirOpPackedAnd: decoded_mir->append(StringPrintf(" vect%d = vect%d & vect%d", mir->dalvikInsn.vA, mir->dalvikInsn.vA, mir->dalvikInsn.vB)); FillTypeSizeString(mir->dalvikInsn.vC, decoded_mir); break; case kMirOpPackedOr: decoded_mir->append(StringPrintf(" vect%d = vect%d \\| vect%d", mir->dalvikInsn.vA, mir->dalvikInsn.vA, mir->dalvikInsn.vB)); FillTypeSizeString(mir->dalvikInsn.vC, decoded_mir); break; case kMirOpPackedXor: decoded_mir->append(StringPrintf(" vect%d = vect%d ^ vect%d", mir->dalvikInsn.vA, mir->dalvikInsn.vA, mir->dalvikInsn.vB)); FillTypeSizeString(mir->dalvikInsn.vC, decoded_mir); break; case kMirOpPackedShiftLeft: decoded_mir->append(StringPrintf(" vect%d = vect%d \\<\\< %d", mir->dalvikInsn.vA, mir->dalvikInsn.vA, mir->dalvikInsn.vB)); FillTypeSizeString(mir->dalvikInsn.vC, decoded_mir); break; case kMirOpPackedUnsignedShiftRight: decoded_mir->append(StringPrintf(" vect%d = vect%d \\>\\>\\> %d", mir->dalvikInsn.vA, mir->dalvikInsn.vA, mir->dalvikInsn.vB)); FillTypeSizeString(mir->dalvikInsn.vC, decoded_mir); break; case kMirOpPackedSignedShiftRight: decoded_mir->append(StringPrintf(" vect%d = vect%d \\>\\> %d", mir->dalvikInsn.vA, mir->dalvikInsn.vA, mir->dalvikInsn.vB)); FillTypeSizeString(mir->dalvikInsn.vC, decoded_mir); break; case kMirOpConstVector: decoded_mir->append(StringPrintf(" vect%d = %x, %x, %x, %x", mir->dalvikInsn.vA, mir->dalvikInsn.arg[0], mir->dalvikInsn.arg[1], mir->dalvikInsn.arg[2], mir->dalvikInsn.arg[3])); break; case kMirOpPackedSet: if (ssa_rep != nullptr) { decoded_mir->append(StringPrintf(" vect%d = %s", mir->dalvikInsn.vA, GetSSANameWithConst(ssa_rep->uses[0], false).c_str())); if (uses > 1) { decoded_mir->append(", "); decoded_mir->append(GetSSANameWithConst(ssa_rep->uses[1], false)); } } else { decoded_mir->append(StringPrintf(" vect%d = v%d", mir->dalvikInsn.vA, mir->dalvikInsn.vB)); } FillTypeSizeString(mir->dalvikInsn.vC, decoded_mir); break; case kMirOpPackedAddReduce: if (ssa_rep != nullptr) { decoded_mir->append(" "); decoded_mir->append(GetSSANameWithConst(ssa_rep->defs[0], false)); if (defs > 1) { decoded_mir->append(", "); decoded_mir->append(GetSSANameWithConst(ssa_rep->defs[1], false)); } decoded_mir->append(StringPrintf(" = vect%d + %s", mir->dalvikInsn.vB, GetSSANameWithConst(ssa_rep->uses[0], false).c_str())); if (uses > 1) { decoded_mir->append(", "); decoded_mir->append(GetSSANameWithConst(ssa_rep->uses[1], false)); } } else { decoded_mir->append(StringPrintf("v%d = vect%d + v%d", mir->dalvikInsn.vA, mir->dalvikInsn.vB, mir->dalvikInsn.vA)); } FillTypeSizeString(mir->dalvikInsn.vC, decoded_mir); break; case kMirOpPackedReduce: if (ssa_rep != nullptr) { decoded_mir->append(" "); decoded_mir->append(GetSSANameWithConst(ssa_rep->defs[0], false)); if (defs > 1) { decoded_mir->append(", "); decoded_mir->append(GetSSANameWithConst(ssa_rep->defs[1], false)); } decoded_mir->append(StringPrintf(" = vect%d (extr_idx:%d)", mir->dalvikInsn.vB, mir->dalvikInsn.arg[0])); } else { decoded_mir->append(StringPrintf(" v%d = vect%d (extr_idx:%d)", mir->dalvikInsn.vA, mir->dalvikInsn.vB, mir->dalvikInsn.arg[0])); } FillTypeSizeString(mir->dalvikInsn.vC, decoded_mir); break; case kMirOpReserveVectorRegisters: case kMirOpReturnVectorRegisters: decoded_mir->append(StringPrintf(" vect%d - vect%d", mir->dalvikInsn.vA, mir->dalvikInsn.vB)); break; case kMirOpMemBarrier: { decoded_mir->append(" type:"); std::stringstream ss; ss << static_cast(mir->dalvikInsn.vA); decoded_mir->append(ss.str()); break; } case kMirOpPackedArrayGet: case kMirOpPackedArrayPut: decoded_mir->append(StringPrintf(" vect%d", mir->dalvikInsn.vA)); if (ssa_rep != nullptr) { decoded_mir->append(StringPrintf(", %s[%s]", GetSSANameWithConst(ssa_rep->uses[0], false).c_str(), GetSSANameWithConst(ssa_rep->uses[1], false).c_str())); } else { decoded_mir->append(StringPrintf(", v%d[v%d]", mir->dalvikInsn.vB, mir->dalvikInsn.vC)); } FillTypeSizeString(mir->dalvikInsn.arg[0], decoded_mir); break; case kMirOpMaddInt: case kMirOpMsubInt: case kMirOpMaddLong: case kMirOpMsubLong: if (ssa_rep != nullptr) { decoded_mir->append(" "); decoded_mir->append(GetSSANameWithConst(ssa_rep->defs[0], false)); if (defs > 1) { decoded_mir->append(", "); decoded_mir->append(GetSSANameWithConst(ssa_rep->defs[1], false)); } for (int i = 0; i < uses; i++) { decoded_mir->append(", "); decoded_mir->append(GetSSANameWithConst(ssa_rep->uses[i], false)); } } else { decoded_mir->append(StringPrintf(" v%d, v%d, v%d, v%d", mir->dalvikInsn.vA, mir->dalvikInsn.vB, mir->dalvikInsn.vC, mir->dalvikInsn.arg[0])); } break; default: break; } } char* MIRGraph::GetDalvikDisassembly(const MIR* mir) { MIR::DecodedInstruction insn = mir->dalvikInsn; std::string str; int flags = 0; int opcode = insn.opcode; char* ret; bool nop = false; SSARepresentation* ssa_rep = mir->ssa_rep; Instruction::Format dalvik_format = Instruction::k10x; // Default to no-operand format. // Handle special cases that recover the original dalvik instruction. if ((opcode == kMirOpCheck) || (opcode == kMirOpCheckPart2)) { str.append(extended_mir_op_names_[opcode - kMirOpFirst]); str.append(": "); // Recover the original Dex instruction. insn = mir->meta.throw_insn->dalvikInsn; ssa_rep = mir->meta.throw_insn->ssa_rep; opcode = insn.opcode; } else if (opcode == kMirOpNop) { str.append("["); if (mir->offset < current_code_item_->insns_size_in_code_units_) { // Recover original opcode. insn.opcode = Instruction::At(current_code_item_->insns_ + mir->offset)->Opcode(); opcode = insn.opcode; } nop = true; } int defs = (ssa_rep != NULL) ? ssa_rep->num_defs : 0; int uses = (ssa_rep != NULL) ? ssa_rep->num_uses : 0; if (MIR::DecodedInstruction::IsPseudoMirOp(opcode)) { // Note that this does not check the MIR's opcode in all cases. In cases where it // recovered dalvik instruction, it uses opcode of that instead of the extended one. DisassembleExtendedInstr(mir, &str); } else { dalvik_format = Instruction::FormatOf(insn.opcode); flags = insn.FlagsOf(); str.append(Instruction::Name(insn.opcode)); // For invokes-style formats, treat wide regs as a pair of singles. bool show_singles = ((dalvik_format == Instruction::k35c) || (dalvik_format == Instruction::k3rc)); if (defs != 0) { str.append(" "); str.append(GetSSANameWithConst(ssa_rep->defs[0], false)); if (defs > 1) { str.append(", "); str.append(GetSSANameWithConst(ssa_rep->defs[1], false)); } if (uses != 0) { str.append(", "); } } for (int i = 0; i < uses; i++) { str.append(" "); str.append(GetSSANameWithConst(ssa_rep->uses[i], show_singles)); if (!show_singles && (reg_location_ != NULL) && reg_location_[i].wide) { // For the listing, skip the high sreg. i++; } if (i != (uses - 1)) { str.append(","); } } switch (dalvik_format) { case Instruction::k11n: // Add one immediate from vB. case Instruction::k21s: case Instruction::k31i: case Instruction::k21h: str.append(StringPrintf(", #0x%x", insn.vB)); break; case Instruction::k51l: // Add one wide immediate. str.append(StringPrintf(", #%" PRId64, insn.vB_wide)); break; case Instruction::k21c: // One register, one string/type/method index. case Instruction::k31c: str.append(StringPrintf(", index #0x%x", insn.vB)); break; case Instruction::k22c: // Two registers, one string/type/method index. str.append(StringPrintf(", index #0x%x", insn.vC)); break; case Instruction::k22s: // Add one immediate from vC. case Instruction::k22b: str.append(StringPrintf(", #0x%x", insn.vC)); break; default: // Nothing left to print. break; } if ((flags & Instruction::kBranch) != 0) { // For branches, decode the instructions to print out the branch targets. int offset = 0; switch (dalvik_format) { case Instruction::k21t: offset = insn.vB; break; case Instruction::k22t: offset = insn.vC; break; case Instruction::k10t: case Instruction::k20t: case Instruction::k30t: offset = insn.vA; break; default: LOG(FATAL) << "Unexpected branch format " << dalvik_format << " from " << insn.opcode; break; } str.append(StringPrintf(", 0x%x (%c%x)", mir->offset + offset, offset > 0 ? '+' : '-', offset > 0 ? offset : -offset)); } if (nop) { str.append("]--optimized away"); } } int length = str.length() + 1; ret = arena_->AllocArray(length, kArenaAllocDFInfo); strncpy(ret, str.c_str(), length); return ret; } /* Turn method name into a legal Linux file name */ void MIRGraph::ReplaceSpecialChars(std::string& str) { static const struct { const char before; const char after; } match[] = { {'/', '-'}, {';', '#'}, {' ', '#'}, {'$', '+'}, {'(', '@'}, {')', '@'}, {'<', '='}, {'>', '='} }; for (unsigned int i = 0; i < sizeof(match)/sizeof(match[0]); i++) { std::replace(str.begin(), str.end(), match[i].before, match[i].after); } } std::string MIRGraph::GetSSAName(int ssa_reg) { // TODO: This value is needed for debugging. Currently, we compute this and then copy to the // arena. We should be smarter and just place straight into the arena, or compute the // value more lazily. int vreg = SRegToVReg(ssa_reg); if (vreg >= static_cast(GetFirstTempVR())) { return StringPrintf("t%d_%d", SRegToVReg(ssa_reg), GetSSASubscript(ssa_reg)); } else { return StringPrintf("v%d_%d", SRegToVReg(ssa_reg), GetSSASubscript(ssa_reg)); } } // Similar to GetSSAName, but if ssa name represents an immediate show that as well. std::string MIRGraph::GetSSANameWithConst(int ssa_reg, bool singles_only) { if (reg_location_ == NULL) { // Pre-SSA - just use the standard name. return GetSSAName(ssa_reg); } if (IsConst(reg_location_[ssa_reg])) { if (!singles_only && reg_location_[ssa_reg].wide && !reg_location_[ssa_reg].high_word) { return StringPrintf("v%d_%d#0x%" PRIx64, SRegToVReg(ssa_reg), GetSSASubscript(ssa_reg), ConstantValueWide(reg_location_[ssa_reg])); } else { return StringPrintf("v%d_%d#0x%x", SRegToVReg(ssa_reg), GetSSASubscript(ssa_reg), ConstantValue(reg_location_[ssa_reg])); } } else { int vreg = SRegToVReg(ssa_reg); if (vreg >= static_cast(GetFirstTempVR())) { return StringPrintf("t%d_%d", SRegToVReg(ssa_reg), GetSSASubscript(ssa_reg)); } else { return StringPrintf("v%d_%d", SRegToVReg(ssa_reg), GetSSASubscript(ssa_reg)); } } } void MIRGraph::GetBlockName(BasicBlock* bb, char* name) { switch (bb->block_type) { case kEntryBlock: snprintf(name, BLOCK_NAME_LEN, "entry_%d", bb->id); break; case kExitBlock: snprintf(name, BLOCK_NAME_LEN, "exit_%d", bb->id); break; case kDalvikByteCode: snprintf(name, BLOCK_NAME_LEN, "block%04x_%d", bb->start_offset, bb->id); break; case kExceptionHandling: snprintf(name, BLOCK_NAME_LEN, "exception%04x_%d", bb->start_offset, bb->id); break; default: snprintf(name, BLOCK_NAME_LEN, "_%d", bb->id); break; } } const char* MIRGraph::GetShortyFromMethodReference(const MethodReference& target_method) { const DexFile::MethodId& method_id = target_method.dex_file->GetMethodId(target_method.dex_method_index); return target_method.dex_file->GetShorty(method_id.proto_idx_); } /* Debug Utility - dump a compilation unit */ void MIRGraph::DumpMIRGraph() { const char* block_type_names[] = { "Null Block", "Entry Block", "Code Block", "Exit Block", "Exception Handling", "Catch Block" }; LOG(INFO) << "Compiling " << PrettyMethod(cu_->method_idx, *cu_->dex_file); LOG(INFO) << GetInsns(0) << " insns"; LOG(INFO) << GetNumBlocks() << " blocks in total"; for (BasicBlock* bb : block_list_) { LOG(INFO) << StringPrintf("Block %d (%s) (insn %04x - %04x%s)", bb->id, block_type_names[bb->block_type], bb->start_offset, bb->last_mir_insn ? bb->last_mir_insn->offset : bb->start_offset, bb->last_mir_insn ? "" : " empty"); if (bb->taken != NullBasicBlockId) { LOG(INFO) << " Taken branch: block " << bb->taken << "(0x" << std::hex << GetBasicBlock(bb->taken)->start_offset << ")"; } if (bb->fall_through != NullBasicBlockId) { LOG(INFO) << " Fallthrough : block " << bb->fall_through << " (0x" << std::hex << GetBasicBlock(bb->fall_through)->start_offset << ")"; } } } /* * Build an array of location records for the incoming arguments. * Note: one location record per word of arguments, with dummy * high-word loc for wide arguments. Also pull up any following * MOVE_RESULT and incorporate it into the invoke. */ CallInfo* MIRGraph::NewMemCallInfo(BasicBlock* bb, MIR* mir, InvokeType type, bool is_range) { CallInfo* info = static_cast(arena_->Alloc(sizeof(CallInfo), kArenaAllocMisc)); MIR* move_result_mir = FindMoveResult(bb, mir); if (move_result_mir == NULL) { info->result.location = kLocInvalid; } else { info->result = GetRawDest(move_result_mir); move_result_mir->dalvikInsn.opcode = static_cast(kMirOpNop); } info->num_arg_words = mir->ssa_rep->num_uses; info->args = (info->num_arg_words == 0) ? nullptr : arena_->AllocArray(info->num_arg_words, kArenaAllocMisc); for (size_t i = 0; i < info->num_arg_words; i++) { info->args[i] = GetRawSrc(mir, i); } info->opt_flags = mir->optimization_flags; info->type = type; info->is_range = is_range; if (IsInstructionQuickInvoke(mir->dalvikInsn.opcode)) { const auto& method_info = GetMethodLoweringInfo(mir); info->method_ref = method_info.GetTargetMethod(); } else { info->method_ref = MethodReference(GetCurrentDexCompilationUnit()->GetDexFile(), mir->dalvikInsn.vB); } info->index = mir->dalvikInsn.vB; info->offset = mir->offset; info->mir = mir; return info; } // Allocate a new MIR. MIR* MIRGraph::NewMIR() { MIR* mir = new (arena_) MIR(); return mir; } // Allocate a new basic block. BasicBlock* MIRGraph::NewMemBB(BBType block_type, int block_id) { BasicBlock* bb = new (arena_) BasicBlock(block_id, block_type, arena_); // TUNING: better estimate of the exit block predecessors? bb->predecessors.reserve((block_type == kExitBlock) ? 2048 : 2); block_id_map_.Put(block_id, block_id); return bb; } void MIRGraph::InitializeConstantPropagation() { is_constant_v_ = new (arena_) ArenaBitVector(arena_, GetNumSSARegs(), false); constant_values_ = arena_->AllocArray(GetNumSSARegs(), kArenaAllocDFInfo); } void MIRGraph::InitializeMethodUses() { // The gate starts by initializing the use counts. int num_ssa_regs = GetNumSSARegs(); use_counts_.clear(); use_counts_.reserve(num_ssa_regs + 32); use_counts_.resize(num_ssa_regs, 0u); raw_use_counts_.clear(); raw_use_counts_.reserve(num_ssa_regs + 32); raw_use_counts_.resize(num_ssa_regs, 0u); } void MIRGraph::SSATransformationStart() { DCHECK(temp_scoped_alloc_.get() == nullptr); temp_scoped_alloc_.reset(ScopedArenaAllocator::Create(&cu_->arena_stack)); temp_.ssa.num_vregs = GetNumOfCodeAndTempVRs(); temp_.ssa.work_live_vregs = new (temp_scoped_alloc_.get()) ArenaBitVector( temp_scoped_alloc_.get(), temp_.ssa.num_vregs, false, kBitMapRegisterV); } void MIRGraph::SSATransformationEnd() { // Verify the dataflow information after the pass. if (cu_->enable_debug & (1 << kDebugVerifyDataflow)) { VerifyDataflow(); } temp_.ssa.num_vregs = 0u; temp_.ssa.work_live_vregs = nullptr; DCHECK(temp_.ssa.def_block_matrix == nullptr); temp_.ssa.phi_node_blocks = nullptr; DCHECK(temp_scoped_alloc_.get() != nullptr); temp_scoped_alloc_.reset(); // Update the maximum number of reachable blocks. max_num_reachable_blocks_ = num_reachable_blocks_; // Mark MIR SSA representations as up to date. mir_ssa_rep_up_to_date_ = true; } size_t MIRGraph::GetNumDalvikInsns() const { size_t cumulative_size = 0u; bool counted_current_item = false; const uint8_t size_for_null_code_item = 2u; for (auto it : m_units_) { const DexFile::CodeItem* code_item = it->GetCodeItem(); // Even if the code item is null, we still count non-zero value so that // each m_unit is counted as having impact. cumulative_size += (code_item == nullptr ? size_for_null_code_item : code_item->insns_size_in_code_units_); if (code_item == current_code_item_) { counted_current_item = true; } } // If the current code item was not counted yet, count it now. // This can happen for example in unit tests where some fields like m_units_ // are not initialized. if (counted_current_item == false) { cumulative_size += (current_code_item_ == nullptr ? size_for_null_code_item : current_code_item_->insns_size_in_code_units_); } return cumulative_size; } static BasicBlock* SelectTopologicalSortOrderFallBack( MIRGraph* mir_graph, const ArenaBitVector* current_loop, const ScopedArenaVector* visited_cnt_values, ScopedArenaAllocator* allocator, ScopedArenaVector* tmp_stack) { // No true loop head has been found but there may be true loop heads after the mess we need // to resolve. To avoid taking one of those, pick the candidate with the highest number of // reachable unvisited nodes. That candidate will surely be a part of a loop. BasicBlock* fall_back = nullptr; size_t fall_back_num_reachable = 0u; // Reuse the same bit vector for each candidate to mark reachable unvisited blocks. ArenaBitVector candidate_reachable(allocator, mir_graph->GetNumBlocks(), false, kBitMapMisc); AllNodesIterator iter(mir_graph); for (BasicBlock* candidate = iter.Next(); candidate != nullptr; candidate = iter.Next()) { if (candidate->hidden || // Hidden, or candidate->visited || // already processed, or (*visited_cnt_values)[candidate->id] == 0u || // no processed predecessors, or (current_loop != nullptr && // outside current loop. !current_loop->IsBitSet(candidate->id))) { continue; } DCHECK(tmp_stack->empty()); tmp_stack->push_back(candidate->id); candidate_reachable.ClearAllBits(); size_t num_reachable = 0u; while (!tmp_stack->empty()) { BasicBlockId current_id = tmp_stack->back(); tmp_stack->pop_back(); BasicBlock* current_bb = mir_graph->GetBasicBlock(current_id); DCHECK(current_bb != nullptr); ChildBlockIterator child_iter(current_bb, mir_graph); BasicBlock* child_bb = child_iter.Next(); for ( ; child_bb != nullptr; child_bb = child_iter.Next()) { DCHECK(!child_bb->hidden); if (child_bb->visited || // Already processed, or (current_loop != nullptr && // outside current loop. !current_loop->IsBitSet(child_bb->id))) { continue; } if (!candidate_reachable.IsBitSet(child_bb->id)) { candidate_reachable.SetBit(child_bb->id); tmp_stack->push_back(child_bb->id); num_reachable += 1u; } } } if (fall_back_num_reachable < num_reachable) { fall_back_num_reachable = num_reachable; fall_back = candidate; } } return fall_back; } // Compute from which unvisited blocks is bb_id reachable through unvisited blocks. static void ComputeUnvisitedReachableFrom(MIRGraph* mir_graph, BasicBlockId bb_id, ArenaBitVector* reachable, ScopedArenaVector* tmp_stack) { // NOTE: Loop heads indicated by the "visited" flag. DCHECK(tmp_stack->empty()); reachable->ClearAllBits(); tmp_stack->push_back(bb_id); while (!tmp_stack->empty()) { BasicBlockId current_id = tmp_stack->back(); tmp_stack->pop_back(); BasicBlock* current_bb = mir_graph->GetBasicBlock(current_id); DCHECK(current_bb != nullptr); for (BasicBlockId pred_id : current_bb->predecessors) { BasicBlock* pred_bb = mir_graph->GetBasicBlock(pred_id); DCHECK(pred_bb != nullptr); if (!pred_bb->visited && !reachable->IsBitSet(pred_bb->id)) { reachable->SetBit(pred_bb->id); tmp_stack->push_back(pred_bb->id); } } } } void MIRGraph::ComputeTopologicalSortOrder() { ScopedArenaAllocator allocator(&cu_->arena_stack); unsigned int num_blocks = GetNumBlocks(); ScopedArenaQueue q(allocator.Adapter()); ScopedArenaVector visited_cnt_values(num_blocks, 0u, allocator.Adapter()); ScopedArenaVector loop_head_stack(allocator.Adapter()); size_t max_nested_loops = 0u; ArenaBitVector loop_exit_blocks(&allocator, num_blocks, false, kBitMapMisc); loop_exit_blocks.ClearAllBits(); // Count the number of blocks to process and add the entry block(s). unsigned int num_blocks_to_process = 0u; for (BasicBlock* bb : block_list_) { if (bb->hidden == true) { continue; } num_blocks_to_process += 1u; if (bb->predecessors.size() == 0u) { // Add entry block to the queue. q.push(bb); } } // Clear the topological order arrays. topological_order_.clear(); topological_order_.reserve(num_blocks); topological_order_loop_ends_.clear(); topological_order_loop_ends_.resize(num_blocks, 0u); topological_order_indexes_.clear(); topological_order_indexes_.resize(num_blocks, static_cast(-1)); // Mark all blocks as unvisited. ClearAllVisitedFlags(); // For loop heads, keep track from which blocks they are reachable not going through other // loop heads. Other loop heads are excluded to detect the heads of nested loops. The children // in this set go into the loop body, the other children are jumping over the loop. ScopedArenaVector loop_head_reachable_from(allocator.Adapter()); loop_head_reachable_from.resize(num_blocks, nullptr); // Reuse the same temp stack whenever calculating a loop_head_reachable_from[loop_head_id]. ScopedArenaVector tmp_stack(allocator.Adapter()); while (num_blocks_to_process != 0u) { BasicBlock* bb = nullptr; if (!q.empty()) { num_blocks_to_process -= 1u; // Get top. bb = q.front(); q.pop(); if (bb->visited) { // Loop head: it was already processed, mark end and copy exit blocks to the queue. DCHECK(q.empty()) << PrettyMethod(cu_->method_idx, *cu_->dex_file); uint16_t idx = static_cast(topological_order_.size()); topological_order_loop_ends_[topological_order_indexes_[bb->id]] = idx; DCHECK_EQ(loop_head_stack.back(), bb->id); loop_head_stack.pop_back(); ArenaBitVector* reachable = loop_head_stack.empty() ? nullptr : loop_head_reachable_from[loop_head_stack.back()]; for (BasicBlockId candidate_id : loop_exit_blocks.Indexes()) { if (reachable == nullptr || reachable->IsBitSet(candidate_id)) { q.push(GetBasicBlock(candidate_id)); // NOTE: The BitVectorSet::IndexIterator will not check the pointed-to bit again, // so clearing the bit has no effect on the iterator. loop_exit_blocks.ClearBit(candidate_id); } } continue; } } else { // Find the new loop head. AllNodesIterator iter(this); while (true) { BasicBlock* candidate = iter.Next(); if (candidate == nullptr) { // We did not find a true loop head, fall back to a reachable block in any loop. ArenaBitVector* current_loop = loop_head_stack.empty() ? nullptr : loop_head_reachable_from[loop_head_stack.back()]; bb = SelectTopologicalSortOrderFallBack(this, current_loop, &visited_cnt_values, &allocator, &tmp_stack); DCHECK(bb != nullptr) << PrettyMethod(cu_->method_idx, *cu_->dex_file); if (kIsDebugBuild && cu_->dex_file != nullptr) { LOG(INFO) << "Topological sort order: Using fall-back in " << PrettyMethod(cu_->method_idx, *cu_->dex_file) << " BB #" << bb->id << " @0x" << std::hex << bb->start_offset << ", num_blocks = " << std::dec << num_blocks; } break; } if (candidate->hidden || // Hidden, or candidate->visited || // already processed, or visited_cnt_values[candidate->id] == 0u || // no processed predecessors, or (!loop_head_stack.empty() && // outside current loop. !loop_head_reachable_from[loop_head_stack.back()]->IsBitSet(candidate->id))) { continue; } for (BasicBlockId pred_id : candidate->predecessors) { BasicBlock* pred_bb = GetBasicBlock(pred_id); DCHECK(pred_bb != nullptr); if (pred_bb != candidate && !pred_bb->visited && !pred_bb->dominators->IsBitSet(candidate->id)) { candidate = nullptr; // Set candidate to null to indicate failure. break; } } if (candidate != nullptr) { bb = candidate; break; } } // Compute blocks from which the loop head is reachable and process those blocks first. ArenaBitVector* reachable = new (&allocator) ArenaBitVector(&allocator, num_blocks, false, kBitMapMisc); loop_head_reachable_from[bb->id] = reachable; ComputeUnvisitedReachableFrom(this, bb->id, reachable, &tmp_stack); // Now mark as loop head. (Even if it's only a fall back when we don't find a true loop.) loop_head_stack.push_back(bb->id); max_nested_loops = std::max(max_nested_loops, loop_head_stack.size()); } DCHECK_EQ(bb->hidden, false); DCHECK_EQ(bb->visited, false); bb->visited = true; bb->nesting_depth = loop_head_stack.size(); // Now add the basic block. uint16_t idx = static_cast(topological_order_.size()); topological_order_indexes_[bb->id] = idx; topological_order_.push_back(bb->id); // Update visited_cnt_values for children. ChildBlockIterator succIter(bb, this); BasicBlock* successor = succIter.Next(); for ( ; successor != nullptr; successor = succIter.Next()) { if (successor->hidden) { continue; } // One more predecessor was visited. visited_cnt_values[successor->id] += 1u; if (visited_cnt_values[successor->id] == successor->predecessors.size()) { if (loop_head_stack.empty() || loop_head_reachable_from[loop_head_stack.back()]->IsBitSet(successor->id)) { q.push(successor); } else { DCHECK(!loop_exit_blocks.IsBitSet(successor->id)); loop_exit_blocks.SetBit(successor->id); } } } } // Prepare the loop head stack for iteration. topological_order_loop_head_stack_.clear(); topological_order_loop_head_stack_.reserve(max_nested_loops); max_nested_loops_ = max_nested_loops; topological_order_up_to_date_ = true; } bool BasicBlock::IsExceptionBlock() const { if (block_type == kExceptionHandling) { return true; } return false; } ChildBlockIterator::ChildBlockIterator(BasicBlock* bb, MIRGraph* mir_graph) : basic_block_(bb), mir_graph_(mir_graph), visited_fallthrough_(false), visited_taken_(false), have_successors_(false) { // Check if we actually do have successors. if (basic_block_ != 0 && basic_block_->successor_block_list_type != kNotUsed) { have_successors_ = true; successor_iter_ = basic_block_->successor_blocks.cbegin(); } } BasicBlock* ChildBlockIterator::Next() { // We check if we have a basic block. If we don't we cannot get next child. if (basic_block_ == nullptr) { return nullptr; } // If we haven't visited fallthrough, return that. if (visited_fallthrough_ == false) { visited_fallthrough_ = true; BasicBlock* result = mir_graph_->GetBasicBlock(basic_block_->fall_through); if (result != nullptr) { return result; } } // If we haven't visited taken, return that. if (visited_taken_ == false) { visited_taken_ = true; BasicBlock* result = mir_graph_->GetBasicBlock(basic_block_->taken); if (result != nullptr) { return result; } } // We visited both taken and fallthrough. Now check if we have successors we need to visit. if (have_successors_ == true) { // Get information about next successor block. auto end = basic_block_->successor_blocks.cend(); while (successor_iter_ != end) { SuccessorBlockInfo* successor_block_info = *successor_iter_; ++successor_iter_; // If block was replaced by zero block, take next one. if (successor_block_info->block != NullBasicBlockId) { return mir_graph_->GetBasicBlock(successor_block_info->block); } } } // We do not have anything. return nullptr; } BasicBlock* BasicBlock::Copy(CompilationUnit* c_unit) { MIRGraph* mir_graph = c_unit->mir_graph.get(); return Copy(mir_graph); } BasicBlock* BasicBlock::Copy(MIRGraph* mir_graph) { BasicBlock* result_bb = mir_graph->CreateNewBB(block_type); // We don't do a memcpy style copy here because it would lead to a lot of things // to clean up. Let us do it by hand instead. // Copy in taken and fallthrough. result_bb->fall_through = fall_through; result_bb->taken = taken; // Copy successor links if needed. ArenaAllocator* arena = mir_graph->GetArena(); result_bb->successor_block_list_type = successor_block_list_type; if (result_bb->successor_block_list_type != kNotUsed) { result_bb->successor_blocks.reserve(successor_blocks.size()); for (SuccessorBlockInfo* sbi_old : successor_blocks) { SuccessorBlockInfo* sbi_new = static_cast( arena->Alloc(sizeof(SuccessorBlockInfo), kArenaAllocSuccessor)); memcpy(sbi_new, sbi_old, sizeof(SuccessorBlockInfo)); result_bb->successor_blocks.push_back(sbi_new); } } // Copy offset, method. result_bb->start_offset = start_offset; // Now copy instructions. for (MIR* mir = first_mir_insn; mir != 0; mir = mir->next) { // Get a copy first. MIR* copy = mir->Copy(mir_graph); // Append it. result_bb->AppendMIR(copy); } return result_bb; } MIR* MIR::Copy(MIRGraph* mir_graph) { MIR* res = mir_graph->NewMIR(); *res = *this; // Remove links res->next = nullptr; res->bb = NullBasicBlockId; res->ssa_rep = nullptr; return res; } MIR* MIR::Copy(CompilationUnit* c_unit) { return Copy(c_unit->mir_graph.get()); } uint32_t SSARepresentation::GetStartUseIndex(Instruction::Code opcode) { // Default result. int res = 0; // We are basically setting the iputs to their igets counterparts. switch (opcode) { case Instruction::IPUT: case Instruction::IPUT_OBJECT: case Instruction::IPUT_BOOLEAN: case Instruction::IPUT_BYTE: case Instruction::IPUT_CHAR: case Instruction::IPUT_SHORT: case Instruction::IPUT_QUICK: case Instruction::IPUT_OBJECT_QUICK: case Instruction::IPUT_BOOLEAN_QUICK: case Instruction::IPUT_BYTE_QUICK: case Instruction::IPUT_CHAR_QUICK: case Instruction::IPUT_SHORT_QUICK: case Instruction::APUT: case Instruction::APUT_OBJECT: case Instruction::APUT_BOOLEAN: case Instruction::APUT_BYTE: case Instruction::APUT_CHAR: case Instruction::APUT_SHORT: case Instruction::SPUT: case Instruction::SPUT_OBJECT: case Instruction::SPUT_BOOLEAN: case Instruction::SPUT_BYTE: case Instruction::SPUT_CHAR: case Instruction::SPUT_SHORT: // Skip the VR containing what to store. res = 1; break; case Instruction::IPUT_WIDE: case Instruction::IPUT_WIDE_QUICK: case Instruction::APUT_WIDE: case Instruction::SPUT_WIDE: // Skip the two VRs containing what to store. res = 2; break; default: // Do nothing in the general case. break; } return res; } /** * @brief Given a decoded instruction, it checks whether the instruction * sets a constant and if it does, more information is provided about the * constant being set. * @param ptr_value pointer to a 64-bit holder for the constant. * @param wide Updated by function whether a wide constant is being set by bytecode. * @return Returns false if the decoded instruction does not represent a constant bytecode. */ bool MIR::DecodedInstruction::GetConstant(int64_t* ptr_value, bool* wide) const { bool sets_const = true; int64_t value = vB; DCHECK(ptr_value != nullptr); DCHECK(wide != nullptr); switch (opcode) { case Instruction::CONST_4: case Instruction::CONST_16: case Instruction::CONST: *wide = false; value <<= 32; // In order to get the sign extend. value >>= 32; break; case Instruction::CONST_HIGH16: *wide = false; value <<= 48; // In order to get the sign extend. value >>= 32; break; case Instruction::CONST_WIDE_16: case Instruction::CONST_WIDE_32: *wide = true; value <<= 32; // In order to get the sign extend. value >>= 32; break; case Instruction::CONST_WIDE: *wide = true; value = vB_wide; break; case Instruction::CONST_WIDE_HIGH16: *wide = true; value <<= 48; // In order to get the sign extend. break; default: sets_const = false; break; } if (sets_const) { *ptr_value = value; } return sets_const; } void BasicBlock::ResetOptimizationFlags(uint16_t reset_flags) { // Reset flags for all MIRs in bb. for (MIR* mir = first_mir_insn; mir != NULL; mir = mir->next) { mir->optimization_flags &= (~reset_flags); } } void BasicBlock::Kill(MIRGraph* mir_graph) { for (BasicBlockId pred_id : predecessors) { BasicBlock* pred_bb = mir_graph->GetBasicBlock(pred_id); DCHECK(pred_bb != nullptr); // Sadly we have to go through the children by hand here. pred_bb->ReplaceChild(id, NullBasicBlockId); } predecessors.clear(); // Mark as dead and hidden. block_type = kDead; hidden = true; // Detach it from its MIRs so we don't generate code for them. Also detached MIRs // are updated to know that they no longer have a parent. for (MIR* mir = first_mir_insn; mir != nullptr; mir = mir->next) { mir->bb = NullBasicBlockId; } first_mir_insn = nullptr; last_mir_insn = nullptr; data_flow_info = nullptr; // Erase this bb from all children's predecessors and kill unreachable children. ChildBlockIterator iter(this, mir_graph); for (BasicBlock* succ_bb = iter.Next(); succ_bb != nullptr; succ_bb = iter.Next()) { succ_bb->ErasePredecessor(id); } // Remove links to children. fall_through = NullBasicBlockId; taken = NullBasicBlockId; successor_block_list_type = kNotUsed; if (kIsDebugBuild) { if (catch_entry) { DCHECK_EQ(mir_graph->catches_.count(start_offset), 1u); mir_graph->catches_.erase(start_offset); } } } bool BasicBlock::IsSSALiveOut(const CompilationUnit* c_unit, int ssa_reg) { // In order to determine if the ssa reg is live out, we scan all the MIRs. We remember // the last SSA number of the same dalvik register. At the end, if it is different than ssa_reg, // then it is not live out of this BB. int dalvik_reg = c_unit->mir_graph->SRegToVReg(ssa_reg); int last_ssa_reg = -1; // Walk through the MIRs backwards. for (MIR* mir = first_mir_insn; mir != nullptr; mir = mir->next) { // Get ssa rep. SSARepresentation *ssa_rep = mir->ssa_rep; // Go through the defines for this MIR. for (int i = 0; i < ssa_rep->num_defs; i++) { DCHECK(ssa_rep->defs != nullptr); // Get the ssa reg. int def_ssa_reg = ssa_rep->defs[i]; // Get dalvik reg. int def_dalvik_reg = c_unit->mir_graph->SRegToVReg(def_ssa_reg); // Compare dalvik regs. if (dalvik_reg == def_dalvik_reg) { // We found a def of the register that we are being asked about. // Remember it. last_ssa_reg = def_ssa_reg; } } } if (last_ssa_reg == -1) { // If we get to this point we couldn't find a define of register user asked about. // Let's assume the user knows what he's doing so we can be safe and say that if we // couldn't find a def, it is live out. return true; } // If it is not -1, we found a match, is it ssa_reg? return (ssa_reg == last_ssa_reg); } bool BasicBlock::ReplaceChild(BasicBlockId old_bb, BasicBlockId new_bb) { // We need to check taken, fall_through, and successor_blocks to replace. bool found = false; if (taken == old_bb) { taken = new_bb; found = true; } if (fall_through == old_bb) { fall_through = new_bb; found = true; } if (successor_block_list_type != kNotUsed) { for (SuccessorBlockInfo* successor_block_info : successor_blocks) { if (successor_block_info->block == old_bb) { successor_block_info->block = new_bb; found = true; } } } return found; } void BasicBlock::ErasePredecessor(BasicBlockId old_pred) { auto pos = std::find(predecessors.begin(), predecessors.end(), old_pred); DCHECK(pos != predecessors.end()); // It's faster to move the back() to *pos than erase(pos). *pos = predecessors.back(); predecessors.pop_back(); size_t idx = std::distance(predecessors.begin(), pos); for (MIR* mir = first_mir_insn; mir != nullptr; mir = mir->next) { if (static_cast(mir->dalvikInsn.opcode) != kMirOpPhi) { break; } DCHECK_EQ(mir->ssa_rep->num_uses - 1u, predecessors.size()); DCHECK_EQ(mir->meta.phi_incoming[idx], old_pred); mir->meta.phi_incoming[idx] = mir->meta.phi_incoming[predecessors.size()]; mir->ssa_rep->uses[idx] = mir->ssa_rep->uses[predecessors.size()]; mir->ssa_rep->num_uses = predecessors.size(); } } void BasicBlock::UpdatePredecessor(BasicBlockId old_pred, BasicBlockId new_pred) { DCHECK_NE(new_pred, NullBasicBlockId); auto pos = std::find(predecessors.begin(), predecessors.end(), old_pred); DCHECK(pos != predecessors.end()); *pos = new_pred; size_t idx = std::distance(predecessors.begin(), pos); for (MIR* mir = first_mir_insn; mir != nullptr; mir = mir->next) { if (static_cast(mir->dalvikInsn.opcode) != kMirOpPhi) { break; } DCHECK_EQ(mir->meta.phi_incoming[idx], old_pred); mir->meta.phi_incoming[idx] = new_pred; } } // Create a new basic block with block_id as num_blocks_ that is // post-incremented. BasicBlock* MIRGraph::CreateNewBB(BBType block_type) { BasicBlockId id = static_cast(block_list_.size()); BasicBlock* res = NewMemBB(block_type, id); block_list_.push_back(res); return res; } void MIRGraph::CalculateBasicBlockInformation(const PassManager* const post_opt_pass_manager) { /* Create the pass driver and launch it */ PassDriverMEPostOpt driver(post_opt_pass_manager, cu_); driver.Launch(); } int MIR::DecodedInstruction::FlagsOf() const { // Calculate new index. int idx = static_cast(opcode) - kNumPackedOpcodes; // Check if it is an extended or not. if (idx < 0) { return Instruction::FlagsOf(opcode); } // For extended, we use a switch. switch (static_cast(opcode)) { case kMirOpPhi: return Instruction::kContinue; case kMirOpCopy: return Instruction::kContinue; case kMirOpFusedCmplFloat: return Instruction::kContinue | Instruction::kBranch; case kMirOpFusedCmpgFloat: return Instruction::kContinue | Instruction::kBranch; case kMirOpFusedCmplDouble: return Instruction::kContinue | Instruction::kBranch; case kMirOpFusedCmpgDouble: return Instruction::kContinue | Instruction::kBranch; case kMirOpFusedCmpLong: return Instruction::kContinue | Instruction::kBranch; case kMirOpNop: return Instruction::kContinue; case kMirOpNullCheck: return Instruction::kContinue | Instruction::kThrow; case kMirOpRangeCheck: return Instruction::kContinue | Instruction::kThrow; case kMirOpDivZeroCheck: return Instruction::kContinue | Instruction::kThrow; case kMirOpCheck: return Instruction::kContinue | Instruction::kThrow; case kMirOpCheckPart2: return Instruction::kContinue; case kMirOpSelect: return Instruction::kContinue; case kMirOpConstVector: return Instruction::kContinue; case kMirOpMoveVector: return Instruction::kContinue; case kMirOpPackedMultiply: return Instruction::kContinue; case kMirOpPackedAddition: return Instruction::kContinue; case kMirOpPackedSubtract: return Instruction::kContinue; case kMirOpPackedShiftLeft: return Instruction::kContinue; case kMirOpPackedSignedShiftRight: return Instruction::kContinue; case kMirOpPackedUnsignedShiftRight: return Instruction::kContinue; case kMirOpPackedAnd: return Instruction::kContinue; case kMirOpPackedOr: return Instruction::kContinue; case kMirOpPackedXor: return Instruction::kContinue; case kMirOpPackedAddReduce: return Instruction::kContinue; case kMirOpPackedReduce: return Instruction::kContinue; case kMirOpPackedSet: return Instruction::kContinue; case kMirOpReserveVectorRegisters: return Instruction::kContinue; case kMirOpReturnVectorRegisters: return Instruction::kContinue; case kMirOpMemBarrier: return Instruction::kContinue; case kMirOpPackedArrayGet: return Instruction::kContinue | Instruction::kThrow; case kMirOpPackedArrayPut: return Instruction::kContinue | Instruction::kThrow; case kMirOpMaddInt: case kMirOpMsubInt: case kMirOpMaddLong: case kMirOpMsubLong: return Instruction::kContinue; default: LOG(WARNING) << "ExtendedFlagsOf: Unhandled case: " << static_cast (opcode); return 0; } } const uint16_t* MIRGraph::GetInsns(int m_unit_index) const { return m_units_[m_unit_index]->GetCodeItem()->insns_; } void MIRGraph::SetPuntToInterpreter(bool val) { punt_to_interpreter_ = val; if (val) { // Disable all subsequent optimizations. They may not be safe to run. (For example, // LVN/GVN assumes there are no conflicts found by the type inference pass.) cu_->disable_opt = ~static_castdisable_opt)>(0); } } } // namespace art