/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "base/logging.h" #include "dataflow_iterator.h" #include "dataflow_iterator-inl.h" #include "dex/compiler_ir.h" #include "dex/mir_field_info.h" #include "gtest/gtest.h" namespace art { class MirOptimizationTest : public testing::Test { protected: struct BBDef { static constexpr size_t kMaxSuccessors = 4; static constexpr size_t kMaxPredecessors = 4; BBType type; size_t num_successors; BasicBlockId successors[kMaxPredecessors]; size_t num_predecessors; BasicBlockId predecessors[kMaxPredecessors]; }; struct MethodDef { uint16_t method_idx; uintptr_t declaring_dex_file; uint16_t declaring_class_idx; uint16_t declaring_method_idx; InvokeType invoke_type; InvokeType sharp_type; bool is_referrers_class; bool is_initialized; }; struct MIRDef { BasicBlockId bbid; Instruction::Code opcode; uint32_t field_or_method_info; uint32_t vA; uint32_t vB; uint32_t vC; }; #define DEF_SUCC0() \ 0u, { } #define DEF_SUCC1(s1) \ 1u, { s1 } #define DEF_SUCC2(s1, s2) \ 2u, { s1, s2 } #define DEF_SUCC3(s1, s2, s3) \ 3u, { s1, s2, s3 } #define DEF_SUCC4(s1, s2, s3, s4) \ 4u, { s1, s2, s3, s4 } #define DEF_PRED0() \ 0u, { } #define DEF_PRED1(p1) \ 1u, { p1 } #define DEF_PRED2(p1, p2) \ 2u, { p1, p2 } #define DEF_PRED3(p1, p2, p3) \ 3u, { p1, p2, p3 } #define DEF_PRED4(p1, p2, p3, p4) \ 4u, { p1, p2, p3, p4 } #define DEF_BB(type, succ, pred) \ { type, succ, pred } #define DEF_SGET_SPUT(bb, opcode, vA, field_info) \ { bb, opcode, field_info, vA, 0u, 0u } #define DEF_IGET_IPUT(bb, opcode, vA, vB, field_info) \ { bb, opcode, field_info, vA, vB, 0u } #define DEF_AGET_APUT(bb, opcode, vA, vB, vC) \ { bb, opcode, 0u, vA, vB, vC } #define DEF_INVOKE(bb, opcode, vC, method_info) \ { bb, opcode, method_info, 0u, 0u, vC } #define DEF_OTHER0(bb, opcode) \ { bb, opcode, 0u, 0u, 0u, 0u } #define DEF_OTHER1(bb, opcode, vA) \ { bb, opcode, 0u, vA, 0u, 0u } #define DEF_OTHER2(bb, opcode, vA, vB) \ { bb, opcode, 0u, vA, vB, 0u } void DoPrepareBasicBlocks(const BBDef* defs, size_t count) { cu_.mir_graph->block_id_map_.clear(); cu_.mir_graph->block_list_.clear(); ASSERT_LT(3u, count); // null, entry, exit and at least one bytecode block. ASSERT_EQ(kNullBlock, defs[0].type); ASSERT_EQ(kEntryBlock, defs[1].type); ASSERT_EQ(kExitBlock, defs[2].type); for (size_t i = 0u; i != count; ++i) { const BBDef* def = &defs[i]; BasicBlock* bb = cu_.mir_graph->CreateNewBB(def->type); if (def->num_successors <= 2) { bb->successor_block_list_type = kNotUsed; bb->fall_through = (def->num_successors >= 1) ? def->successors[0] : 0u; bb->taken = (def->num_successors >= 2) ? def->successors[1] : 0u; } else { bb->successor_block_list_type = kPackedSwitch; bb->fall_through = 0u; bb->taken = 0u; bb->successor_blocks.reserve(def->num_successors); for (size_t j = 0u; j != def->num_successors; ++j) { SuccessorBlockInfo* successor_block_info = static_cast(cu_.arena.Alloc(sizeof(SuccessorBlockInfo), kArenaAllocSuccessor)); successor_block_info->block = j; successor_block_info->key = 0u; // Not used by class init check elimination. bb->successor_blocks.push_back(successor_block_info); } } bb->predecessors.assign(def->predecessors, def->predecessors + def->num_predecessors); if (def->type == kDalvikByteCode || def->type == kEntryBlock || def->type == kExitBlock) { bb->data_flow_info = static_cast( cu_.arena.Alloc(sizeof(BasicBlockDataFlow), kArenaAllocDFInfo)); } } ASSERT_EQ(count, cu_.mir_graph->block_list_.size()); cu_.mir_graph->entry_block_ = cu_.mir_graph->block_list_[1]; ASSERT_EQ(kEntryBlock, cu_.mir_graph->entry_block_->block_type); cu_.mir_graph->exit_block_ = cu_.mir_graph->block_list_[2]; ASSERT_EQ(kExitBlock, cu_.mir_graph->exit_block_->block_type); } template void PrepareBasicBlocks(const BBDef (&defs)[count]) { DoPrepareBasicBlocks(defs, count); } void PrepareSingleBlock() { static const BBDef bbs[] = { DEF_BB(kNullBlock, DEF_SUCC0(), DEF_PRED0()), DEF_BB(kEntryBlock, DEF_SUCC1(3), DEF_PRED0()), DEF_BB(kExitBlock, DEF_SUCC0(), DEF_PRED1(3)), DEF_BB(kDalvikByteCode, DEF_SUCC1(2), DEF_PRED1(1)), }; PrepareBasicBlocks(bbs); } void PrepareDiamond() { static const BBDef bbs[] = { DEF_BB(kNullBlock, DEF_SUCC0(), DEF_PRED0()), DEF_BB(kEntryBlock, DEF_SUCC1(3), DEF_PRED0()), DEF_BB(kExitBlock, DEF_SUCC0(), DEF_PRED1(6)), DEF_BB(kDalvikByteCode, DEF_SUCC2(4, 5), DEF_PRED1(1)), DEF_BB(kDalvikByteCode, DEF_SUCC1(6), DEF_PRED1(3)), DEF_BB(kDalvikByteCode, DEF_SUCC1(6), DEF_PRED1(3)), DEF_BB(kDalvikByteCode, DEF_SUCC1(2), DEF_PRED2(4, 5)), }; PrepareBasicBlocks(bbs); } void PrepareLoop() { static const BBDef bbs[] = { DEF_BB(kNullBlock, DEF_SUCC0(), DEF_PRED0()), DEF_BB(kEntryBlock, DEF_SUCC1(3), DEF_PRED0()), DEF_BB(kExitBlock, DEF_SUCC0(), DEF_PRED1(5)), DEF_BB(kDalvikByteCode, DEF_SUCC1(4), DEF_PRED1(1)), DEF_BB(kDalvikByteCode, DEF_SUCC2(5, 4), DEF_PRED2(3, 4)), // "taken" loops to self. DEF_BB(kDalvikByteCode, DEF_SUCC1(2), DEF_PRED1(4)), }; PrepareBasicBlocks(bbs); } void PrepareNestedLoopsWhile_While() { static const BBDef bbs[] = { DEF_BB(kNullBlock, DEF_SUCC0(), DEF_PRED0()), DEF_BB(kEntryBlock, DEF_SUCC1(3), DEF_PRED0()), DEF_BB(kExitBlock, DEF_SUCC0(), DEF_PRED1(8)), DEF_BB(kDalvikByteCode, DEF_SUCC1(4), DEF_PRED1(1)), DEF_BB(kDalvikByteCode, DEF_SUCC2(5, 8), DEF_PRED2(3, 7)), // Outer while loop head. DEF_BB(kDalvikByteCode, DEF_SUCC2(6, 7), DEF_PRED2(4, 6)), // Inner while loop head. DEF_BB(kDalvikByteCode, DEF_SUCC1(5), DEF_PRED1(5)), // "taken" loops to inner head. DEF_BB(kDalvikByteCode, DEF_SUCC1(4), DEF_PRED1(5)), // "taken" loops to outer head. DEF_BB(kDalvikByteCode, DEF_SUCC1(2), DEF_PRED1(4)), }; PrepareBasicBlocks(bbs); } void PrepareNestedLoopsWhile_WhileWhile() { static const BBDef bbs[] = { DEF_BB(kNullBlock, DEF_SUCC0(), DEF_PRED0()), DEF_BB(kEntryBlock, DEF_SUCC1(3), DEF_PRED0()), DEF_BB(kExitBlock, DEF_SUCC0(), DEF_PRED1(10)), DEF_BB(kDalvikByteCode, DEF_SUCC1(4), DEF_PRED1(1)), DEF_BB(kDalvikByteCode, DEF_SUCC2(5, 10), DEF_PRED2(3, 9)), // Outer while loop head. DEF_BB(kDalvikByteCode, DEF_SUCC2(6, 7), DEF_PRED2(4, 6)), // Inner while loop head 1. DEF_BB(kDalvikByteCode, DEF_SUCC1(5), DEF_PRED1(5)), // Loops to inner head 1. DEF_BB(kDalvikByteCode, DEF_SUCC2(8, 9), DEF_PRED2(5, 8)), // Inner while loop head 2. DEF_BB(kDalvikByteCode, DEF_SUCC1(7), DEF_PRED1(7)), // loops to inner head 2. DEF_BB(kDalvikByteCode, DEF_SUCC1(4), DEF_PRED1(7)), // loops to outer head. DEF_BB(kDalvikByteCode, DEF_SUCC1(2), DEF_PRED1(4)), }; PrepareBasicBlocks(bbs); } void PrepareNestedLoopsWhile_WhileWhile_WithExtraEdge() { // Extra edge from the first inner loop body to second inner loop body (6u->8u). static const BBDef bbs[] = { DEF_BB(kNullBlock, DEF_SUCC0(), DEF_PRED0()), DEF_BB(kEntryBlock, DEF_SUCC1(3), DEF_PRED0()), DEF_BB(kExitBlock, DEF_SUCC0(), DEF_PRED1(10)), DEF_BB(kDalvikByteCode, DEF_SUCC1(4), DEF_PRED1(1)), DEF_BB(kDalvikByteCode, DEF_SUCC2(5, 10), DEF_PRED2(3, 9)), // Outer while loop head. DEF_BB(kDalvikByteCode, DEF_SUCC2(6, 7), DEF_PRED2(4, 6)), // Inner while loop head 1. DEF_BB(kDalvikByteCode, DEF_SUCC2(5, 8), DEF_PRED1(5)), // Loops to inner head 1. DEF_BB(kDalvikByteCode, DEF_SUCC2(8, 9), DEF_PRED2(5, 8)), // Inner while loop head 2. DEF_BB(kDalvikByteCode, DEF_SUCC1(7), DEF_PRED2(7, 6)), // loops to inner head 2. DEF_BB(kDalvikByteCode, DEF_SUCC1(4), DEF_PRED1(7)), // loops to outer head. DEF_BB(kDalvikByteCode, DEF_SUCC1(2), DEF_PRED1(4)), }; PrepareBasicBlocks(bbs); } void PrepareCatch() { static const BBDef bbs[] = { DEF_BB(kNullBlock, DEF_SUCC0(), DEF_PRED0()), DEF_BB(kEntryBlock, DEF_SUCC1(3), DEF_PRED0()), DEF_BB(kExitBlock, DEF_SUCC0(), DEF_PRED1(6)), DEF_BB(kDalvikByteCode, DEF_SUCC1(4), DEF_PRED1(1)), // The top. DEF_BB(kDalvikByteCode, DEF_SUCC1(6), DEF_PRED1(3)), // The throwing insn. DEF_BB(kDalvikByteCode, DEF_SUCC1(6), DEF_PRED1(3)), // Catch handler. DEF_BB(kDalvikByteCode, DEF_SUCC1(2), DEF_PRED2(4, 5)), // The merged block. }; PrepareBasicBlocks(bbs); BasicBlock* catch_handler = cu_.mir_graph->GetBasicBlock(5u); catch_handler->catch_entry = true; // Add successor block info to the check block. BasicBlock* check_bb = cu_.mir_graph->GetBasicBlock(3u); check_bb->successor_block_list_type = kCatch; SuccessorBlockInfo* successor_block_info = reinterpret_cast (cu_.arena.Alloc(sizeof(SuccessorBlockInfo), kArenaAllocSuccessor)); successor_block_info->block = catch_handler->id; check_bb->successor_blocks.push_back(successor_block_info); } void DoPrepareMethods(const MethodDef* defs, size_t count) { cu_.mir_graph->method_lowering_infos_.clear(); cu_.mir_graph->method_lowering_infos_.reserve(count); for (size_t i = 0u; i != count; ++i) { const MethodDef* def = &defs[i]; MirMethodLoweringInfo method_info(def->method_idx, def->invoke_type, false); if (def->declaring_dex_file != 0u) { method_info.declaring_dex_file_ = reinterpret_cast(def->declaring_dex_file); method_info.declaring_class_idx_ = def->declaring_class_idx; method_info.declaring_method_idx_ = def->declaring_method_idx; } ASSERT_EQ(def->invoke_type != kStatic, def->sharp_type != kStatic); method_info.flags_ = ((def->invoke_type == kStatic) ? MirMethodLoweringInfo::kFlagIsStatic : 0u) | MirMethodLoweringInfo::kFlagFastPath | (static_cast(def->invoke_type) << MirMethodLoweringInfo::kBitInvokeTypeBegin) | (static_cast(def->sharp_type) << MirMethodLoweringInfo::kBitSharpTypeBegin) | ((def->is_referrers_class) ? MirMethodLoweringInfo::kFlagIsReferrersClass : 0u) | ((def->is_initialized == kStatic) ? MirMethodLoweringInfo::kFlagClassIsInitialized : 0u); ASSERT_EQ(def->declaring_dex_file != 0u, method_info.IsResolved()); cu_.mir_graph->method_lowering_infos_.push_back(method_info); } } template void PrepareMethods(const MethodDef (&defs)[count]) { DoPrepareMethods(defs, count); } void DoPrepareMIRs(const MIRDef* defs, size_t count) { mir_count_ = count; mirs_ = cu_.arena.AllocArray(count, kArenaAllocMIR); uint64_t merged_df_flags = 0u; for (size_t i = 0u; i != count; ++i) { const MIRDef* def = &defs[i]; MIR* mir = &mirs_[i]; mir->dalvikInsn.opcode = def->opcode; ASSERT_LT(def->bbid, cu_.mir_graph->block_list_.size()); BasicBlock* bb = cu_.mir_graph->block_list_[def->bbid]; bb->AppendMIR(mir); if (IsInstructionIGetOrIPut(def->opcode)) { ASSERT_LT(def->field_or_method_info, cu_.mir_graph->ifield_lowering_infos_.size()); mir->meta.ifield_lowering_info = def->field_or_method_info; ASSERT_EQ(cu_.mir_graph->ifield_lowering_infos_[def->field_or_method_info].MemAccessType(), IGetOrIPutMemAccessType(def->opcode)); } else if (IsInstructionSGetOrSPut(def->opcode)) { ASSERT_LT(def->field_or_method_info, cu_.mir_graph->sfield_lowering_infos_.size()); mir->meta.sfield_lowering_info = def->field_or_method_info; ASSERT_EQ(cu_.mir_graph->sfield_lowering_infos_[def->field_or_method_info].MemAccessType(), SGetOrSPutMemAccessType(def->opcode)); } else if (IsInstructionInvoke(def->opcode)) { ASSERT_LT(def->field_or_method_info, cu_.mir_graph->method_lowering_infos_.size()); mir->meta.method_lowering_info = def->field_or_method_info; } mir->dalvikInsn.vA = def->vA; mir->dalvikInsn.vB = def->vB; mir->dalvikInsn.vC = def->vC; mir->ssa_rep = nullptr; mir->offset = 2 * i; // All insns need to be at least 2 code units long. mir->optimization_flags = 0u; merged_df_flags |= MIRGraph::GetDataFlowAttributes(def->opcode); } cu_.mir_graph->merged_df_flags_ = merged_df_flags; code_item_ = static_cast( cu_.arena.Alloc(sizeof(DexFile::CodeItem), kArenaAllocMisc)); memset(code_item_, 0, sizeof(DexFile::CodeItem)); code_item_->insns_size_in_code_units_ = 2u * count; cu_.mir_graph->current_code_item_ = code_item_; } template void PrepareMIRs(const MIRDef (&defs)[count]) { DoPrepareMIRs(defs, count); } MirOptimizationTest() : pool_(), cu_(&pool_, kRuntimeISA, nullptr, nullptr), mir_count_(0u), mirs_(nullptr), code_item_(nullptr) { cu_.mir_graph.reset(new MIRGraph(&cu_, &cu_.arena)); cu_.access_flags = kAccStatic; // Don't let "this" interfere with this test. } ArenaPool pool_; CompilationUnit cu_; size_t mir_count_; MIR* mirs_; DexFile::CodeItem* code_item_; }; class ClassInitCheckEliminationTest : public MirOptimizationTest { protected: struct SFieldDef { uint16_t field_idx; uintptr_t declaring_dex_file; uint16_t declaring_class_idx; uint16_t declaring_field_idx; DexMemAccessType type; }; void DoPrepareSFields(const SFieldDef* defs, size_t count) { cu_.mir_graph->sfield_lowering_infos_.clear(); cu_.mir_graph->sfield_lowering_infos_.reserve(count); for (size_t i = 0u; i != count; ++i) { const SFieldDef* def = &defs[i]; MirSFieldLoweringInfo field_info(def->field_idx, def->type); if (def->declaring_dex_file != 0u) { field_info.declaring_dex_file_ = reinterpret_cast(def->declaring_dex_file); field_info.declaring_class_idx_ = def->declaring_class_idx; field_info.declaring_field_idx_ = def->declaring_field_idx; // We don't care about the volatile flag in these tests. } ASSERT_EQ(def->declaring_dex_file != 0u, field_info.IsResolved()); ASSERT_FALSE(field_info.IsClassInitialized()); cu_.mir_graph->sfield_lowering_infos_.push_back(field_info); } } template void PrepareSFields(const SFieldDef (&defs)[count]) { DoPrepareSFields(defs, count); } void PerformClassInitCheckElimination() { cu_.mir_graph->ComputeDFSOrders(); bool gate_result = cu_.mir_graph->EliminateClassInitChecksGate(); ASSERT_TRUE(gate_result); RepeatingPreOrderDfsIterator iterator(cu_.mir_graph.get()); bool change = false; for (BasicBlock* bb = iterator.Next(change); bb != nullptr; bb = iterator.Next(change)) { change = cu_.mir_graph->EliminateClassInitChecks(bb); } cu_.mir_graph->EliminateClassInitChecksEnd(); } ClassInitCheckEliminationTest() : MirOptimizationTest() { } }; class NullCheckEliminationTest : public MirOptimizationTest { protected: struct IFieldDef { uint16_t field_idx; uintptr_t declaring_dex_file; uint16_t declaring_class_idx; uint16_t declaring_field_idx; DexMemAccessType type; }; void DoPrepareIFields(const IFieldDef* defs, size_t count) { cu_.mir_graph->ifield_lowering_infos_.clear(); cu_.mir_graph->ifield_lowering_infos_.reserve(count); for (size_t i = 0u; i != count; ++i) { const IFieldDef* def = &defs[i]; MirIFieldLoweringInfo field_info(def->field_idx, def->type, false); if (def->declaring_dex_file != 0u) { field_info.declaring_dex_file_ = reinterpret_cast(def->declaring_dex_file); field_info.declaring_class_idx_ = def->declaring_class_idx; field_info.declaring_field_idx_ = def->declaring_field_idx; // We don't care about the volatile flag in these tests. } ASSERT_EQ(def->declaring_dex_file != 0u, field_info.IsResolved()); cu_.mir_graph->ifield_lowering_infos_.push_back(field_info); } } template void PrepareIFields(const IFieldDef (&defs)[count]) { DoPrepareIFields(defs, count); } void PerformNullCheckElimination() { // Make vregs in range [100, 1000) input registers, i.e. requiring a null check. code_item_->registers_size_ = 1000; code_item_->ins_size_ = 900; cu_.mir_graph->ComputeDFSOrders(); bool gate_result = cu_.mir_graph->EliminateNullChecksGate(); ASSERT_TRUE(gate_result); RepeatingPreOrderDfsIterator iterator(cu_.mir_graph.get()); bool change = false; for (BasicBlock* bb = iterator.Next(change); bb != nullptr; bb = iterator.Next(change)) { change = cu_.mir_graph->EliminateNullChecks(bb); } cu_.mir_graph->EliminateNullChecksEnd(); } NullCheckEliminationTest() : MirOptimizationTest() { static const MethodDef methods[] = { { 0u, 1u, 0u, 0u, kDirect, kDirect, false, false }, // Dummy. }; PrepareMethods(methods); } }; class SuspendCheckEliminationTest : public MirOptimizationTest { protected: bool IsBackEdge(BasicBlockId branch_bb, BasicBlockId target_bb) { BasicBlock* branch = cu_.mir_graph->GetBasicBlock(branch_bb); return target_bb != NullBasicBlockId && cu_.mir_graph->IsBackEdge(branch, target_bb); } bool IsSuspendCheckEdge(BasicBlockId branch_bb, BasicBlockId target_bb) { BasicBlock* branch = cu_.mir_graph->GetBasicBlock(branch_bb); return cu_.mir_graph->IsSuspendCheckEdge(branch, target_bb); } void PerformSuspendCheckElimination() { cu_.mir_graph->SSATransformationStart(); cu_.mir_graph->ComputeDFSOrders(); cu_.mir_graph->ComputeDominators(); cu_.mir_graph->ComputeTopologicalSortOrder(); cu_.mir_graph->SSATransformationEnd(); bool gate_result = cu_.mir_graph->EliminateSuspendChecksGate(); ASSERT_TRUE(gate_result); TopologicalSortIterator iterator(cu_.mir_graph.get()); bool change = false; for (BasicBlock* bb = iterator.Next(change); bb != nullptr; bb = iterator.Next(change)) { change = cu_.mir_graph->EliminateSuspendChecks(bb); } } SuspendCheckEliminationTest() : MirOptimizationTest() { static const MethodDef methods[] = { { 0u, 1u, 0u, 0u, kDirect, kDirect, false, false }, // Dummy. }; PrepareMethods(methods); } }; TEST_F(ClassInitCheckEliminationTest, SingleBlock) { static const SFieldDef sfields[] = { { 0u, 1u, 0u, 0u, kDexMemAccessWord }, { 1u, 1u, 1u, 1u, kDexMemAccessWord }, { 2u, 1u, 2u, 2u, kDexMemAccessWord }, { 3u, 1u, 3u, 3u, kDexMemAccessWord }, // Same declaring class as sfield[4]. { 4u, 1u, 3u, 4u, kDexMemAccessWord }, // Same declaring class as sfield[3]. { 5u, 0u, 0u, 0u, kDexMemAccessWord }, // Unresolved. }; static const MIRDef mirs[] = { DEF_SGET_SPUT(3u, Instruction::SPUT, 0u, 5u), // Unresolved. DEF_SGET_SPUT(3u, Instruction::SPUT, 0u, 0u), DEF_SGET_SPUT(3u, Instruction::SGET, 0u, 1u), DEF_SGET_SPUT(3u, Instruction::SGET, 0u, 2u), DEF_SGET_SPUT(3u, Instruction::SGET, 0u, 5u), // Unresolved. DEF_SGET_SPUT(3u, Instruction::SGET, 0u, 0u), DEF_SGET_SPUT(3u, Instruction::SGET, 0u, 1u), DEF_SGET_SPUT(3u, Instruction::SGET, 0u, 2u), DEF_SGET_SPUT(3u, Instruction::SGET, 0u, 5u), // Unresolved. DEF_SGET_SPUT(3u, Instruction::SGET, 0u, 3u), DEF_SGET_SPUT(3u, Instruction::SGET, 0u, 4u), }; static const bool expected_ignore_clinit_check[] = { false, false, false, false, true, true, true, true, true, false, true }; PrepareSFields(sfields); PrepareSingleBlock(); PrepareMIRs(mirs); PerformClassInitCheckElimination(); ASSERT_EQ(arraysize(expected_ignore_clinit_check), mir_count_); for (size_t i = 0u; i != arraysize(mirs); ++i) { EXPECT_EQ(expected_ignore_clinit_check[i], (mirs_[i].optimization_flags & MIR_CLASS_IS_INITIALIZED) != 0) << i; EXPECT_EQ(expected_ignore_clinit_check[i], (mirs_[i].optimization_flags & MIR_CLASS_IS_IN_DEX_CACHE) != 0) << i; } } TEST_F(ClassInitCheckEliminationTest, SingleBlockWithInvokes) { static const SFieldDef sfields[] = { { 0u, 1u, 0u, 0u, kDexMemAccessWord }, { 1u, 1u, 1u, 1u, kDexMemAccessWord }, { 2u, 1u, 2u, 2u, kDexMemAccessWord }, }; static const MethodDef methods[] = { { 0u, 1u, 0u, 0u, kStatic, kStatic, false, false }, { 1u, 1u, 1u, 1u, kStatic, kStatic, false, false }, { 2u, 1u, 2u, 2u, kStatic, kStatic, false, false }, }; static const MIRDef mirs[] = { DEF_SGET_SPUT(3u, Instruction::SGET, 0u, 0u), DEF_INVOKE(3u, Instruction::INVOKE_STATIC, 0u /* dummy */, 0u), DEF_INVOKE(3u, Instruction::INVOKE_STATIC, 0u /* dummy */, 1u), DEF_SGET_SPUT(3u, Instruction::SGET, 0u, 1u), DEF_INVOKE(3u, Instruction::INVOKE_STATIC, 0u /* dummy */, 2u), DEF_INVOKE(3u, Instruction::INVOKE_STATIC, 0u /* dummy */, 2u), }; static const bool expected_class_initialized[] = { false, true, false, true, false, true }; static const bool expected_class_in_dex_cache[] = { false, false, false, false, false, false }; PrepareSFields(sfields); PrepareMethods(methods); PrepareSingleBlock(); PrepareMIRs(mirs); PerformClassInitCheckElimination(); ASSERT_EQ(arraysize(expected_class_initialized), mir_count_); ASSERT_EQ(arraysize(expected_class_in_dex_cache), mir_count_); for (size_t i = 0u; i != arraysize(mirs); ++i) { EXPECT_EQ(expected_class_initialized[i], (mirs_[i].optimization_flags & MIR_CLASS_IS_INITIALIZED) != 0) << i; EXPECT_EQ(expected_class_in_dex_cache[i], (mirs_[i].optimization_flags & MIR_CLASS_IS_IN_DEX_CACHE) != 0) << i; } } TEST_F(ClassInitCheckEliminationTest, Diamond) { static const SFieldDef sfields[] = { { 0u, 1u, 0u, 0u, kDexMemAccessWord }, { 1u, 1u, 1u, 1u, kDexMemAccessWord }, { 2u, 1u, 2u, 2u, kDexMemAccessWord }, { 3u, 1u, 3u, 3u, kDexMemAccessWord }, { 4u, 1u, 4u, 4u, kDexMemAccessWord }, { 5u, 1u, 5u, 5u, kDexMemAccessWord }, { 6u, 1u, 6u, 6u, kDexMemAccessWord }, { 7u, 1u, 7u, 7u, kDexMemAccessWord }, { 8u, 1u, 8u, 8u, kDexMemAccessWord }, // Same declaring class as sfield[9]. { 9u, 1u, 8u, 9u, kDexMemAccessWord }, // Same declaring class as sfield[8]. { 10u, 0u, 0u, 0u, kDexMemAccessWord }, // Unresolved. }; static const MIRDef mirs[] = { // NOTE: MIRs here are ordered by unique tests. They will be put into appropriate blocks. DEF_SGET_SPUT(3u, Instruction::SGET, 0u, 10u), // Unresolved. DEF_SGET_SPUT(3u, Instruction::SPUT, 0u, 10u), // Unresolved. DEF_SGET_SPUT(3u, Instruction::SPUT, 0u, 0u), DEF_SGET_SPUT(6u, Instruction::SGET, 0u, 0u), // Eliminated (BB #3 dominates #6). DEF_SGET_SPUT(4u, Instruction::SPUT, 0u, 1u), DEF_SGET_SPUT(6u, Instruction::SGET, 0u, 1u), // Not eliminated (BB #4 doesn't dominate #6). DEF_SGET_SPUT(3u, Instruction::SGET, 0u, 2u), DEF_SGET_SPUT(4u, Instruction::SGET, 0u, 2u), // Eliminated (BB #3 dominates #4). DEF_SGET_SPUT(3u, Instruction::SGET, 0u, 3u), DEF_SGET_SPUT(5u, Instruction::SGET, 0u, 3u), // Eliminated (BB #3 dominates #5). DEF_SGET_SPUT(3u, Instruction::SGET, 0u, 4u), DEF_SGET_SPUT(6u, Instruction::SGET, 0u, 4u), // Eliminated (BB #3 dominates #6). DEF_SGET_SPUT(4u, Instruction::SGET, 0u, 5u), DEF_SGET_SPUT(6u, Instruction::SGET, 0u, 5u), // Not eliminated (BB #4 doesn't dominate #6). DEF_SGET_SPUT(5u, Instruction::SGET, 0u, 6u), DEF_SGET_SPUT(6u, Instruction::SGET, 0u, 6u), // Not eliminated (BB #5 doesn't dominate #6). DEF_SGET_SPUT(4u, Instruction::SGET, 0u, 7u), DEF_SGET_SPUT(5u, Instruction::SGET, 0u, 7u), DEF_SGET_SPUT(6u, Instruction::SGET, 0u, 7u), // Eliminated (initialized in both #3 and #4). DEF_SGET_SPUT(4u, Instruction::SGET, 0u, 8u), DEF_SGET_SPUT(5u, Instruction::SGET, 0u, 9u), DEF_SGET_SPUT(6u, Instruction::SGET, 0u, 8u), // Eliminated (with sfield[9] in BB #5). DEF_SGET_SPUT(6u, Instruction::SPUT, 0u, 9u), // Eliminated (with sfield[8] in BB #4). }; static const bool expected_ignore_clinit_check[] = { false, true, // Unresolved: sfield[10] false, true, // sfield[0] false, false, // sfield[1] false, true, // sfield[2] false, true, // sfield[3] false, true, // sfield[4] false, false, // sfield[5] false, false, // sfield[6] false, false, true, // sfield[7] false, false, true, true, // sfield[8], sfield[9] }; PrepareSFields(sfields); PrepareDiamond(); PrepareMIRs(mirs); PerformClassInitCheckElimination(); ASSERT_EQ(arraysize(expected_ignore_clinit_check), mir_count_); for (size_t i = 0u; i != arraysize(mirs); ++i) { EXPECT_EQ(expected_ignore_clinit_check[i], (mirs_[i].optimization_flags & MIR_CLASS_IS_INITIALIZED) != 0) << i; EXPECT_EQ(expected_ignore_clinit_check[i], (mirs_[i].optimization_flags & MIR_CLASS_IS_IN_DEX_CACHE) != 0) << i; } } TEST_F(ClassInitCheckEliminationTest, DiamondWithInvokes) { static const SFieldDef sfields[] = { { 0u, 1u, 0u, 0u, kDexMemAccessWord }, { 1u, 1u, 1u, 1u, kDexMemAccessWord }, { 2u, 1u, 2u, 2u, kDexMemAccessWord }, { 3u, 1u, 3u, 3u, kDexMemAccessWord }, { 4u, 1u, 4u, 4u, kDexMemAccessWord }, }; static const MethodDef methods[] = { { 0u, 1u, 0u, 0u, kStatic, kStatic, false, false }, { 1u, 1u, 1u, 1u, kStatic, kStatic, false, false }, { 2u, 1u, 2u, 2u, kStatic, kStatic, false, false }, { 3u, 1u, 3u, 3u, kStatic, kStatic, false, false }, { 4u, 1u, 4u, 4u, kStatic, kStatic, false, false }, }; static const MIRDef mirs[] = { // NOTE: MIRs here are ordered by unique tests. They will be put into appropriate blocks. DEF_SGET_SPUT(3u, Instruction::SPUT, 0u, 0u), DEF_INVOKE(6u, Instruction::INVOKE_STATIC, 0u /* dummy */, 0u), DEF_INVOKE(3u, Instruction::INVOKE_STATIC, 0u /* dummy */, 1u), DEF_SGET_SPUT(6u, Instruction::SPUT, 0u, 1u), DEF_SGET_SPUT(4u, Instruction::SGET, 0u, 2u), DEF_INVOKE(5u, Instruction::INVOKE_STATIC, 0u /* dummy */, 2u), DEF_SGET_SPUT(6u, Instruction::SPUT, 0u, 2u), DEF_INVOKE(4u, Instruction::INVOKE_STATIC, 0u /* dummy */, 3u), DEF_SGET_SPUT(5u, Instruction::SPUT, 0u, 3u), DEF_SGET_SPUT(6u, Instruction::SGET, 0u, 3u), DEF_SGET_SPUT(4u, Instruction::SPUT, 0u, 4u), DEF_SGET_SPUT(5u, Instruction::SGET, 0u, 4u), DEF_INVOKE(6u, Instruction::INVOKE_STATIC, 0u /* dummy */, 4u), }; static const bool expected_class_initialized[] = { false, true, // BB #3 SPUT, BB#6 INVOKE_STATIC false, true, // BB #3 INVOKE_STATIC, BB#6 SPUT false, false, true, // BB #4 SGET, BB #5 INVOKE_STATIC, BB #6 SPUT false, false, true, // BB #4 INVOKE_STATIC, BB #5 SPUT, BB #6 SGET false, false, true, // BB #4 SPUT, BB #5 SGET, BB #6 INVOKE_STATIC }; static const bool expected_class_in_dex_cache[] = { false, false, // BB #3 SPUT, BB#6 INVOKE_STATIC false, false, // BB #3 INVOKE_STATIC, BB#6 SPUT false, false, false, // BB #4 SGET, BB #5 INVOKE_STATIC, BB #6 SPUT false, false, false, // BB #4 INVOKE_STATIC, BB #5 SPUT, BB #6 SGET false, false, false, // BB #4 SPUT, BB #5 SGET, BB #6 INVOKE_STATIC }; PrepareSFields(sfields); PrepareMethods(methods); PrepareDiamond(); PrepareMIRs(mirs); PerformClassInitCheckElimination(); ASSERT_EQ(arraysize(expected_class_initialized), mir_count_); ASSERT_EQ(arraysize(expected_class_in_dex_cache), mir_count_); for (size_t i = 0u; i != arraysize(mirs); ++i) { EXPECT_EQ(expected_class_initialized[i], (mirs_[i].optimization_flags & MIR_CLASS_IS_INITIALIZED) != 0) << i; EXPECT_EQ(expected_class_in_dex_cache[i], (mirs_[i].optimization_flags & MIR_CLASS_IS_IN_DEX_CACHE) != 0) << i; } } TEST_F(ClassInitCheckEliminationTest, Loop) { static const SFieldDef sfields[] = { { 0u, 1u, 0u, 0u, kDexMemAccessWord }, { 1u, 1u, 1u, 1u, kDexMemAccessWord }, { 2u, 1u, 2u, 2u, kDexMemAccessWord }, }; static const MIRDef mirs[] = { DEF_SGET_SPUT(3u, Instruction::SGET, 0u, 0u), DEF_SGET_SPUT(4u, Instruction::SGET, 0u, 0u), // Eliminated. DEF_SGET_SPUT(3u, Instruction::SGET, 0u, 1u), DEF_SGET_SPUT(5u, Instruction::SGET, 0u, 1u), // Eliminated. DEF_SGET_SPUT(4u, Instruction::SGET, 0u, 2u), DEF_SGET_SPUT(5u, Instruction::SGET, 0u, 2u), // Eliminated. }; static const bool expected_ignore_clinit_check[] = { false, true, false, true, false, true, }; PrepareSFields(sfields); PrepareLoop(); PrepareMIRs(mirs); PerformClassInitCheckElimination(); ASSERT_EQ(arraysize(expected_ignore_clinit_check), mir_count_); for (size_t i = 0u; i != arraysize(mirs); ++i) { EXPECT_EQ(expected_ignore_clinit_check[i], (mirs_[i].optimization_flags & MIR_CLASS_IS_INITIALIZED) != 0) << i; EXPECT_EQ(expected_ignore_clinit_check[i], (mirs_[i].optimization_flags & MIR_CLASS_IS_IN_DEX_CACHE) != 0) << i; } } TEST_F(ClassInitCheckEliminationTest, LoopWithInvokes) { static const SFieldDef sfields[] = { { 0u, 1u, 0u, 0u, kDexMemAccessWord }, }; static const MethodDef methods[] = { { 0u, 1u, 0u, 0u, kStatic, kStatic, false, false }, { 1u, 1u, 1u, 1u, kStatic, kStatic, false, false }, { 2u, 1u, 2u, 2u, kStatic, kStatic, false, false }, }; static const MIRDef mirs[] = { DEF_INVOKE(3u, Instruction::INVOKE_STATIC, 0u /* dummy */, 0u), DEF_INVOKE(4u, Instruction::INVOKE_STATIC, 0u /* dummy */, 0u), DEF_INVOKE(3u, Instruction::INVOKE_STATIC, 0u /* dummy */, 1u), DEF_INVOKE(5u, Instruction::INVOKE_STATIC, 0u /* dummy */, 1u), DEF_INVOKE(4u, Instruction::INVOKE_STATIC, 0u /* dummy */, 2u), DEF_INVOKE(5u, Instruction::INVOKE_STATIC, 0u /* dummy */, 2u), DEF_SGET_SPUT(5u, Instruction::SGET, 0u, 0u), }; static const bool expected_class_initialized[] = { false, true, false, true, false, true, true, }; static const bool expected_class_in_dex_cache[] = { false, false, false, false, false, false, false, }; PrepareSFields(sfields); PrepareMethods(methods); PrepareLoop(); PrepareMIRs(mirs); PerformClassInitCheckElimination(); ASSERT_EQ(arraysize(expected_class_initialized), mir_count_); ASSERT_EQ(arraysize(expected_class_in_dex_cache), mir_count_); for (size_t i = 0u; i != arraysize(mirs); ++i) { EXPECT_EQ(expected_class_initialized[i], (mirs_[i].optimization_flags & MIR_CLASS_IS_INITIALIZED) != 0) << i; EXPECT_EQ(expected_class_in_dex_cache[i], (mirs_[i].optimization_flags & MIR_CLASS_IS_IN_DEX_CACHE) != 0) << i; } } TEST_F(ClassInitCheckEliminationTest, Catch) { static const SFieldDef sfields[] = { { 0u, 1u, 0u, 0u, kDexMemAccessWord }, { 1u, 1u, 1u, 1u, kDexMemAccessWord }, { 2u, 1u, 2u, 2u, kDexMemAccessWord }, { 3u, 1u, 3u, 3u, kDexMemAccessWord }, }; static const MIRDef mirs[] = { DEF_SGET_SPUT(3u, Instruction::SGET, 0u, 0u), // Before the exception edge. DEF_SGET_SPUT(3u, Instruction::SGET, 0u, 1u), // Before the exception edge. DEF_SGET_SPUT(4u, Instruction::SGET, 0u, 2u), // After the exception edge. DEF_SGET_SPUT(4u, Instruction::SGET, 0u, 3u), // After the exception edge. DEF_SGET_SPUT(5u, Instruction::SGET, 0u, 0u), // In catch handler; eliminated. DEF_SGET_SPUT(5u, Instruction::SGET, 0u, 2u), // In catch handler; not eliminated. DEF_SGET_SPUT(6u, Instruction::SGET, 0u, 0u), // Class init check eliminated. DEF_SGET_SPUT(6u, Instruction::SGET, 0u, 1u), // Class init check eliminated. DEF_SGET_SPUT(6u, Instruction::SGET, 0u, 2u), // Class init check eliminated. DEF_SGET_SPUT(6u, Instruction::SGET, 0u, 3u), // Class init check not eliminated. }; static const bool expected_ignore_clinit_check[] = { false, false, false, false, true, false, true, true, true, false }; PrepareSFields(sfields); PrepareCatch(); PrepareMIRs(mirs); PerformClassInitCheckElimination(); ASSERT_EQ(arraysize(expected_ignore_clinit_check), mir_count_); for (size_t i = 0u; i != arraysize(mirs); ++i) { EXPECT_EQ(expected_ignore_clinit_check[i], (mirs_[i].optimization_flags & MIR_CLASS_IS_INITIALIZED) != 0) << i; EXPECT_EQ(expected_ignore_clinit_check[i], (mirs_[i].optimization_flags & MIR_CLASS_IS_IN_DEX_CACHE) != 0) << i; } } TEST_F(NullCheckEliminationTest, SingleBlock) { static const IFieldDef ifields[] = { { 0u, 1u, 0u, 0u, kDexMemAccessWord }, { 1u, 1u, 0u, 1u, kDexMemAccessWord }, { 2u, 1u, 0u, 2u, kDexMemAccessObject }, }; static const MIRDef mirs[] = { DEF_IGET_IPUT(3u, Instruction::IGET_OBJECT, 0u, 100u, 2u), DEF_IGET_IPUT(3u, Instruction::IGET, 1u, 0u, 1u), DEF_IGET_IPUT(3u, Instruction::IGET_OBJECT, 2u, 100u, 2u), // Differs from 0u (no LVN here). DEF_IGET_IPUT(3u, Instruction::IGET, 3u, 2u, 1u), DEF_IGET_IPUT(3u, Instruction::IGET, 4u, 101u, 0u), DEF_IGET_IPUT(3u, Instruction::IGET, 5u, 102u, 0u), DEF_IGET_IPUT(3u, Instruction::IGET, 6u, 103u, 0u), DEF_IGET_IPUT(3u, Instruction::IGET, 7u, 103u, 1u), DEF_IGET_IPUT(3u, Instruction::IPUT, 8u, 104u, 0u), DEF_IGET_IPUT(3u, Instruction::IPUT, 9u, 104u, 1u), DEF_IGET_IPUT(3u, Instruction::IGET, 10u, 105u, 0u), DEF_IGET_IPUT(3u, Instruction::IPUT, 11u, 105u, 1u), DEF_IGET_IPUT(3u, Instruction::IPUT, 12u, 106u, 0u), DEF_IGET_IPUT(3u, Instruction::IGET, 13u, 106u, 1u), DEF_INVOKE(3u, Instruction::INVOKE_DIRECT, 107, 0u /* dummy */), DEF_IGET_IPUT(3u, Instruction::IGET, 15u, 107u, 1u), DEF_IGET_IPUT(3u, Instruction::IGET, 16u, 108u, 0u), DEF_INVOKE(3u, Instruction::INVOKE_DIRECT, 108, 0u /* dummy */), DEF_AGET_APUT(3u, Instruction::AGET, 18u, 109u, 110u), DEF_AGET_APUT(3u, Instruction::APUT, 19u, 109u, 111u), DEF_OTHER2(3u, Instruction::ARRAY_LENGTH, 20u, 112u), DEF_AGET_APUT(3u, Instruction::AGET, 21u, 112u, 113u), DEF_OTHER1(3u, Instruction::MONITOR_ENTER, 114u), DEF_OTHER1(3u, Instruction::MONITOR_EXIT, 114u), }; static const bool expected_ignore_null_check[] = { false, false, true, false /* Not doing LVN. */, false, true /* Set before running NCE. */, false, true, // IGET, IGET false, true, // IPUT, IPUT false, true, // IGET, IPUT false, true, // IPUT, IGET false, true, // INVOKE, IGET false, true, // IGET, INVOKE false, true, // AGET, APUT false, true, // ARRAY_LENGTH, AGET false, true, // MONITOR_ENTER, MONITOR_EXIT }; PrepareIFields(ifields); PrepareSingleBlock(); PrepareMIRs(mirs); // Mark IGET 5u as null-checked to test that NCE doesn't clear this flag. mirs_[5u].optimization_flags |= MIR_IGNORE_NULL_CHECK; PerformNullCheckElimination(); ASSERT_EQ(arraysize(expected_ignore_null_check), mir_count_); for (size_t i = 0u; i != arraysize(mirs); ++i) { EXPECT_EQ(expected_ignore_null_check[i], (mirs_[i].optimization_flags & MIR_IGNORE_NULL_CHECK) != 0) << i; } } TEST_F(NullCheckEliminationTest, Diamond) { static const IFieldDef ifields[] = { { 0u, 1u, 0u, 0u, kDexMemAccessWord }, { 1u, 1u, 0u, 1u, kDexMemAccessWord }, { 2u, 1u, 0u, 2u, kDexMemAccessObject }, // int[]. }; static const MIRDef mirs[] = { // NOTE: MIRs here are ordered by unique tests. They will be put into appropriate blocks. DEF_IGET_IPUT(3u, Instruction::IPUT, 0u, 100u, 0u), DEF_IGET_IPUT(6u, Instruction::IGET, 1u, 100u, 1u), // Eliminated (BB #3 dominates #6). DEF_IGET_IPUT(3u, Instruction::IGET, 2u, 101u, 0u), DEF_IGET_IPUT(4u, Instruction::IPUT, 3u, 101u, 0u), // Eliminated (BB #3 dominates #4). DEF_IGET_IPUT(3u, Instruction::IGET, 4u, 102u, 0u), DEF_IGET_IPUT(5u, Instruction::IPUT, 5u, 102u, 1u), // Eliminated (BB #3 dominates #5). DEF_IGET_IPUT(4u, Instruction::IPUT, 6u, 103u, 0u), DEF_IGET_IPUT(6u, Instruction::IPUT, 7u, 103u, 1u), // Not eliminated (going through BB #5). DEF_IGET_IPUT(5u, Instruction::IGET, 8u, 104u, 1u), DEF_IGET_IPUT(6u, Instruction::IGET, 9u, 104u, 0u), // Not eliminated (going through BB #4). DEF_INVOKE(4u, Instruction::INVOKE_DIRECT, 105u, 0u /* dummy */), DEF_IGET_IPUT(5u, Instruction::IGET, 11u, 105u, 1u), DEF_IGET_IPUT(6u, Instruction::IPUT, 12u, 105u, 0u), // Eliminated. DEF_IGET_IPUT(3u, Instruction::IGET_OBJECT, 13u, 106u, 2u), DEF_OTHER1(3u, Instruction::IF_EQZ, 13u), // Last insn in the BB #3. DEF_OTHER2(5u, Instruction::NEW_ARRAY, 13u, 107u), DEF_AGET_APUT(6u, Instruction::AGET, 16u, 13u, 108u), // Eliminated. }; static const bool expected_ignore_null_check[] = { false, true, // BB #3 IPUT, BB #6 IGET false, true, // BB #3 IGET, BB #4 IPUT false, true, // BB #3 IGET, BB #5 IPUT false, false, // BB #4 IPUT, BB #6 IPUT false, false, // BB #5 IGET, BB #6 IGET false, false, true, // BB #4 INVOKE, BB #5 IGET, BB #6 IPUT false, false, // BB #3 IGET_OBJECT & IF_EQZ false, true, // BB #5 NEW_ARRAY, BB #6 AGET }; PrepareIFields(ifields); PrepareDiamond(); PrepareMIRs(mirs); PerformNullCheckElimination(); ASSERT_EQ(arraysize(expected_ignore_null_check), mir_count_); for (size_t i = 0u; i != arraysize(mirs); ++i) { EXPECT_EQ(expected_ignore_null_check[i], (mirs_[i].optimization_flags & MIR_IGNORE_NULL_CHECK) != 0) << i; } } TEST_F(NullCheckEliminationTest, Loop) { static const IFieldDef ifields[] = { { 0u, 1u, 0u, 0u, kDexMemAccessWord }, { 1u, 1u, 1u, 1u, kDexMemAccessWord }, }; static const MIRDef mirs[] = { DEF_IGET_IPUT(3u, Instruction::IGET, 0u, 100u, 0u), DEF_IGET_IPUT(4u, Instruction::IGET, 1u, 101u, 0u), DEF_IGET_IPUT(5u, Instruction::IGET, 2u, 100u, 1u), // Eliminated. DEF_IGET_IPUT(5u, Instruction::IGET, 3u, 101u, 1u), // Eliminated. DEF_IGET_IPUT(3u, Instruction::IGET, 4u, 102u, 0u), DEF_IGET_IPUT(4u, Instruction::IGET, 5u, 102u, 1u), // Not eliminated (MOVE_OBJECT_16). DEF_OTHER2(4u, Instruction::MOVE_OBJECT_16, 102u, 103u), }; static const bool expected_ignore_null_check[] = { false, false, true, true, false, false, false, }; PrepareIFields(ifields); PrepareLoop(); PrepareMIRs(mirs); PerformNullCheckElimination(); ASSERT_EQ(arraysize(expected_ignore_null_check), mir_count_); for (size_t i = 0u; i != arraysize(mirs); ++i) { EXPECT_EQ(expected_ignore_null_check[i], (mirs_[i].optimization_flags & MIR_IGNORE_NULL_CHECK) != 0) << i; } } TEST_F(NullCheckEliminationTest, Catch) { static const IFieldDef ifields[] = { { 0u, 1u, 0u, 0u, kDexMemAccessWord }, { 1u, 1u, 1u, 1u, kDexMemAccessWord }, }; static const MIRDef mirs[] = { DEF_IGET_IPUT(3u, Instruction::IGET, 0u, 100u, 0u), // Before the exception edge. DEF_IGET_IPUT(3u, Instruction::IGET, 1u, 101u, 0u), // Before the exception edge. DEF_IGET_IPUT(4u, Instruction::IGET, 2u, 102u, 0u), // After the exception edge. DEF_IGET_IPUT(4u, Instruction::IGET, 3u, 103u, 0u), // After the exception edge. DEF_IGET_IPUT(5u, Instruction::IGET, 4u, 100u, 1u), // In catch handler; eliminated. DEF_IGET_IPUT(5u, Instruction::IGET, 5u, 102u, 1u), // In catch handler; not eliminated. DEF_IGET_IPUT(6u, Instruction::IGET, 6u, 100u, 0u), // Null check eliminated. DEF_IGET_IPUT(6u, Instruction::IGET, 6u, 101u, 1u), // Null check eliminated. DEF_IGET_IPUT(6u, Instruction::IGET, 6u, 102u, 0u), // Null check eliminated. DEF_IGET_IPUT(6u, Instruction::IGET, 6u, 103u, 1u), // Null check not eliminated. }; static const bool expected_ignore_null_check[] = { false, false, false, false, true, false, true, true, true, false }; PrepareIFields(ifields); PrepareCatch(); PrepareMIRs(mirs); PerformNullCheckElimination(); ASSERT_EQ(arraysize(expected_ignore_null_check), mir_count_); for (size_t i = 0u; i != arraysize(mirs); ++i) { EXPECT_EQ(expected_ignore_null_check[i], (mirs_[i].optimization_flags & MIR_IGNORE_NULL_CHECK) != 0) << i; } } TEST_F(SuspendCheckEliminationTest, LoopNoElimination) { static const MIRDef mirs[] = { DEF_INVOKE(3u, Instruction::INVOKE_STATIC, 0u, 0u), // Force the pass to run. DEF_OTHER1(4u, Instruction::IF_NEZ, 1u), // Edge back. }; PrepareLoop(); PrepareMIRs(mirs); PerformSuspendCheckElimination(); ASSERT_TRUE(IsBackEdge(4u, 4u)); EXPECT_TRUE(IsSuspendCheckEdge(4u, 4u)); // Suspend point on loop to self. } TEST_F(SuspendCheckEliminationTest, LoopElimination) { static const MIRDef mirs[] = { DEF_INVOKE(4u, Instruction::INVOKE_STATIC, 0u, 0u), // Invoke in the loop. DEF_OTHER1(4u, Instruction::IF_NEZ, 1u), // Edge back. }; PrepareLoop(); PrepareMIRs(mirs); PerformSuspendCheckElimination(); ASSERT_TRUE(IsBackEdge(4u, 4u)); EXPECT_FALSE(IsSuspendCheckEdge(4u, 4u)); // No suspend point on loop to self. } TEST_F(SuspendCheckEliminationTest, While_While_NoElimination) { static const MIRDef mirs[] = { DEF_INVOKE(3u, Instruction::INVOKE_STATIC, 0u, 0u), // Force the pass to run. DEF_OTHER1(4u, Instruction::IF_NEZ, 1u), // Edge out of outer loop. DEF_OTHER1(5u, Instruction::IF_NEZ, 2u), // Edge out of inner loop. DEF_OTHER0(6u, Instruction::GOTO), // Edge back to inner loop head. DEF_OTHER0(7u, Instruction::GOTO), // Edge back to outer loop head. }; PrepareNestedLoopsWhile_While(); PrepareMIRs(mirs); PerformSuspendCheckElimination(); ASSERT_TRUE(IsBackEdge(6u, 5u)); EXPECT_TRUE(IsSuspendCheckEdge(6u, 5u)); ASSERT_TRUE(IsBackEdge(7u, 4u)); EXPECT_TRUE(IsSuspendCheckEdge(7u, 4u)); } TEST_F(SuspendCheckEliminationTest, While_While_InvokeInOuterLoopHead) { static const MIRDef mirs[] = { DEF_INVOKE(4u, Instruction::INVOKE_STATIC, 0u, 0u), // Invoke in outer loop head. DEF_OTHER1(4u, Instruction::IF_NEZ, 1u), // Edge out of outer loop. DEF_OTHER1(5u, Instruction::IF_NEZ, 2u), // Edge out of inner loop. DEF_OTHER0(6u, Instruction::GOTO), // Edge back to inner loop head. DEF_OTHER0(7u, Instruction::GOTO), // Edge back to outer loop head. }; PrepareNestedLoopsWhile_While(); PrepareMIRs(mirs); PerformSuspendCheckElimination(); ASSERT_TRUE(IsBackEdge(6u, 5u)); EXPECT_TRUE(IsSuspendCheckEdge(6u, 5u)); ASSERT_TRUE(IsBackEdge(7u, 4u)); EXPECT_FALSE(IsSuspendCheckEdge(7u, 4u)); } TEST_F(SuspendCheckEliminationTest, While_While_InvokeInOuterLoopBody) { static const MIRDef mirs[] = { DEF_OTHER1(4u, Instruction::IF_NEZ, 1u), // Edge out of outer loop. DEF_OTHER1(5u, Instruction::IF_NEZ, 2u), // Edge out of inner loop. DEF_OTHER0(6u, Instruction::GOTO), // Edge back to inner loop head. DEF_INVOKE(7u, Instruction::INVOKE_STATIC, 0u, 0u), // Invoke in outer loop body. DEF_OTHER0(7u, Instruction::GOTO), // Edge back to outer loop head. }; PrepareNestedLoopsWhile_While(); PrepareMIRs(mirs); PerformSuspendCheckElimination(); ASSERT_TRUE(IsBackEdge(6u, 5u)); EXPECT_TRUE(IsSuspendCheckEdge(6u, 5u)); ASSERT_TRUE(IsBackEdge(7u, 4u)); EXPECT_FALSE(IsSuspendCheckEdge(7u, 4u)); } TEST_F(SuspendCheckEliminationTest, While_While_InvokeInInnerLoopHead) { static const MIRDef mirs[] = { DEF_OTHER1(4u, Instruction::IF_NEZ, 1u), // Edge out of outer loop. DEF_INVOKE(5u, Instruction::INVOKE_STATIC, 0u, 0u), // Invoke in inner loop head. DEF_OTHER1(5u, Instruction::IF_NEZ, 2u), // Edge out of inner loop. DEF_OTHER0(6u, Instruction::GOTO), // Edge back to inner loop head. DEF_OTHER0(7u, Instruction::GOTO), // Edge back to outer loop head. }; PrepareNestedLoopsWhile_While(); PrepareMIRs(mirs); PerformSuspendCheckElimination(); ASSERT_TRUE(IsBackEdge(6u, 5u)); EXPECT_FALSE(IsSuspendCheckEdge(6u, 5u)); ASSERT_TRUE(IsBackEdge(7u, 4u)); EXPECT_FALSE(IsSuspendCheckEdge(7u, 4u)); } TEST_F(SuspendCheckEliminationTest, While_While_InvokeInInnerLoopBody) { static const MIRDef mirs[] = { DEF_OTHER1(4u, Instruction::IF_NEZ, 1u), // Edge out of outer loop. DEF_OTHER1(5u, Instruction::IF_NEZ, 2u), // Edge out of inner loop. DEF_INVOKE(6u, Instruction::INVOKE_STATIC, 0u, 0u), // Invoke in inner loop body. DEF_OTHER0(6u, Instruction::GOTO), // Edge back to inner loop head. DEF_OTHER0(7u, Instruction::GOTO), // Edge back to outer loop head. }; PrepareNestedLoopsWhile_While(); PrepareMIRs(mirs); PerformSuspendCheckElimination(); ASSERT_TRUE(IsBackEdge(6u, 5u)); EXPECT_FALSE(IsSuspendCheckEdge(6u, 5u)); ASSERT_TRUE(IsBackEdge(7u, 4u)); EXPECT_TRUE(IsSuspendCheckEdge(7u, 4u)); } TEST_F(SuspendCheckEliminationTest, While_WhileWhile_InvokeInFirstInnerLoopHead) { static const MIRDef mirs[] = { DEF_OTHER1(4u, Instruction::IF_NEZ, 1u), // Edge out of outer loop. DEF_INVOKE(5u, Instruction::INVOKE_STATIC, 0u, 0u), // Invoke in first inner loop head. DEF_OTHER1(5u, Instruction::IF_NEZ, 2u), // Edge out of inner loop 1. DEF_OTHER0(6u, Instruction::GOTO), // Edge back to inner loop head. DEF_OTHER1(7u, Instruction::IF_NEZ, 2u), // Edge out of inner loop 2. DEF_OTHER0(8u, Instruction::GOTO), // Edge back to inner loop 2 head. DEF_OTHER0(9u, Instruction::GOTO), // Edge back to outer loop head. }; PrepareNestedLoopsWhile_WhileWhile(); PrepareMIRs(mirs); PerformSuspendCheckElimination(); ASSERT_TRUE(IsBackEdge(6u, 5u)); EXPECT_FALSE(IsSuspendCheckEdge(6u, 5u)); ASSERT_TRUE(IsBackEdge(8u, 7u)); EXPECT_TRUE(IsSuspendCheckEdge(8u, 7u)); ASSERT_TRUE(IsBackEdge(9u, 4u)); EXPECT_FALSE(IsSuspendCheckEdge(9u, 4u)); } TEST_F(SuspendCheckEliminationTest, While_WhileWhile_InvokeInFirstInnerLoopBody) { static const MIRDef mirs[] = { DEF_OTHER1(4u, Instruction::IF_NEZ, 1u), // Edge out of outer loop. DEF_OTHER1(5u, Instruction::IF_NEZ, 2u), // Edge out of inner loop 1. DEF_INVOKE(6u, Instruction::INVOKE_STATIC, 0u, 0u), // Invoke in first inner loop body. DEF_OTHER0(6u, Instruction::GOTO), // Edge back to inner loop head. DEF_OTHER1(7u, Instruction::IF_NEZ, 2u), // Edge out of inner loop 2. DEF_OTHER0(8u, Instruction::GOTO), // Edge back to inner loop 2 head. DEF_OTHER0(9u, Instruction::GOTO), // Edge back to outer loop head. }; PrepareNestedLoopsWhile_WhileWhile(); PrepareMIRs(mirs); PerformSuspendCheckElimination(); ASSERT_TRUE(IsBackEdge(6u, 5u)); EXPECT_FALSE(IsSuspendCheckEdge(6u, 5u)); ASSERT_TRUE(IsBackEdge(8u, 7u)); EXPECT_TRUE(IsSuspendCheckEdge(8u, 7u)); ASSERT_TRUE(IsBackEdge(9u, 4u)); EXPECT_TRUE(IsSuspendCheckEdge(9u, 4u)); } TEST_F(SuspendCheckEliminationTest, While_WhileWhile_WithExtraEdge_InvokeInFirstInnerLoopBody) { static const MIRDef mirs[] = { DEF_OTHER1(4u, Instruction::IF_NEZ, 1u), // Edge out of outer loop. DEF_OTHER1(5u, Instruction::IF_NEZ, 2u), // Edge out of inner loop 1. DEF_INVOKE(6u, Instruction::INVOKE_STATIC, 0u, 0u), // Invoke in first inner loop body. DEF_OTHER0(6u, Instruction::GOTO), // Edge back to inner loop head. DEF_OTHER1(7u, Instruction::IF_NEZ, 2u), // Edge out of inner loop 2. DEF_OTHER0(8u, Instruction::GOTO), // Edge back to inner loop 2 head. DEF_OTHER0(9u, Instruction::GOTO), // Edge back to outer loop head. }; PrepareNestedLoopsWhile_WhileWhile_WithExtraEdge(); PrepareMIRs(mirs); PerformSuspendCheckElimination(); ASSERT_TRUE(IsBackEdge(6u, 5u)); EXPECT_FALSE(IsSuspendCheckEdge(6u, 5u)); ASSERT_TRUE(IsBackEdge(8u, 7u)); EXPECT_TRUE(IsSuspendCheckEdge(8u, 7u)); // Unaffected by the extra edge. ASSERT_TRUE(IsBackEdge(9u, 4u)); EXPECT_TRUE(IsSuspendCheckEdge(9u, 4u)); } TEST_F(SuspendCheckEliminationTest, While_WhileWhile_WithExtraEdge_InvokeInSecondInnerLoopHead) { static const MIRDef mirs[] = { DEF_OTHER1(4u, Instruction::IF_NEZ, 1u), // Edge out of outer loop. DEF_OTHER1(5u, Instruction::IF_NEZ, 2u), // Edge out of inner loop 1. DEF_OTHER0(6u, Instruction::GOTO), // Edge back to inner loop head. DEF_INVOKE(7u, Instruction::INVOKE_STATIC, 0u, 0u), // Invoke in second inner loop head. DEF_OTHER1(7u, Instruction::IF_NEZ, 2u), // Edge out of inner loop 2. DEF_OTHER0(8u, Instruction::GOTO), // Edge back to inner loop 2 head. DEF_OTHER0(9u, Instruction::GOTO), // Edge back to outer loop head. }; PrepareNestedLoopsWhile_WhileWhile_WithExtraEdge(); PrepareMIRs(mirs); PerformSuspendCheckElimination(); ASSERT_TRUE(IsBackEdge(6u, 5u)); EXPECT_TRUE(IsSuspendCheckEdge(6u, 5u)); ASSERT_TRUE(IsBackEdge(8u, 7u)); EXPECT_FALSE(IsSuspendCheckEdge(8u, 7u)); // Unaffected by the extra edge. ASSERT_TRUE(IsBackEdge(9u, 4u)); EXPECT_FALSE(IsSuspendCheckEdge(9u, 4u)); } } // namespace art