/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* This file contains codegen for the Thumb2 ISA. */ #include "arm64_lir.h" #include "codegen_arm64.h" #include "dex/quick/mir_to_lir-inl.h" #include "dex/reg_storage_eq.h" #include "entrypoints/quick/quick_entrypoints.h" #include "mirror/array.h" #include "utils.h" namespace art { LIR* Arm64Mir2Lir::OpCmpBranch(ConditionCode cond, RegStorage src1, RegStorage src2, LIR* target) { OpRegReg(kOpCmp, src1, src2); return OpCondBranch(cond, target); } LIR* Arm64Mir2Lir::OpIT(ConditionCode ccode, const char* guide) { LOG(FATAL) << "Unexpected use of OpIT for Arm64"; return NULL; } void Arm64Mir2Lir::OpEndIT(LIR* it) { LOG(FATAL) << "Unexpected use of OpEndIT for Arm64"; } /* * 64-bit 3way compare function. * cmp xA, xB * csinc wC, wzr, wzr, eq // wC = (xA == xB) ? 0 : 1 * csneg wC, wC, wC, ge // wC = (xA >= xB) ? wC : -wC */ void Arm64Mir2Lir::GenCmpLong(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) { RegLocation rl_result; rl_src1 = LoadValueWide(rl_src1, kCoreReg); rl_src2 = LoadValueWide(rl_src2, kCoreReg); rl_result = EvalLoc(rl_dest, kCoreReg, true); OpRegReg(kOpCmp, rl_src1.reg, rl_src2.reg); NewLIR4(kA64Csinc4rrrc, rl_result.reg.GetReg(), rwzr, rwzr, kArmCondEq); NewLIR4(kA64Csneg4rrrc, rl_result.reg.GetReg(), rl_result.reg.GetReg(), rl_result.reg.GetReg(), kArmCondGe); StoreValue(rl_dest, rl_result); } void Arm64Mir2Lir::GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_shift) { OpKind op = kOpBkpt; switch (opcode) { case Instruction::SHL_LONG: case Instruction::SHL_LONG_2ADDR: op = kOpLsl; break; case Instruction::SHR_LONG: case Instruction::SHR_LONG_2ADDR: op = kOpAsr; break; case Instruction::USHR_LONG: case Instruction::USHR_LONG_2ADDR: op = kOpLsr; break; default: LOG(FATAL) << "Unexpected case: " << opcode; } rl_shift = LoadValue(rl_shift, kCoreReg); rl_src1 = LoadValueWide(rl_src1, kCoreReg); RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true); OpRegRegReg(op, rl_result.reg, rl_src1.reg, As64BitReg(rl_shift.reg)); StoreValueWide(rl_dest, rl_result); } static constexpr bool kUseDeltaEncodingInGenSelect = false; void Arm64Mir2Lir::GenSelect(int32_t true_val, int32_t false_val, ConditionCode ccode, RegStorage rs_dest, int result_reg_class) { if (false_val == 0 || // 0 is better as first operand. true_val == 1 || // Potentially Csinc. true_val == -1 || // Potentially Csinv. true_val == false_val + 1) { // Potentially Csinc. ccode = NegateComparison(ccode); std::swap(true_val, false_val); } ArmConditionCode code = ArmConditionEncoding(ccode); int opcode; // The opcode. RegStorage left_op = RegStorage::InvalidReg(); // The operands. RegStorage right_op = RegStorage::InvalidReg(); // The operands. bool is_wide = rs_dest.Is64Bit(); RegStorage zero_reg = is_wide ? rs_xzr : rs_wzr; if (true_val == 0) { left_op = zero_reg; } else { left_op = rs_dest; LoadConstantNoClobber(rs_dest, true_val); } if (false_val == 1) { right_op = zero_reg; opcode = kA64Csinc4rrrc; } else if (false_val == -1) { right_op = zero_reg; opcode = kA64Csinv4rrrc; } else if (false_val == true_val + 1) { right_op = left_op; opcode = kA64Csinc4rrrc; } else if (false_val == -true_val) { right_op = left_op; opcode = kA64Csneg4rrrc; } else if (false_val == ~true_val) { right_op = left_op; opcode = kA64Csinv4rrrc; } else if (true_val == 0) { // left_op is zero_reg. right_op = rs_dest; LoadConstantNoClobber(rs_dest, false_val); opcode = kA64Csel4rrrc; } else { // Generic case. RegStorage t_reg2 = AllocTypedTemp(false, result_reg_class); if (is_wide) { if (t_reg2.Is32Bit()) { t_reg2 = As64BitReg(t_reg2); } } else { if (t_reg2.Is64Bit()) { t_reg2 = As32BitReg(t_reg2); } } if (kUseDeltaEncodingInGenSelect) { int32_t delta = false_val - true_val; uint32_t abs_val = delta < 0 ? -delta : delta; if (abs_val < 0x1000) { // TODO: Replace with InexpensiveConstant with opcode. // Can encode as immediate to an add. right_op = t_reg2; OpRegRegImm(kOpAdd, t_reg2, left_op, delta); } } // Load as constant. if (!right_op.Valid()) { LoadConstantNoClobber(t_reg2, false_val); right_op = t_reg2; } opcode = kA64Csel4rrrc; } DCHECK(left_op.Valid() && right_op.Valid()); NewLIR4(is_wide ? WIDE(opcode) : opcode, rs_dest.GetReg(), left_op.GetReg(), right_op.GetReg(), code); } void Arm64Mir2Lir::GenSelectConst32(RegStorage left_op, RegStorage right_op, ConditionCode code, int32_t true_val, int32_t false_val, RegStorage rs_dest, int dest_reg_class) { DCHECK(rs_dest.Valid()); OpRegReg(kOpCmp, left_op, right_op); GenSelect(true_val, false_val, code, rs_dest, dest_reg_class); } void Arm64Mir2Lir::GenSelect(BasicBlock* bb, MIR* mir) { RegLocation rl_src = mir_graph_->GetSrc(mir, 0); rl_src = LoadValue(rl_src, rl_src.ref ? kRefReg : kCoreReg); // rl_src may be aliased with rl_result/rl_dest, so do compare early. OpRegImm(kOpCmp, rl_src.reg, 0); RegLocation rl_dest = mir_graph_->GetDest(mir); // The kMirOpSelect has two variants, one for constants and one for moves. if (mir->ssa_rep->num_uses == 1) { RegLocation rl_result = EvalLoc(rl_dest, rl_dest.ref ? kRefReg : kCoreReg, true); GenSelect(mir->dalvikInsn.vB, mir->dalvikInsn.vC, mir->meta.ccode, rl_result.reg, rl_dest.ref ? kRefReg : kCoreReg); StoreValue(rl_dest, rl_result); } else { RegLocation rl_true = mir_graph_->reg_location_[mir->ssa_rep->uses[1]]; RegLocation rl_false = mir_graph_->reg_location_[mir->ssa_rep->uses[2]]; RegisterClass result_reg_class = rl_dest.ref ? kRefReg : kCoreReg; rl_true = LoadValue(rl_true, result_reg_class); rl_false = LoadValue(rl_false, result_reg_class); RegLocation rl_result = EvalLoc(rl_dest, result_reg_class, true); bool is_wide = rl_dest.ref || rl_dest.wide; int opcode = is_wide ? WIDE(kA64Csel4rrrc) : kA64Csel4rrrc; NewLIR4(opcode, rl_result.reg.GetReg(), rl_true.reg.GetReg(), rl_false.reg.GetReg(), ArmConditionEncoding(mir->meta.ccode)); StoreValue(rl_dest, rl_result); } } void Arm64Mir2Lir::GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) { RegLocation rl_src1 = mir_graph_->GetSrcWide(mir, 0); RegLocation rl_src2 = mir_graph_->GetSrcWide(mir, 2); LIR* taken = &block_label_list_[bb->taken]; LIR* not_taken = &block_label_list_[bb->fall_through]; // Normalize such that if either operand is constant, src2 will be constant. ConditionCode ccode = mir->meta.ccode; if (rl_src1.is_const) { std::swap(rl_src1, rl_src2); ccode = FlipComparisonOrder(ccode); } rl_src1 = LoadValueWide(rl_src1, kCoreReg); if (rl_src2.is_const) { // TODO: Optimize for rl_src1.is_const? (Does happen in the boot image at the moment.) int64_t val = mir_graph_->ConstantValueWide(rl_src2); // Special handling using cbz & cbnz. if (val == 0 && (ccode == kCondEq || ccode == kCondNe)) { OpCmpImmBranch(ccode, rl_src1.reg, 0, taken); OpCmpImmBranch(NegateComparison(ccode), rl_src1.reg, 0, not_taken); return; } // Only handle Imm if src2 is not already in a register. rl_src2 = UpdateLocWide(rl_src2); if (rl_src2.location != kLocPhysReg) { OpRegImm64(kOpCmp, rl_src1.reg, val); OpCondBranch(ccode, taken); OpCondBranch(NegateComparison(ccode), not_taken); return; } } rl_src2 = LoadValueWide(rl_src2, kCoreReg); OpRegReg(kOpCmp, rl_src1.reg, rl_src2.reg); OpCondBranch(ccode, taken); OpCondBranch(NegateComparison(ccode), not_taken); } /* * Generate a register comparison to an immediate and branch. Caller * is responsible for setting branch target field. */ LIR* Arm64Mir2Lir::OpCmpImmBranch(ConditionCode cond, RegStorage reg, int check_value, LIR* target) { LIR* branch = nullptr; ArmConditionCode arm_cond = ArmConditionEncoding(cond); if (check_value == 0) { if (arm_cond == kArmCondEq || arm_cond == kArmCondNe) { ArmOpcode opcode = (arm_cond == kArmCondEq) ? kA64Cbz2rt : kA64Cbnz2rt; ArmOpcode wide = reg.Is64Bit() ? WIDE(0) : UNWIDE(0); branch = NewLIR2(opcode | wide, reg.GetReg(), 0); } else if (arm_cond == kArmCondLs) { // kArmCondLs is an unsigned less or equal. A comparison r <= 0 is then the same as cbz. // This case happens for a bounds check of array[0]. ArmOpcode opcode = kA64Cbz2rt; ArmOpcode wide = reg.Is64Bit() ? WIDE(0) : UNWIDE(0); branch = NewLIR2(opcode | wide, reg.GetReg(), 0); } else if (arm_cond == kArmCondLt || arm_cond == kArmCondGe) { ArmOpcode opcode = (arm_cond == kArmCondLt) ? kA64Tbnz3rht : kA64Tbz3rht; ArmOpcode wide = reg.Is64Bit() ? WIDE(0) : UNWIDE(0); int value = reg.Is64Bit() ? 63 : 31; branch = NewLIR3(opcode | wide, reg.GetReg(), value, 0); } } if (branch == nullptr) { OpRegImm(kOpCmp, reg, check_value); branch = NewLIR2(kA64B2ct, arm_cond, 0); } branch->target = target; return branch; } LIR* Arm64Mir2Lir::OpCmpMemImmBranch(ConditionCode cond, RegStorage temp_reg, RegStorage base_reg, int offset, int check_value, LIR* target, LIR** compare) { DCHECK(compare == nullptr); // It is possible that temp register is 64-bit. (ArgReg or RefReg) // Always compare 32-bit value no matter what temp_reg is. if (temp_reg.Is64Bit()) { temp_reg = As32BitReg(temp_reg); } Load32Disp(base_reg, offset, temp_reg); LIR* branch = OpCmpImmBranch(cond, temp_reg, check_value, target); return branch; } LIR* Arm64Mir2Lir::OpRegCopyNoInsert(RegStorage r_dest, RegStorage r_src) { bool dest_is_fp = r_dest.IsFloat(); bool src_is_fp = r_src.IsFloat(); ArmOpcode opcode = kA64Brk1d; LIR* res; if (LIKELY(dest_is_fp == src_is_fp)) { if (LIKELY(!dest_is_fp)) { DCHECK_EQ(r_dest.Is64Bit(), r_src.Is64Bit()); // Core/core copy. // Copies involving the sp register require a different instruction. opcode = UNLIKELY(A64_REG_IS_SP(r_dest.GetReg())) ? kA64Add4RRdT : kA64Mov2rr; // TODO(Arm64): kA64Add4RRdT formally has 4 args, but is used as a 2 args instruction. // This currently works because the other arguments are set to 0 by default. We should // rather introduce an alias kA64Mov2RR. // core/core copy. Do a x/x copy only if both registers are x. if (r_dest.Is64Bit() && r_src.Is64Bit()) { opcode = WIDE(opcode); } } else { // Float/float copy. bool dest_is_double = r_dest.IsDouble(); bool src_is_double = r_src.IsDouble(); // We do not do float/double or double/float casts here. DCHECK_EQ(dest_is_double, src_is_double); // Homogeneous float/float copy. opcode = (dest_is_double) ? FWIDE(kA64Fmov2ff) : kA64Fmov2ff; } } else { // Inhomogeneous register copy. if (dest_is_fp) { if (r_dest.IsDouble()) { opcode = kA64Fmov2Sx; } else { r_src = Check32BitReg(r_src); opcode = kA64Fmov2sw; } } else { if (r_src.IsDouble()) { opcode = kA64Fmov2xS; } else { r_dest = Check32BitReg(r_dest); opcode = kA64Fmov2ws; } } } res = RawLIR(current_dalvik_offset_, opcode, r_dest.GetReg(), r_src.GetReg()); if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && r_dest == r_src) { res->flags.is_nop = true; } return res; } void Arm64Mir2Lir::OpRegCopy(RegStorage r_dest, RegStorage r_src) { if (r_dest != r_src) { LIR* res = OpRegCopyNoInsert(r_dest, r_src); AppendLIR(res); } } void Arm64Mir2Lir::OpRegCopyWide(RegStorage r_dest, RegStorage r_src) { OpRegCopy(r_dest, r_src); } // Table of magic divisors struct MagicTable { int magic64_base; int magic64_eor; uint64_t magic64; uint32_t magic32; uint32_t shift; DividePattern pattern; }; static const MagicTable magic_table[] = { { 0, 0, 0, 0, 0, DivideNone}, // 0 { 0, 0, 0, 0, 0, DivideNone}, // 1 { 0, 0, 0, 0, 0, DivideNone}, // 2 {0x3c, -1, 0x5555555555555556, 0x55555556, 0, Divide3}, // 3 { 0, 0, 0, 0, 0, DivideNone}, // 4 {0xf9, -1, 0x6666666666666667, 0x66666667, 1, Divide5}, // 5 {0x7c, 0x1041, 0x2AAAAAAAAAAAAAAB, 0x2AAAAAAB, 0, Divide3}, // 6 { -1, -1, 0x924924924924924A, 0x92492493, 2, Divide7}, // 7 { 0, 0, 0, 0, 0, DivideNone}, // 8 { -1, -1, 0x38E38E38E38E38E4, 0x38E38E39, 1, Divide5}, // 9 {0xf9, -1, 0x6666666666666667, 0x66666667, 2, Divide5}, // 10 { -1, -1, 0x2E8BA2E8BA2E8BA3, 0x2E8BA2E9, 1, Divide5}, // 11 {0x7c, 0x1041, 0x2AAAAAAAAAAAAAAB, 0x2AAAAAAB, 1, Divide5}, // 12 { -1, -1, 0x4EC4EC4EC4EC4EC5, 0x4EC4EC4F, 2, Divide5}, // 13 { -1, -1, 0x924924924924924A, 0x92492493, 3, Divide7}, // 14 {0x78, -1, 0x8888888888888889, 0x88888889, 3, Divide7}, // 15 }; // Integer division by constant via reciprocal multiply (Hacker's Delight, 10-4) bool Arm64Mir2Lir::SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div, RegLocation rl_src, RegLocation rl_dest, int lit) { if ((lit < 0) || (lit >= static_cast(arraysize(magic_table)))) { return false; } DividePattern pattern = magic_table[lit].pattern; if (pattern == DivideNone) { return false; } // Tuning: add rem patterns if (!is_div) { return false; } RegStorage r_magic = AllocTemp(); LoadConstant(r_magic, magic_table[lit].magic32); rl_src = LoadValue(rl_src, kCoreReg); RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); RegStorage r_long_mul = AllocTemp(); NewLIR4(kA64Smaddl4xwwx, As64BitReg(r_long_mul).GetReg(), r_magic.GetReg(), rl_src.reg.GetReg(), rxzr); switch (pattern) { case Divide3: OpRegRegImm(kOpLsr, As64BitReg(r_long_mul), As64BitReg(r_long_mul), 32); OpRegRegRegShift(kOpSub, rl_result.reg, r_long_mul, rl_src.reg, EncodeShift(kA64Asr, 31)); break; case Divide5: OpRegRegImm(kOpAsr, As64BitReg(r_long_mul), As64BitReg(r_long_mul), 32 + magic_table[lit].shift); OpRegRegRegShift(kOpSub, rl_result.reg, r_long_mul, rl_src.reg, EncodeShift(kA64Asr, 31)); break; case Divide7: OpRegRegRegShift(kOpAdd, As64BitReg(r_long_mul), As64BitReg(rl_src.reg), As64BitReg(r_long_mul), EncodeShift(kA64Lsr, 32)); OpRegRegImm(kOpAsr, r_long_mul, r_long_mul, magic_table[lit].shift); OpRegRegRegShift(kOpSub, rl_result.reg, r_long_mul, rl_src.reg, EncodeShift(kA64Asr, 31)); break; default: LOG(FATAL) << "Unexpected pattern: " << pattern; } StoreValue(rl_dest, rl_result); return true; } bool Arm64Mir2Lir::SmallLiteralDivRem64(Instruction::Code dalvik_opcode, bool is_div, RegLocation rl_src, RegLocation rl_dest, int64_t lit) { if ((lit < 0) || (lit >= static_cast(arraysize(magic_table)))) { return false; } DividePattern pattern = magic_table[lit].pattern; if (pattern == DivideNone) { return false; } // Tuning: add rem patterns if (!is_div) { return false; } RegStorage r_magic = AllocTempWide(); rl_src = LoadValueWide(rl_src, kCoreReg); RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true); RegStorage r_long_mul = AllocTempWide(); if (magic_table[lit].magic64_base >= 0) { // Check that the entry in the table is correct. if (kIsDebugBuild) { uint64_t reconstructed_imm; uint64_t base = DecodeLogicalImmediate(/*is_wide*/true, magic_table[lit].magic64_base); if (magic_table[lit].magic64_eor >= 0) { uint64_t eor = DecodeLogicalImmediate(/*is_wide*/true, magic_table[lit].magic64_eor); reconstructed_imm = base ^ eor; } else { reconstructed_imm = base + 1; } DCHECK_EQ(reconstructed_imm, magic_table[lit].magic64) << " for literal " << lit; } // Load the magic constant in two instructions. NewLIR3(WIDE(kA64Orr3Rrl), r_magic.GetReg(), rxzr, magic_table[lit].magic64_base); if (magic_table[lit].magic64_eor >= 0) { NewLIR3(WIDE(kA64Eor3Rrl), r_magic.GetReg(), r_magic.GetReg(), magic_table[lit].magic64_eor); } else { NewLIR4(WIDE(kA64Add4RRdT), r_magic.GetReg(), r_magic.GetReg(), 1, 0); } } else { LoadConstantWide(r_magic, magic_table[lit].magic64); } NewLIR3(kA64Smulh3xxx, r_long_mul.GetReg(), r_magic.GetReg(), rl_src.reg.GetReg()); switch (pattern) { case Divide3: OpRegRegRegShift(kOpSub, rl_result.reg, r_long_mul, rl_src.reg, EncodeShift(kA64Asr, 63)); break; case Divide5: OpRegRegImm(kOpAsr, r_long_mul, r_long_mul, magic_table[lit].shift); OpRegRegRegShift(kOpSub, rl_result.reg, r_long_mul, rl_src.reg, EncodeShift(kA64Asr, 63)); break; case Divide7: OpRegRegReg(kOpAdd, r_long_mul, rl_src.reg, r_long_mul); OpRegRegImm(kOpAsr, r_long_mul, r_long_mul, magic_table[lit].shift); OpRegRegRegShift(kOpSub, rl_result.reg, r_long_mul, rl_src.reg, EncodeShift(kA64Asr, 63)); break; default: LOG(FATAL) << "Unexpected pattern: " << pattern; } StoreValueWide(rl_dest, rl_result); return true; } // Returns true if it added instructions to 'cu' to divide 'rl_src' by 'lit' // and store the result in 'rl_dest'. bool Arm64Mir2Lir::HandleEasyDivRem(Instruction::Code dalvik_opcode, bool is_div, RegLocation rl_src, RegLocation rl_dest, int lit) { return HandleEasyDivRem64(dalvik_opcode, is_div, rl_src, rl_dest, static_cast(lit)); } // Returns true if it added instructions to 'cu' to divide 'rl_src' by 'lit' // and store the result in 'rl_dest'. bool Arm64Mir2Lir::HandleEasyDivRem64(Instruction::Code dalvik_opcode, bool is_div, RegLocation rl_src, RegLocation rl_dest, int64_t lit) { const bool is_64bit = rl_dest.wide; const int nbits = (is_64bit) ? 64 : 32; if (lit < 2) { return false; } if (!IsPowerOfTwo(lit)) { if (is_64bit) { return SmallLiteralDivRem64(dalvik_opcode, is_div, rl_src, rl_dest, lit); } else { return SmallLiteralDivRem(dalvik_opcode, is_div, rl_src, rl_dest, static_cast(lit)); } } int k = LowestSetBit(lit); if (k >= nbits - 2) { // Avoid special cases. return false; } RegLocation rl_result; RegStorage t_reg; if (is_64bit) { rl_src = LoadValueWide(rl_src, kCoreReg); rl_result = EvalLocWide(rl_dest, kCoreReg, true); t_reg = AllocTempWide(); } else { rl_src = LoadValue(rl_src, kCoreReg); rl_result = EvalLoc(rl_dest, kCoreReg, true); t_reg = AllocTemp(); } int shift = EncodeShift(kA64Lsr, nbits - k); if (is_div) { if (lit == 2) { // Division by 2 is by far the most common division by constant. OpRegRegRegShift(kOpAdd, t_reg, rl_src.reg, rl_src.reg, shift); OpRegRegImm(kOpAsr, rl_result.reg, t_reg, k); } else { OpRegRegImm(kOpAsr, t_reg, rl_src.reg, nbits - 1); OpRegRegRegShift(kOpAdd, t_reg, rl_src.reg, t_reg, shift); OpRegRegImm(kOpAsr, rl_result.reg, t_reg, k); } } else { if (lit == 2) { OpRegRegRegShift(kOpAdd, t_reg, rl_src.reg, rl_src.reg, shift); OpRegRegImm64(kOpAnd, t_reg, t_reg, lit - 1); OpRegRegRegShift(kOpSub, rl_result.reg, t_reg, rl_src.reg, shift); } else { RegStorage t_reg2 = (is_64bit) ? AllocTempWide() : AllocTemp(); OpRegRegImm(kOpAsr, t_reg, rl_src.reg, nbits - 1); OpRegRegRegShift(kOpAdd, t_reg2, rl_src.reg, t_reg, shift); OpRegRegImm64(kOpAnd, t_reg2, t_reg2, lit - 1); OpRegRegRegShift(kOpSub, rl_result.reg, t_reg2, t_reg, shift); } } if (is_64bit) { StoreValueWide(rl_dest, rl_result); } else { StoreValue(rl_dest, rl_result); } return true; } bool Arm64Mir2Lir::EasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) { LOG(FATAL) << "Unexpected use of EasyMultiply for Arm64"; return false; } RegLocation Arm64Mir2Lir::GenDivRemLit(RegLocation rl_dest, RegLocation rl_src1, int lit, bool is_div) { LOG(FATAL) << "Unexpected use of GenDivRemLit for Arm64"; return rl_dest; } RegLocation Arm64Mir2Lir::GenDivRemLit(RegLocation rl_dest, RegStorage reg1, int lit, bool is_div) { RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); // Put the literal in a temp. RegStorage lit_temp = AllocTemp(); LoadConstant(lit_temp, lit); // Use the generic case for div/rem with arg2 in a register. // TODO: The literal temp can be freed earlier during a modulus to reduce reg pressure. rl_result = GenDivRem(rl_result, reg1, lit_temp, is_div); FreeTemp(lit_temp); return rl_result; } RegLocation Arm64Mir2Lir::GenDivRem(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2, bool is_div, bool check_zero) { LOG(FATAL) << "Unexpected use of GenDivRem for Arm64"; return rl_dest; } RegLocation Arm64Mir2Lir::GenDivRem(RegLocation rl_dest, RegStorage r_src1, RegStorage r_src2, bool is_div) { CHECK_EQ(r_src1.Is64Bit(), r_src2.Is64Bit()); RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); if (is_div) { OpRegRegReg(kOpDiv, rl_result.reg, r_src1, r_src2); } else { // temp = r_src1 / r_src2 // dest = r_src1 - temp * r_src2 RegStorage temp; ArmOpcode wide; if (rl_result.reg.Is64Bit()) { temp = AllocTempWide(); wide = WIDE(0); } else { temp = AllocTemp(); wide = UNWIDE(0); } OpRegRegReg(kOpDiv, temp, r_src1, r_src2); NewLIR4(kA64Msub4rrrr | wide, rl_result.reg.GetReg(), temp.GetReg(), r_src1.GetReg(), r_src2.GetReg()); FreeTemp(temp); } return rl_result; } bool Arm64Mir2Lir::GenInlinedAbsInt(CallInfo* info) { RegLocation rl_src = info->args[0]; rl_src = LoadValue(rl_src, kCoreReg); RegLocation rl_dest = InlineTarget(info); RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); // Compare the source value with zero. Write the negated value to the result if // negative, otherwise write the original value. OpRegImm(kOpCmp, rl_src.reg, 0); NewLIR4(kA64Csneg4rrrc, rl_result.reg.GetReg(), rl_src.reg.GetReg(), rl_src.reg.GetReg(), kArmCondPl); StoreValue(rl_dest, rl_result); return true; } bool Arm64Mir2Lir::GenInlinedAbsLong(CallInfo* info) { RegLocation rl_src = info->args[0]; rl_src = LoadValueWide(rl_src, kCoreReg); RegLocation rl_dest = InlineTargetWide(info); RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); // Compare the source value with zero. Write the negated value to the result if // negative, otherwise write the original value. OpRegImm(kOpCmp, rl_src.reg, 0); NewLIR4(WIDE(kA64Csneg4rrrc), rl_result.reg.GetReg(), rl_src.reg.GetReg(), rl_src.reg.GetReg(), kArmCondPl); StoreValueWide(rl_dest, rl_result); return true; } bool Arm64Mir2Lir::GenInlinedMinMax(CallInfo* info, bool is_min, bool is_long) { DCHECK_EQ(cu_->instruction_set, kArm64); RegLocation rl_src1 = info->args[0]; RegLocation rl_src2 = (is_long) ? info->args[2] : info->args[1]; rl_src1 = (is_long) ? LoadValueWide(rl_src1, kCoreReg) : LoadValue(rl_src1, kCoreReg); rl_src2 = (is_long) ? LoadValueWide(rl_src2, kCoreReg) : LoadValue(rl_src2, kCoreReg); RegLocation rl_dest = (is_long) ? InlineTargetWide(info) : InlineTarget(info); RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); OpRegReg(kOpCmp, rl_src1.reg, rl_src2.reg); NewLIR4((is_long) ? WIDE(kA64Csel4rrrc) : kA64Csel4rrrc, rl_result.reg.GetReg(), rl_src1.reg.GetReg(), rl_src2.reg.GetReg(), (is_min) ? kArmCondLt : kArmCondGt); (is_long) ? StoreValueWide(rl_dest, rl_result) :StoreValue(rl_dest, rl_result); return true; } bool Arm64Mir2Lir::GenInlinedPeek(CallInfo* info, OpSize size) { RegLocation rl_src_address = info->args[0]; // long address RegLocation rl_dest = (size == k64) ? InlineTargetWide(info) : InlineTarget(info); RegLocation rl_address = LoadValueWide(rl_src_address, kCoreReg); RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); LoadBaseDisp(rl_address.reg, 0, rl_result.reg, size, kNotVolatile); if (size == k64) { StoreValueWide(rl_dest, rl_result); } else { DCHECK(size == kSignedByte || size == kSignedHalf || size == k32); StoreValue(rl_dest, rl_result); } return true; } bool Arm64Mir2Lir::GenInlinedPoke(CallInfo* info, OpSize size) { RegLocation rl_src_address = info->args[0]; // long address RegLocation rl_src_value = info->args[2]; // [size] value RegLocation rl_address = LoadValueWide(rl_src_address, kCoreReg); RegLocation rl_value; if (size == k64) { rl_value = LoadValueWide(rl_src_value, kCoreReg); } else { DCHECK(size == kSignedByte || size == kSignedHalf || size == k32); rl_value = LoadValue(rl_src_value, kCoreReg); } StoreBaseDisp(rl_address.reg, 0, rl_value.reg, size, kNotVolatile); return true; } bool Arm64Mir2Lir::GenInlinedCas(CallInfo* info, bool is_long, bool is_object) { DCHECK_EQ(cu_->instruction_set, kArm64); // Unused - RegLocation rl_src_unsafe = info->args[0]; RegLocation rl_src_obj = info->args[1]; // Object - known non-null RegLocation rl_src_offset = info->args[2]; // long low RegLocation rl_src_expected = info->args[4]; // int, long or Object // If is_long, high half is in info->args[5] RegLocation rl_src_new_value = info->args[is_long ? 6 : 5]; // int, long or Object // If is_long, high half is in info->args[7] RegLocation rl_dest = InlineTarget(info); // boolean place for result // Load Object and offset RegLocation rl_object = LoadValue(rl_src_obj, kRefReg); RegLocation rl_offset = LoadValueWide(rl_src_offset, kCoreReg); RegLocation rl_new_value; RegLocation rl_expected; if (is_long) { rl_new_value = LoadValueWide(rl_src_new_value, kCoreReg); rl_expected = LoadValueWide(rl_src_expected, kCoreReg); } else { rl_new_value = LoadValue(rl_src_new_value, is_object ? kRefReg : kCoreReg); rl_expected = LoadValue(rl_src_expected, is_object ? kRefReg : kCoreReg); } if (is_object && !mir_graph_->IsConstantNullRef(rl_new_value)) { // Mark card for object assuming new value is stored. MarkGCCard(rl_new_value.reg, rl_object.reg); } RegStorage r_ptr = AllocTempRef(); OpRegRegReg(kOpAdd, r_ptr, rl_object.reg, rl_offset.reg); // Free now unneeded rl_object and rl_offset to give more temps. ClobberSReg(rl_object.s_reg_low); FreeTemp(rl_object.reg); ClobberSReg(rl_offset.s_reg_low); FreeTemp(rl_offset.reg); // do { // tmp = [r_ptr] - expected; // } while (tmp == 0 && failure([r_ptr] <- r_new_value)); // result = tmp != 0; RegStorage r_tmp; RegStorage r_tmp_stored; RegStorage rl_new_value_stored = rl_new_value.reg; ArmOpcode wide = UNWIDE(0); if (is_long) { r_tmp_stored = r_tmp = AllocTempWide(); wide = WIDE(0); } else if (is_object) { // References use 64-bit registers, but are stored as compressed 32-bit values. // This means r_tmp_stored != r_tmp. r_tmp = AllocTempRef(); r_tmp_stored = As32BitReg(r_tmp); rl_new_value_stored = As32BitReg(rl_new_value_stored); } else { r_tmp_stored = r_tmp = AllocTemp(); } RegStorage r_tmp32 = (r_tmp.Is32Bit()) ? r_tmp : As32BitReg(r_tmp); LIR* loop = NewLIR0(kPseudoTargetLabel); NewLIR2(kA64Ldaxr2rX | wide, r_tmp_stored.GetReg(), r_ptr.GetReg()); OpRegReg(kOpCmp, r_tmp, rl_expected.reg); DCHECK(last_lir_insn_->u.m.def_mask->HasBit(ResourceMask::kCCode)); LIR* early_exit = OpCondBranch(kCondNe, NULL); NewLIR3(kA64Stlxr3wrX | wide, r_tmp32.GetReg(), rl_new_value_stored.GetReg(), r_ptr.GetReg()); NewLIR3(kA64Cmp3RdT, r_tmp32.GetReg(), 0, ENCODE_NO_SHIFT); DCHECK(last_lir_insn_->u.m.def_mask->HasBit(ResourceMask::kCCode)); OpCondBranch(kCondNe, loop); LIR* exit_loop = NewLIR0(kPseudoTargetLabel); early_exit->target = exit_loop; RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); NewLIR4(kA64Csinc4rrrc, rl_result.reg.GetReg(), rwzr, rwzr, kArmCondNe); FreeTemp(r_tmp); // Now unneeded. FreeTemp(r_ptr); // Now unneeded. StoreValue(rl_dest, rl_result); return true; } bool Arm64Mir2Lir::GenInlinedArrayCopyCharArray(CallInfo* info) { constexpr int kLargeArrayThreshold = 512; RegLocation rl_src = info->args[0]; RegLocation rl_src_pos = info->args[1]; RegLocation rl_dst = info->args[2]; RegLocation rl_dst_pos = info->args[3]; RegLocation rl_length = info->args[4]; // Compile time check, handle exception by non-inline method to reduce related meta-data. if ((rl_src_pos.is_const && (mir_graph_->ConstantValue(rl_src_pos) < 0)) || (rl_dst_pos.is_const && (mir_graph_->ConstantValue(rl_dst_pos) < 0)) || (rl_length.is_const && (mir_graph_->ConstantValue(rl_length) < 0))) { return false; } ClobberCallerSave(); LockCallTemps(); // Prepare for explicit register usage. RegStorage rs_src = rs_x0; RegStorage rs_dst = rs_x1; LoadValueDirectFixed(rl_src, rs_src); LoadValueDirectFixed(rl_dst, rs_dst); // Handle null pointer exception in slow-path. LIR* src_check_branch = OpCmpImmBranch(kCondEq, rs_src, 0, nullptr); LIR* dst_check_branch = OpCmpImmBranch(kCondEq, rs_dst, 0, nullptr); // Handle potential overlapping in slow-path. // TUNING: Support overlapping cases. LIR* src_dst_same = OpCmpBranch(kCondEq, rs_src, rs_dst, nullptr); // Handle exception or big length in slow-path. RegStorage rs_length = rs_w2; LoadValueDirectFixed(rl_length, rs_length); LIR* len_neg_or_too_big = OpCmpImmBranch(kCondHi, rs_length, kLargeArrayThreshold, nullptr); // Src bounds check. RegStorage rs_src_pos = rs_w3; RegStorage rs_arr_length = rs_w4; LoadValueDirectFixed(rl_src_pos, rs_src_pos); LIR* src_pos_negative = OpCmpImmBranch(kCondLt, rs_src_pos, 0, nullptr); Load32Disp(rs_src, mirror::Array::LengthOffset().Int32Value(), rs_arr_length); OpRegReg(kOpSub, rs_arr_length, rs_src_pos); LIR* src_bad_len = OpCmpBranch(kCondLt, rs_arr_length, rs_length, nullptr); // Dst bounds check. RegStorage rs_dst_pos = rs_w5; LoadValueDirectFixed(rl_dst_pos, rs_dst_pos); LIR* dst_pos_negative = OpCmpImmBranch(kCondLt, rs_dst_pos, 0, nullptr); Load32Disp(rs_dst, mirror::Array::LengthOffset().Int32Value(), rs_arr_length); OpRegReg(kOpSub, rs_arr_length, rs_dst_pos); LIR* dst_bad_len = OpCmpBranch(kCondLt, rs_arr_length, rs_length, nullptr); // Everything is checked now. // Set rs_src to the address of the first element to be copied. rs_src_pos = As64BitReg(rs_src_pos); OpRegImm(kOpAdd, rs_src, mirror::Array::DataOffset(2).Int32Value()); OpRegRegImm(kOpLsl, rs_src_pos, rs_src_pos, 1); OpRegReg(kOpAdd, rs_src, rs_src_pos); // Set rs_src to the address of the first element to be copied. rs_dst_pos = As64BitReg(rs_dst_pos); OpRegImm(kOpAdd, rs_dst, mirror::Array::DataOffset(2).Int32Value()); OpRegRegImm(kOpLsl, rs_dst_pos, rs_dst_pos, 1); OpRegReg(kOpAdd, rs_dst, rs_dst_pos); // rs_arr_length won't be not used anymore. RegStorage rs_tmp = rs_arr_length; // Use 64-bit view since rs_length will be used as index. rs_length = As64BitReg(rs_length); OpRegRegImm(kOpLsl, rs_length, rs_length, 1); // Copy one element. LIR* jmp_to_copy_two = NewLIR3(WIDE(kA64Tbz3rht), rs_length.GetReg(), 1, 0); OpRegImm(kOpSub, rs_length, 2); LoadBaseIndexed(rs_src, rs_length, rs_tmp, 0, kSignedHalf); StoreBaseIndexed(rs_dst, rs_length, rs_tmp, 0, kSignedHalf); // Copy two elements. LIR *copy_two = NewLIR0(kPseudoTargetLabel); LIR* jmp_to_copy_four = NewLIR3(WIDE(kA64Tbz3rht), rs_length.GetReg(), 2, 0); OpRegImm(kOpSub, rs_length, 4); LoadBaseIndexed(rs_src, rs_length, rs_tmp, 0, k32); StoreBaseIndexed(rs_dst, rs_length, rs_tmp, 0, k32); // Copy four elements. LIR *copy_four = NewLIR0(kPseudoTargetLabel); LIR* jmp_to_ret = OpCmpImmBranch(kCondEq, rs_length, 0, nullptr); LIR *begin_loop = NewLIR0(kPseudoTargetLabel); OpRegImm(kOpSub, rs_length, 8); rs_tmp = As64BitReg(rs_tmp); LoadBaseIndexed(rs_src, rs_length, rs_tmp, 0, k64); StoreBaseIndexed(rs_dst, rs_length, rs_tmp, 0, k64); LIR* jmp_to_loop = OpCmpImmBranch(kCondNe, rs_length, 0, nullptr); LIR* loop_finished = OpUnconditionalBranch(nullptr); LIR *check_failed = NewLIR0(kPseudoTargetLabel); LIR* launchpad_branch = OpUnconditionalBranch(nullptr); LIR* return_point = NewLIR0(kPseudoTargetLabel); src_check_branch->target = check_failed; dst_check_branch->target = check_failed; src_dst_same->target = check_failed; len_neg_or_too_big->target = check_failed; src_pos_negative->target = check_failed; src_bad_len->target = check_failed; dst_pos_negative->target = check_failed; dst_bad_len->target = check_failed; jmp_to_copy_two->target = copy_two; jmp_to_copy_four->target = copy_four; jmp_to_ret->target = return_point; jmp_to_loop->target = begin_loop; loop_finished->target = return_point; AddIntrinsicSlowPath(info, launchpad_branch, return_point); ClobberCallerSave(); // We must clobber everything because slow path will return here return true; } LIR* Arm64Mir2Lir::OpPcRelLoad(RegStorage reg, LIR* target) { ScopedMemRefType mem_ref_type(this, ResourceMask::kLiteral); return RawLIR(current_dalvik_offset_, WIDE(kA64Ldr2rp), reg.GetReg(), 0, 0, 0, 0, target); } LIR* Arm64Mir2Lir::OpVldm(RegStorage r_base, int count) { LOG(FATAL) << "Unexpected use of OpVldm for Arm64"; return NULL; } LIR* Arm64Mir2Lir::OpVstm(RegStorage r_base, int count) { LOG(FATAL) << "Unexpected use of OpVstm for Arm64"; return NULL; } void Arm64Mir2Lir::GenMultiplyByTwoBitMultiplier(RegLocation rl_src, RegLocation rl_result, int lit, int first_bit, int second_bit) { OpRegRegRegShift(kOpAdd, rl_result.reg, rl_src.reg, rl_src.reg, EncodeShift(kA64Lsl, second_bit - first_bit)); if (first_bit != 0) { OpRegRegImm(kOpLsl, rl_result.reg, rl_result.reg, first_bit); } } void Arm64Mir2Lir::GenDivZeroCheckWide(RegStorage reg) { LOG(FATAL) << "Unexpected use of GenDivZero for Arm64"; } // Test suspend flag, return target of taken suspend branch LIR* Arm64Mir2Lir::OpTestSuspend(LIR* target) { NewLIR3(kA64Subs3rRd, rwSUSPEND, rwSUSPEND, 1); return OpCondBranch((target == NULL) ? kCondEq : kCondNe, target); } // Decrement register and branch on condition LIR* Arm64Mir2Lir::OpDecAndBranch(ConditionCode c_code, RegStorage reg, LIR* target) { // Combine sub & test using sub setflags encoding here. We need to make sure a // subtract form that sets carry is used, so generate explicitly. // TODO: might be best to add a new op, kOpSubs, and handle it generically. ArmOpcode opcode = reg.Is64Bit() ? WIDE(kA64Subs3rRd) : UNWIDE(kA64Subs3rRd); NewLIR3(opcode, reg.GetReg(), reg.GetReg(), 1); // For value == 1, this should set flags. DCHECK(last_lir_insn_->u.m.def_mask->HasBit(ResourceMask::kCCode)); return OpCondBranch(c_code, target); } bool Arm64Mir2Lir::GenMemBarrier(MemBarrierKind barrier_kind) { #if ANDROID_SMP != 0 // Start off with using the last LIR as the barrier. If it is not enough, then we will generate one. LIR* barrier = last_lir_insn_; int dmb_flavor; // TODO: revisit Arm barrier kinds switch (barrier_kind) { case kAnyStore: dmb_flavor = kISH; break; case kLoadAny: dmb_flavor = kISH; break; // We conjecture that kISHLD is insufficient. It is documented // to provide LoadLoad | StoreStore ordering. But if this were used // to implement volatile loads, we suspect that the lack of store // atomicity on ARM would cause us to allow incorrect results for // the canonical IRIW example. But we're not sure. // We should be using acquire loads instead. case kStoreStore: dmb_flavor = kISHST; break; case kAnyAny: dmb_flavor = kISH; break; default: LOG(FATAL) << "Unexpected MemBarrierKind: " << barrier_kind; dmb_flavor = kSY; // quiet gcc. break; } bool ret = false; // If the same barrier already exists, don't generate another. if (barrier == nullptr || (barrier->opcode != kA64Dmb1B || barrier->operands[0] != dmb_flavor)) { barrier = NewLIR1(kA64Dmb1B, dmb_flavor); ret = true; } // At this point we must have a memory barrier. Mark it as a scheduling barrier as well. DCHECK(!barrier->flags.use_def_invalid); barrier->u.m.def_mask = &kEncodeAll; return ret; #else return false; #endif } void Arm64Mir2Lir::GenIntToLong(RegLocation rl_dest, RegLocation rl_src) { RegLocation rl_result; rl_src = LoadValue(rl_src, kCoreReg); rl_result = EvalLocWide(rl_dest, kCoreReg, true); NewLIR4(WIDE(kA64Sbfm4rrdd), rl_result.reg.GetReg(), As64BitReg(rl_src.reg).GetReg(), 0, 31); StoreValueWide(rl_dest, rl_result); } void Arm64Mir2Lir::GenDivRemLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2, bool is_div) { if (rl_src2.is_const) { DCHECK(rl_src2.wide); int64_t lit = mir_graph_->ConstantValueWide(rl_src2); if (HandleEasyDivRem64(opcode, is_div, rl_src1, rl_dest, lit)) { return; } } RegLocation rl_result; rl_src1 = LoadValueWide(rl_src1, kCoreReg); rl_src2 = LoadValueWide(rl_src2, kCoreReg); GenDivZeroCheck(rl_src2.reg); rl_result = GenDivRem(rl_dest, rl_src1.reg, rl_src2.reg, is_div); StoreValueWide(rl_dest, rl_result); } void Arm64Mir2Lir::GenLongOp(OpKind op, RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) { RegLocation rl_result; rl_src1 = LoadValueWide(rl_src1, kCoreReg); rl_src2 = LoadValueWide(rl_src2, kCoreReg); rl_result = EvalLocWide(rl_dest, kCoreReg, true); OpRegRegRegShift(op, rl_result.reg, rl_src1.reg, rl_src2.reg, ENCODE_NO_SHIFT); StoreValueWide(rl_dest, rl_result); } void Arm64Mir2Lir::GenNegLong(RegLocation rl_dest, RegLocation rl_src) { RegLocation rl_result; rl_src = LoadValueWide(rl_src, kCoreReg); rl_result = EvalLocWide(rl_dest, kCoreReg, true); OpRegRegShift(kOpNeg, rl_result.reg, rl_src.reg, ENCODE_NO_SHIFT); StoreValueWide(rl_dest, rl_result); } void Arm64Mir2Lir::GenNotLong(RegLocation rl_dest, RegLocation rl_src) { RegLocation rl_result; rl_src = LoadValueWide(rl_src, kCoreReg); rl_result = EvalLocWide(rl_dest, kCoreReg, true); OpRegRegShift(kOpMvn, rl_result.reg, rl_src.reg, ENCODE_NO_SHIFT); StoreValueWide(rl_dest, rl_result); } void Arm64Mir2Lir::GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) { switch (opcode) { case Instruction::NOT_LONG: GenNotLong(rl_dest, rl_src2); return; case Instruction::ADD_LONG: case Instruction::ADD_LONG_2ADDR: GenLongOp(kOpAdd, rl_dest, rl_src1, rl_src2); return; case Instruction::SUB_LONG: case Instruction::SUB_LONG_2ADDR: GenLongOp(kOpSub, rl_dest, rl_src1, rl_src2); return; case Instruction::MUL_LONG: case Instruction::MUL_LONG_2ADDR: GenLongOp(kOpMul, rl_dest, rl_src1, rl_src2); return; case Instruction::DIV_LONG: case Instruction::DIV_LONG_2ADDR: GenDivRemLong(opcode, rl_dest, rl_src1, rl_src2, /*is_div*/ true); return; case Instruction::REM_LONG: case Instruction::REM_LONG_2ADDR: GenDivRemLong(opcode, rl_dest, rl_src1, rl_src2, /*is_div*/ false); return; case Instruction::AND_LONG_2ADDR: case Instruction::AND_LONG: GenLongOp(kOpAnd, rl_dest, rl_src1, rl_src2); return; case Instruction::OR_LONG: case Instruction::OR_LONG_2ADDR: GenLongOp(kOpOr, rl_dest, rl_src1, rl_src2); return; case Instruction::XOR_LONG: case Instruction::XOR_LONG_2ADDR: GenLongOp(kOpXor, rl_dest, rl_src1, rl_src2); return; case Instruction::NEG_LONG: { GenNegLong(rl_dest, rl_src2); return; } default: LOG(FATAL) << "Invalid long arith op"; return; } } /* * Generate array load */ void Arm64Mir2Lir::GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array, RegLocation rl_index, RegLocation rl_dest, int scale) { RegisterClass reg_class = RegClassBySize(size); int len_offset = mirror::Array::LengthOffset().Int32Value(); int data_offset; RegLocation rl_result; bool constant_index = rl_index.is_const; rl_array = LoadValue(rl_array, kRefReg); if (!constant_index) { rl_index = LoadValue(rl_index, kCoreReg); } if (rl_dest.wide) { data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value(); } else { data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value(); } // If index is constant, just fold it into the data offset if (constant_index) { data_offset += mir_graph_->ConstantValue(rl_index) << scale; } /* null object? */ GenNullCheck(rl_array.reg, opt_flags); bool needs_range_check = (!(opt_flags & MIR_IGNORE_RANGE_CHECK)); RegStorage reg_len; if (needs_range_check) { reg_len = AllocTemp(); /* Get len */ Load32Disp(rl_array.reg, len_offset, reg_len); MarkPossibleNullPointerException(opt_flags); } else { ForceImplicitNullCheck(rl_array.reg, opt_flags); } if (rl_dest.wide || rl_dest.fp || constant_index) { RegStorage reg_ptr; if (constant_index) { reg_ptr = rl_array.reg; // NOTE: must not alter reg_ptr in constant case. } else { // No special indexed operation, lea + load w/ displacement reg_ptr = AllocTempRef(); OpRegRegRegShift(kOpAdd, reg_ptr, rl_array.reg, As64BitReg(rl_index.reg), EncodeShift(kA64Lsl, scale)); FreeTemp(rl_index.reg); } rl_result = EvalLoc(rl_dest, reg_class, true); if (needs_range_check) { if (constant_index) { GenArrayBoundsCheck(mir_graph_->ConstantValue(rl_index), reg_len); } else { GenArrayBoundsCheck(rl_index.reg, reg_len); } FreeTemp(reg_len); } if (rl_result.ref) { LoadRefDisp(reg_ptr, data_offset, rl_result.reg, kNotVolatile); } else { LoadBaseDisp(reg_ptr, data_offset, rl_result.reg, size, kNotVolatile); } MarkPossibleNullPointerException(opt_flags); if (!constant_index) { FreeTemp(reg_ptr); } if (rl_dest.wide) { StoreValueWide(rl_dest, rl_result); } else { StoreValue(rl_dest, rl_result); } } else { // Offset base, then use indexed load RegStorage reg_ptr = AllocTempRef(); OpRegRegImm(kOpAdd, reg_ptr, rl_array.reg, data_offset); FreeTemp(rl_array.reg); rl_result = EvalLoc(rl_dest, reg_class, true); if (needs_range_check) { GenArrayBoundsCheck(rl_index.reg, reg_len); FreeTemp(reg_len); } if (rl_result.ref) { LoadRefIndexed(reg_ptr, As64BitReg(rl_index.reg), rl_result.reg, scale); } else { LoadBaseIndexed(reg_ptr, As64BitReg(rl_index.reg), rl_result.reg, scale, size); } MarkPossibleNullPointerException(opt_flags); FreeTemp(reg_ptr); StoreValue(rl_dest, rl_result); } } /* * Generate array store * */ void Arm64Mir2Lir::GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array, RegLocation rl_index, RegLocation rl_src, int scale, bool card_mark) { RegisterClass reg_class = RegClassBySize(size); int len_offset = mirror::Array::LengthOffset().Int32Value(); bool constant_index = rl_index.is_const; int data_offset; if (size == k64 || size == kDouble) { data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value(); } else { data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value(); } // If index is constant, just fold it into the data offset. if (constant_index) { data_offset += mir_graph_->ConstantValue(rl_index) << scale; } rl_array = LoadValue(rl_array, kRefReg); if (!constant_index) { rl_index = LoadValue(rl_index, kCoreReg); } RegStorage reg_ptr; bool allocated_reg_ptr_temp = false; if (constant_index) { reg_ptr = rl_array.reg; } else if (IsTemp(rl_array.reg) && !card_mark) { Clobber(rl_array.reg); reg_ptr = rl_array.reg; } else { allocated_reg_ptr_temp = true; reg_ptr = AllocTempRef(); } /* null object? */ GenNullCheck(rl_array.reg, opt_flags); bool needs_range_check = (!(opt_flags & MIR_IGNORE_RANGE_CHECK)); RegStorage reg_len; if (needs_range_check) { reg_len = AllocTemp(); // NOTE: max live temps(4) here. /* Get len */ Load32Disp(rl_array.reg, len_offset, reg_len); MarkPossibleNullPointerException(opt_flags); } else { ForceImplicitNullCheck(rl_array.reg, opt_flags); } /* at this point, reg_ptr points to array, 2 live temps */ if (rl_src.wide || rl_src.fp || constant_index) { if (rl_src.wide) { rl_src = LoadValueWide(rl_src, reg_class); } else { rl_src = LoadValue(rl_src, reg_class); } if (!constant_index) { OpRegRegRegShift(kOpAdd, reg_ptr, rl_array.reg, As64BitReg(rl_index.reg), EncodeShift(kA64Lsl, scale)); } if (needs_range_check) { if (constant_index) { GenArrayBoundsCheck(mir_graph_->ConstantValue(rl_index), reg_len); } else { GenArrayBoundsCheck(rl_index.reg, reg_len); } FreeTemp(reg_len); } if (rl_src.ref) { StoreRefDisp(reg_ptr, data_offset, rl_src.reg, kNotVolatile); } else { StoreBaseDisp(reg_ptr, data_offset, rl_src.reg, size, kNotVolatile); } MarkPossibleNullPointerException(opt_flags); } else { /* reg_ptr -> array data */ OpRegRegImm(kOpAdd, reg_ptr, rl_array.reg, data_offset); rl_src = LoadValue(rl_src, reg_class); if (needs_range_check) { GenArrayBoundsCheck(rl_index.reg, reg_len); FreeTemp(reg_len); } if (rl_src.ref) { StoreRefIndexed(reg_ptr, As64BitReg(rl_index.reg), rl_src.reg, scale); } else { StoreBaseIndexed(reg_ptr, As64BitReg(rl_index.reg), rl_src.reg, scale, size); } MarkPossibleNullPointerException(opt_flags); } if (allocated_reg_ptr_temp) { FreeTemp(reg_ptr); } if (card_mark) { MarkGCCard(rl_src.reg, rl_array.reg); } } void Arm64Mir2Lir::GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src, RegLocation rl_shift) { OpKind op = kOpBkpt; // Per spec, we only care about low 6 bits of shift amount. int shift_amount = mir_graph_->ConstantValue(rl_shift) & 0x3f; rl_src = LoadValueWide(rl_src, kCoreReg); if (shift_amount == 0) { StoreValueWide(rl_dest, rl_src); return; } RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true); switch (opcode) { case Instruction::SHL_LONG: case Instruction::SHL_LONG_2ADDR: op = kOpLsl; break; case Instruction::SHR_LONG: case Instruction::SHR_LONG_2ADDR: op = kOpAsr; break; case Instruction::USHR_LONG: case Instruction::USHR_LONG_2ADDR: op = kOpLsr; break; default: LOG(FATAL) << "Unexpected case"; } OpRegRegImm(op, rl_result.reg, rl_src.reg, shift_amount); StoreValueWide(rl_dest, rl_result); } void Arm64Mir2Lir::GenArithImmOpLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) { OpKind op = kOpBkpt; switch (opcode) { case Instruction::ADD_LONG: case Instruction::ADD_LONG_2ADDR: op = kOpAdd; break; case Instruction::SUB_LONG: case Instruction::SUB_LONG_2ADDR: op = kOpSub; break; case Instruction::AND_LONG: case Instruction::AND_LONG_2ADDR: op = kOpAnd; break; case Instruction::OR_LONG: case Instruction::OR_LONG_2ADDR: op = kOpOr; break; case Instruction::XOR_LONG: case Instruction::XOR_LONG_2ADDR: op = kOpXor; break; default: LOG(FATAL) << "Unexpected opcode"; } if (op == kOpSub) { if (!rl_src2.is_const) { return GenArithOpLong(opcode, rl_dest, rl_src1, rl_src2); } } else { // Associativity. if (!rl_src2.is_const) { DCHECK(rl_src1.is_const); std::swap(rl_src1, rl_src2); } } DCHECK(rl_src2.is_const); int64_t val = mir_graph_->ConstantValueWide(rl_src2); rl_src1 = LoadValueWide(rl_src1, kCoreReg); RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true); OpRegRegImm64(op, rl_result.reg, rl_src1.reg, val); StoreValueWide(rl_dest, rl_result); } static uint32_t ExtractReg(uint32_t reg_mask, int* reg) { // Find first register. int first_bit_set = CTZ(reg_mask) + 1; *reg = *reg + first_bit_set; reg_mask >>= first_bit_set; return reg_mask; } /** * @brief Split a register list in pairs or registers. * * Given a list of registers in @p reg_mask, split the list in pairs. Use as follows: * @code * int reg1 = -1, reg2 = -1; * while (reg_mask) { * reg_mask = GenPairWise(reg_mask, & reg1, & reg2); * if (UNLIKELY(reg2 < 0)) { * // Single register in reg1. * } else { * // Pair in reg1, reg2. * } * } * @endcode */ static uint32_t GenPairWise(uint32_t reg_mask, int* reg1, int* reg2) { // Find first register. int first_bit_set = CTZ(reg_mask) + 1; int reg = *reg1 + first_bit_set; reg_mask >>= first_bit_set; if (LIKELY(reg_mask)) { // Save the first register, find the second and use the pair opcode. int second_bit_set = CTZ(reg_mask) + 1; *reg2 = reg; reg_mask >>= second_bit_set; *reg1 = reg + second_bit_set; return reg_mask; } // Use the single opcode, as we just have one register. *reg1 = reg; *reg2 = -1; return reg_mask; } static void SpillCoreRegs(Arm64Mir2Lir* m2l, RegStorage base, int offset, uint32_t reg_mask) { int reg1 = -1, reg2 = -1; const int reg_log2_size = 3; for (offset = (offset >> reg_log2_size); reg_mask; offset += 2) { reg_mask = GenPairWise(reg_mask, & reg1, & reg2); if (UNLIKELY(reg2 < 0)) { m2l->NewLIR3(WIDE(kA64Str3rXD), RegStorage::Solo64(reg1).GetReg(), base.GetReg(), offset); } else { m2l->NewLIR4(WIDE(kA64Stp4rrXD), RegStorage::Solo64(reg2).GetReg(), RegStorage::Solo64(reg1).GetReg(), base.GetReg(), offset); } } } // TODO(Arm64): consider using ld1 and st1? static void SpillFPRegs(Arm64Mir2Lir* m2l, RegStorage base, int offset, uint32_t reg_mask) { int reg1 = -1, reg2 = -1; const int reg_log2_size = 3; for (offset = (offset >> reg_log2_size); reg_mask; offset += 2) { reg_mask = GenPairWise(reg_mask, & reg1, & reg2); if (UNLIKELY(reg2 < 0)) { m2l->NewLIR3(FWIDE(kA64Str3fXD), RegStorage::FloatSolo64(reg1).GetReg(), base.GetReg(), offset); } else { m2l->NewLIR4(WIDE(kA64Stp4ffXD), RegStorage::FloatSolo64(reg2).GetReg(), RegStorage::FloatSolo64(reg1).GetReg(), base.GetReg(), offset); } } } static int SpillRegsPreSub(Arm64Mir2Lir* m2l, RegStorage base, uint32_t core_reg_mask, uint32_t fp_reg_mask, int frame_size) { m2l->OpRegRegImm(kOpSub, rs_sp, rs_sp, frame_size); int core_count = POPCOUNT(core_reg_mask); if (fp_reg_mask != 0) { // Spill FP regs. int fp_count = POPCOUNT(fp_reg_mask); int spill_offset = frame_size - (core_count + fp_count) * kArm64PointerSize; SpillFPRegs(m2l, rs_sp, spill_offset, fp_reg_mask); } if (core_reg_mask != 0) { // Spill core regs. int spill_offset = frame_size - (core_count * kArm64PointerSize); SpillCoreRegs(m2l, rs_sp, spill_offset, core_reg_mask); } return frame_size; } static int SpillRegsPreIndexed(Arm64Mir2Lir* m2l, RegStorage base, uint32_t core_reg_mask, uint32_t fp_reg_mask, int frame_size) { // Otherwise, spill both core and fp regs at the same time. // The very first instruction will be an stp with pre-indexed address, moving the stack pointer // down. From then on, we fill upwards. This will generate overall the same number of instructions // as the specialized code above in most cases (exception being odd number of core and even // non-zero fp spills), but is more flexible, as the offsets are guaranteed small. // // Some demonstrative fill cases : (c) = core, (f) = fp // cc 44 cc 44 cc 22 cc 33 fc => 1[1/2] // fc => 23 fc => 23 ff => 11 ff => 22 // ff 11 f 11 f 11 // int reg1 = -1, reg2 = -1; int core_count = POPCOUNT(core_reg_mask); int fp_count = POPCOUNT(fp_reg_mask); int combined = fp_count + core_count; int all_offset = RoundUp(combined, 2); // Needs to be 16B = 2-reg aligned. int cur_offset = 2; // What's the starting offset after the first stp? We expect the base slot // to be filled. // First figure out whether the bottom is FP or core. if (fp_count > 0) { // Some FP spills. // // Four cases: (d0 is dummy to fill up stp) // 1) Single FP, even number of core -> stp d0, fp_reg // 2) Single FP, odd number of core -> stp fp_reg, d0 // 3) More FP, even number combined -> stp fp_reg1, fp_reg2 // 4) More FP, odd number combined -> stp d0, fp_reg if (fp_count == 1) { fp_reg_mask = ExtractReg(fp_reg_mask, ®1); DCHECK_EQ(fp_reg_mask, 0U); if (core_count % 2 == 0) { m2l->NewLIR4(WIDE(kA64StpPre4ffXD), RegStorage::FloatSolo64(reg1).GetReg(), RegStorage::FloatSolo64(reg1).GetReg(), base.GetReg(), -all_offset); } else { m2l->NewLIR4(WIDE(kA64StpPre4ffXD), RegStorage::FloatSolo64(reg1).GetReg(), RegStorage::FloatSolo64(reg1).GetReg(), base.GetReg(), -all_offset); cur_offset = 0; // That core reg needs to go into the upper half. } } else { if (combined % 2 == 0) { fp_reg_mask = GenPairWise(fp_reg_mask, ®1, ®2); m2l->NewLIR4(WIDE(kA64StpPre4ffXD), RegStorage::FloatSolo64(reg2).GetReg(), RegStorage::FloatSolo64(reg1).GetReg(), base.GetReg(), -all_offset); } else { fp_reg_mask = ExtractReg(fp_reg_mask, ®1); m2l->NewLIR4(WIDE(kA64StpPre4ffXD), rs_d0.GetReg(), RegStorage::FloatSolo64(reg1).GetReg(), base.GetReg(), -all_offset); } } } else { // No FP spills. // // Two cases: // 1) Even number of core -> stp core1, core2 // 2) Odd number of core -> stp xzr, core1 if (core_count % 2 == 1) { core_reg_mask = ExtractReg(core_reg_mask, ®1); m2l->NewLIR4(WIDE(kA64StpPre4rrXD), rs_xzr.GetReg(), RegStorage::Solo64(reg1).GetReg(), base.GetReg(), -all_offset); } else { core_reg_mask = GenPairWise(core_reg_mask, ®1, ®2); m2l->NewLIR4(WIDE(kA64StpPre4rrXD), RegStorage::Solo64(reg2).GetReg(), RegStorage::Solo64(reg1).GetReg(), base.GetReg(), -all_offset); } } if (fp_count != 0) { for (; fp_reg_mask != 0;) { // Have some FP regs to do. fp_reg_mask = GenPairWise(fp_reg_mask, ®1, ®2); if (UNLIKELY(reg2 < 0)) { m2l->NewLIR3(FWIDE(kA64Str3fXD), RegStorage::FloatSolo64(reg1).GetReg(), base.GetReg(), cur_offset); // Do not increment offset here, as the second half will be filled by a core reg. } else { m2l->NewLIR4(WIDE(kA64Stp4ffXD), RegStorage::FloatSolo64(reg2).GetReg(), RegStorage::FloatSolo64(reg1).GetReg(), base.GetReg(), cur_offset); cur_offset += 2; } } // Reset counting. reg1 = -1; // If there is an odd number of core registers, we need to store the bottom now. if (core_count % 2 == 1) { core_reg_mask = ExtractReg(core_reg_mask, ®1); m2l->NewLIR3(WIDE(kA64Str3rXD), RegStorage::Solo64(reg1).GetReg(), base.GetReg(), cur_offset + 1); cur_offset += 2; // Half-slot filled now. } } // Spill the rest of the core regs. They are guaranteed to be even. DCHECK_EQ(POPCOUNT(core_reg_mask) % 2, 0); for (; core_reg_mask != 0; cur_offset += 2) { core_reg_mask = GenPairWise(core_reg_mask, ®1, ®2); m2l->NewLIR4(WIDE(kA64Stp4rrXD), RegStorage::Solo64(reg2).GetReg(), RegStorage::Solo64(reg1).GetReg(), base.GetReg(), cur_offset); } DCHECK_EQ(cur_offset, all_offset); return all_offset * 8; } int Arm64Mir2Lir::SpillRegs(RegStorage base, uint32_t core_reg_mask, uint32_t fp_reg_mask, int frame_size) { // If the frame size is small enough that all offsets would fit into the immediates, use that // setup, as it decrements sp early (kind of instruction scheduling), and is not worse // instruction-count wise than the complicated code below. // // This case is also optimal when we have an odd number of core spills, and an even (non-zero) // number of fp spills. if ((RoundUp(frame_size, 8) / 8 <= 63)) { return SpillRegsPreSub(this, base, core_reg_mask, fp_reg_mask, frame_size); } else { return SpillRegsPreIndexed(this, base, core_reg_mask, fp_reg_mask, frame_size); } } static void UnSpillCoreRegs(Arm64Mir2Lir* m2l, RegStorage base, int offset, uint32_t reg_mask) { int reg1 = -1, reg2 = -1; const int reg_log2_size = 3; for (offset = (offset >> reg_log2_size); reg_mask; offset += 2) { reg_mask = GenPairWise(reg_mask, & reg1, & reg2); if (UNLIKELY(reg2 < 0)) { m2l->NewLIR3(WIDE(kA64Ldr3rXD), RegStorage::Solo64(reg1).GetReg(), base.GetReg(), offset); } else { DCHECK_LE(offset, 63); m2l->NewLIR4(WIDE(kA64Ldp4rrXD), RegStorage::Solo64(reg2).GetReg(), RegStorage::Solo64(reg1).GetReg(), base.GetReg(), offset); } } } static void UnSpillFPRegs(Arm64Mir2Lir* m2l, RegStorage base, int offset, uint32_t reg_mask) { int reg1 = -1, reg2 = -1; const int reg_log2_size = 3; for (offset = (offset >> reg_log2_size); reg_mask; offset += 2) { reg_mask = GenPairWise(reg_mask, & reg1, & reg2); if (UNLIKELY(reg2 < 0)) { m2l->NewLIR3(FWIDE(kA64Ldr3fXD), RegStorage::FloatSolo64(reg1).GetReg(), base.GetReg(), offset); } else { m2l->NewLIR4(WIDE(kA64Ldp4ffXD), RegStorage::FloatSolo64(reg2).GetReg(), RegStorage::FloatSolo64(reg1).GetReg(), base.GetReg(), offset); } } } void Arm64Mir2Lir::UnspillRegs(RegStorage base, uint32_t core_reg_mask, uint32_t fp_reg_mask, int frame_size) { // Restore saves and drop stack frame. // 2 versions: // // 1. (Original): Try to address directly, then drop the whole frame. // Limitation: ldp is a 7b signed immediate. // // 2. (New): Drop the non-save-part. Then do similar to original, which is now guaranteed to be // in range. Then drop the rest. // // TODO: In methods with few spills but huge frame, it would be better to do non-immediate loads // in variant 1. // "Magic" constant, 63 (max signed 7b) * 8. static constexpr int kMaxFramesizeForOffset = 63 * kArm64PointerSize; const int num_core_spills = POPCOUNT(core_reg_mask); const int num_fp_spills = POPCOUNT(fp_reg_mask); int early_drop = 0; if (frame_size > kMaxFramesizeForOffset) { // Second variant. Drop the frame part. // TODO: Always use the first formula, as num_fp_spills would be zero? if (fp_reg_mask != 0) { early_drop = frame_size - kArm64PointerSize * (num_fp_spills + num_core_spills); } else { early_drop = frame_size - kArm64PointerSize * num_core_spills; } // Drop needs to be 16B aligned, so that SP keeps aligned. early_drop = RoundDown(early_drop, 16); OpRegImm64(kOpAdd, rs_sp, early_drop); } // Unspill. if (fp_reg_mask != 0) { int offset = frame_size - early_drop - kArm64PointerSize * (num_fp_spills + num_core_spills); UnSpillFPRegs(this, rs_sp, offset, fp_reg_mask); } if (core_reg_mask != 0) { int offset = frame_size - early_drop - kArm64PointerSize * num_core_spills; UnSpillCoreRegs(this, rs_sp, offset, core_reg_mask); } // Drop the (rest of) the frame. OpRegImm64(kOpAdd, rs_sp, frame_size - early_drop); } bool Arm64Mir2Lir::GenInlinedReverseBits(CallInfo* info, OpSize size) { ArmOpcode wide = IsWide(size) ? WIDE(0) : UNWIDE(0); RegLocation rl_src_i = info->args[0]; RegLocation rl_dest = IsWide(size) ? InlineTargetWide(info) : InlineTarget(info); // result reg RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); RegLocation rl_i = IsWide(size) ? LoadValueWide(rl_src_i, kCoreReg) : LoadValue(rl_src_i, kCoreReg); NewLIR2(kA64Rbit2rr | wide, rl_result.reg.GetReg(), rl_i.reg.GetReg()); IsWide(size) ? StoreValueWide(rl_dest, rl_result) : StoreValue(rl_dest, rl_result); return true; } } // namespace art