/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "dex/compiler_ir.h" #include "dex/frontend.h" #include "dex/quick/dex_file_method_inliner.h" #include "dex/quick/dex_file_to_method_inliner_map.h" #include "dex_file-inl.h" #include "entrypoints/quick/quick_entrypoints.h" #include "invoke_type.h" #include "mirror/array.h" #include "mirror/object_array-inl.h" #include "mirror/string.h" #include "mir_to_lir-inl.h" #include "x86/codegen_x86.h" namespace art { // Shortcuts to repeatedly used long types. typedef mirror::ObjectArray ObjArray; /* * This source files contains "gen" codegen routines that should * be applicable to most targets. Only mid-level support utilities * and "op" calls may be used here. */ void Mir2Lir::AddIntrinsicSlowPath(CallInfo* info, LIR* branch, LIR* resume) { class IntrinsicSlowPathPath : public Mir2Lir::LIRSlowPath { public: IntrinsicSlowPathPath(Mir2Lir* m2l, CallInfo* info, LIR* branch, LIR* resume = nullptr) : LIRSlowPath(m2l, info->offset, branch, resume), info_(info) { } void Compile() { m2l_->ResetRegPool(); m2l_->ResetDefTracking(); GenerateTargetLabel(kPseudoIntrinsicRetry); // NOTE: GenInvokeNoInline() handles MarkSafepointPC. m2l_->GenInvokeNoInline(info_); if (cont_ != nullptr) { m2l_->OpUnconditionalBranch(cont_); } } private: CallInfo* const info_; }; AddSlowPath(new (arena_) IntrinsicSlowPathPath(this, info, branch, resume)); } // Macro to help instantiate. // TODO: This might be used to only instantiate <4> on pure 32b systems. #define INSTANTIATE(sig_part1, ...) \ template sig_part1(ThreadOffset<4>, __VA_ARGS__); \ template sig_part1(ThreadOffset<8>, __VA_ARGS__); \ /* * To save scheduling time, helper calls are broken into two parts: generation of * the helper target address, and the actual call to the helper. Because x86 * has a memory call operation, part 1 is a NOP for x86. For other targets, * load arguments between the two parts. */ // template RegStorage Mir2Lir::CallHelperSetup(ThreadOffset<4> helper_offset) { // All CallRuntimeHelperXXX call this first. So make a central check here. DCHECK_EQ(4U, GetInstructionSetPointerSize(cu_->instruction_set)); if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) { return RegStorage::InvalidReg(); } else { return LoadHelper(helper_offset); } } RegStorage Mir2Lir::CallHelperSetup(ThreadOffset<8> helper_offset) { // All CallRuntimeHelperXXX call this first. So make a central check here. DCHECK_EQ(8U, GetInstructionSetPointerSize(cu_->instruction_set)); if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) { return RegStorage::InvalidReg(); } else { return LoadHelper(helper_offset); } } /* NOTE: if r_tgt is a temp, it will be freed following use */ template LIR* Mir2Lir::CallHelper(RegStorage r_tgt, ThreadOffset helper_offset, bool safepoint_pc, bool use_link) { LIR* call_inst; OpKind op = use_link ? kOpBlx : kOpBx; if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) { call_inst = OpThreadMem(op, helper_offset); } else { call_inst = OpReg(op, r_tgt); FreeTemp(r_tgt); } if (safepoint_pc) { MarkSafepointPC(call_inst); } return call_inst; } template LIR* Mir2Lir::CallHelper(RegStorage r_tgt, ThreadOffset<4> helper_offset, bool safepoint_pc, bool use_link); template LIR* Mir2Lir::CallHelper(RegStorage r_tgt, ThreadOffset<8> helper_offset, bool safepoint_pc, bool use_link); template void Mir2Lir::CallRuntimeHelper(ThreadOffset helper_offset, bool safepoint_pc) { RegStorage r_tgt = CallHelperSetup(helper_offset); ClobberCallerSave(); CallHelper(r_tgt, helper_offset, safepoint_pc); } INSTANTIATE(void Mir2Lir::CallRuntimeHelper, bool safepoint_pc) template void Mir2Lir::CallRuntimeHelperImm(ThreadOffset helper_offset, int arg0, bool safepoint_pc) { RegStorage r_tgt = CallHelperSetup(helper_offset); LoadConstant(TargetReg(kArg0), arg0); ClobberCallerSave(); CallHelper(r_tgt, helper_offset, safepoint_pc); } INSTANTIATE(void Mir2Lir::CallRuntimeHelperImm, int arg0, bool safepoint_pc) template void Mir2Lir::CallRuntimeHelperReg(ThreadOffset helper_offset, RegStorage arg0, bool safepoint_pc) { RegStorage r_tgt = CallHelperSetup(helper_offset); OpRegCopy(TargetReg(kArg0), arg0); ClobberCallerSave(); CallHelper(r_tgt, helper_offset, safepoint_pc); } INSTANTIATE(void Mir2Lir::CallRuntimeHelperReg, RegStorage arg0, bool safepoint_pc) template void Mir2Lir::CallRuntimeHelperRegLocation(ThreadOffset helper_offset, RegLocation arg0, bool safepoint_pc) { RegStorage r_tgt = CallHelperSetup(helper_offset); if (arg0.wide == 0) { LoadValueDirectFixed(arg0, TargetReg(kArg0)); } else { RegStorage r_tmp = RegStorage::MakeRegPair(TargetReg(kArg0), TargetReg(kArg1)); LoadValueDirectWideFixed(arg0, r_tmp); } ClobberCallerSave(); CallHelper(r_tgt, helper_offset, safepoint_pc); } INSTANTIATE(void Mir2Lir::CallRuntimeHelperRegLocation, RegLocation arg0, bool safepoint_pc) template void Mir2Lir::CallRuntimeHelperImmImm(ThreadOffset helper_offset, int arg0, int arg1, bool safepoint_pc) { RegStorage r_tgt = CallHelperSetup(helper_offset); LoadConstant(TargetReg(kArg0), arg0); LoadConstant(TargetReg(kArg1), arg1); ClobberCallerSave(); CallHelper(r_tgt, helper_offset, safepoint_pc); } INSTANTIATE(void Mir2Lir::CallRuntimeHelperImmImm, int arg0, int arg1, bool safepoint_pc) template void Mir2Lir::CallRuntimeHelperImmRegLocation(ThreadOffset helper_offset, int arg0, RegLocation arg1, bool safepoint_pc) { RegStorage r_tgt = CallHelperSetup(helper_offset); if (arg1.wide == 0) { LoadValueDirectFixed(arg1, TargetReg(kArg1)); } else { RegStorage r_tmp = RegStorage::MakeRegPair(TargetReg(kArg1), TargetReg(kArg2)); LoadValueDirectWideFixed(arg1, r_tmp); } LoadConstant(TargetReg(kArg0), arg0); ClobberCallerSave(); CallHelper(r_tgt, helper_offset, safepoint_pc); } INSTANTIATE(void Mir2Lir::CallRuntimeHelperImmRegLocation, int arg0, RegLocation arg1, bool safepoint_pc) template void Mir2Lir::CallRuntimeHelperRegLocationImm(ThreadOffset helper_offset, RegLocation arg0, int arg1, bool safepoint_pc) { RegStorage r_tgt = CallHelperSetup(helper_offset); LoadValueDirectFixed(arg0, TargetReg(kArg0)); LoadConstant(TargetReg(kArg1), arg1); ClobberCallerSave(); CallHelper(r_tgt, helper_offset, safepoint_pc); } INSTANTIATE(void Mir2Lir::CallRuntimeHelperRegLocationImm, RegLocation arg0, int arg1, bool safepoint_pc) template void Mir2Lir::CallRuntimeHelperImmReg(ThreadOffset helper_offset, int arg0, RegStorage arg1, bool safepoint_pc) { RegStorage r_tgt = CallHelperSetup(helper_offset); OpRegCopy(TargetReg(kArg1), arg1); LoadConstant(TargetReg(kArg0), arg0); ClobberCallerSave(); CallHelper(r_tgt, helper_offset, safepoint_pc); } INSTANTIATE(void Mir2Lir::CallRuntimeHelperImmReg, int arg0, RegStorage arg1, bool safepoint_pc) template void Mir2Lir::CallRuntimeHelperRegImm(ThreadOffset helper_offset, RegStorage arg0, int arg1, bool safepoint_pc) { RegStorage r_tgt = CallHelperSetup(helper_offset); OpRegCopy(TargetReg(kArg0), arg0); LoadConstant(TargetReg(kArg1), arg1); ClobberCallerSave(); CallHelper(r_tgt, helper_offset, safepoint_pc); } INSTANTIATE(void Mir2Lir::CallRuntimeHelperRegImm, RegStorage arg0, int arg1, bool safepoint_pc) template void Mir2Lir::CallRuntimeHelperImmMethod(ThreadOffset helper_offset, int arg0, bool safepoint_pc) { RegStorage r_tgt = CallHelperSetup(helper_offset); LoadCurrMethodDirect(TargetReg(kArg1)); LoadConstant(TargetReg(kArg0), arg0); ClobberCallerSave(); CallHelper(r_tgt, helper_offset, safepoint_pc); } INSTANTIATE(void Mir2Lir::CallRuntimeHelperImmMethod, int arg0, bool safepoint_pc) template void Mir2Lir::CallRuntimeHelperRegMethod(ThreadOffset helper_offset, RegStorage arg0, bool safepoint_pc) { RegStorage r_tgt = CallHelperSetup(helper_offset); DCHECK_NE(TargetReg(kArg1).GetReg(), arg0.GetReg()); if (TargetReg(kArg0) != arg0) { OpRegCopy(TargetReg(kArg0), arg0); } LoadCurrMethodDirect(TargetReg(kArg1)); ClobberCallerSave(); CallHelper(r_tgt, helper_offset, safepoint_pc); } INSTANTIATE(void Mir2Lir::CallRuntimeHelperRegMethod, RegStorage arg0, bool safepoint_pc) template void Mir2Lir::CallRuntimeHelperRegMethodRegLocation(ThreadOffset helper_offset, RegStorage arg0, RegLocation arg2, bool safepoint_pc) { RegStorage r_tgt = CallHelperSetup(helper_offset); DCHECK_NE(TargetReg(kArg1).GetReg(), arg0.GetReg()); if (TargetReg(kArg0) != arg0) { OpRegCopy(TargetReg(kArg0), arg0); } LoadCurrMethodDirect(TargetReg(kArg1)); LoadValueDirectFixed(arg2, TargetReg(kArg2)); ClobberCallerSave(); CallHelper(r_tgt, helper_offset, safepoint_pc); } INSTANTIATE(void Mir2Lir::CallRuntimeHelperRegMethodRegLocation, RegStorage arg0, RegLocation arg2, bool safepoint_pc) template void Mir2Lir::CallRuntimeHelperRegLocationRegLocation(ThreadOffset helper_offset, RegLocation arg0, RegLocation arg1, bool safepoint_pc) { RegStorage r_tgt = CallHelperSetup(helper_offset); if (arg0.wide == 0) { LoadValueDirectFixed(arg0, arg0.fp ? TargetReg(kFArg0) : TargetReg(kArg0)); if (arg1.wide == 0) { if (cu_->instruction_set == kMips) { LoadValueDirectFixed(arg1, arg1.fp ? TargetReg(kFArg2) : TargetReg(kArg1)); } else { LoadValueDirectFixed(arg1, TargetReg(kArg1)); } } else { if (cu_->instruction_set == kMips) { RegStorage r_tmp; if (arg1.fp) { r_tmp = RegStorage::MakeRegPair(TargetReg(kFArg2), TargetReg(kFArg3)); } else { r_tmp = RegStorage::MakeRegPair(TargetReg(kArg1), TargetReg(kArg2)); } LoadValueDirectWideFixed(arg1, r_tmp); } else { RegStorage r_tmp = RegStorage::MakeRegPair(TargetReg(kArg1), TargetReg(kArg2)); LoadValueDirectWideFixed(arg1, r_tmp); } } } else { RegStorage r_tmp; if (arg0.fp) { r_tmp = RegStorage::MakeRegPair(TargetReg(kFArg0), TargetReg(kFArg1)); } else { r_tmp = RegStorage::MakeRegPair(TargetReg(kArg0), TargetReg(kArg1)); } LoadValueDirectWideFixed(arg0, r_tmp); if (arg1.wide == 0) { LoadValueDirectFixed(arg1, arg1.fp ? TargetReg(kFArg2) : TargetReg(kArg2)); } else { RegStorage r_tmp; if (arg1.fp) { r_tmp = RegStorage::MakeRegPair(TargetReg(kFArg2), TargetReg(kFArg3)); } else { r_tmp = RegStorage::MakeRegPair(TargetReg(kArg2), TargetReg(kArg3)); } LoadValueDirectWideFixed(arg1, r_tmp); } } ClobberCallerSave(); CallHelper(r_tgt, helper_offset, safepoint_pc); } INSTANTIATE(void Mir2Lir::CallRuntimeHelperRegLocationRegLocation, RegLocation arg0, RegLocation arg1, bool safepoint_pc) void Mir2Lir::CopyToArgumentRegs(RegStorage arg0, RegStorage arg1) { if (arg1.GetReg() == TargetReg(kArg0).GetReg()) { if (arg0.GetReg() == TargetReg(kArg1).GetReg()) { // Swap kArg0 and kArg1 with kArg2 as temp. OpRegCopy(TargetReg(kArg2), arg1); OpRegCopy(TargetReg(kArg0), arg0); OpRegCopy(TargetReg(kArg1), TargetReg(kArg2)); } else { OpRegCopy(TargetReg(kArg1), arg1); OpRegCopy(TargetReg(kArg0), arg0); } } else { OpRegCopy(TargetReg(kArg0), arg0); OpRegCopy(TargetReg(kArg1), arg1); } } template void Mir2Lir::CallRuntimeHelperRegReg(ThreadOffset helper_offset, RegStorage arg0, RegStorage arg1, bool safepoint_pc) { RegStorage r_tgt = CallHelperSetup(helper_offset); CopyToArgumentRegs(arg0, arg1); ClobberCallerSave(); CallHelper(r_tgt, helper_offset, safepoint_pc); } INSTANTIATE(void Mir2Lir::CallRuntimeHelperRegReg, RegStorage arg0, RegStorage arg1, bool safepoint_pc) template void Mir2Lir::CallRuntimeHelperRegRegImm(ThreadOffset helper_offset, RegStorage arg0, RegStorage arg1, int arg2, bool safepoint_pc) { RegStorage r_tgt = CallHelperSetup(helper_offset); CopyToArgumentRegs(arg0, arg1); LoadConstant(TargetReg(kArg2), arg2); ClobberCallerSave(); CallHelper(r_tgt, helper_offset, safepoint_pc); } INSTANTIATE(void Mir2Lir::CallRuntimeHelperRegRegImm, RegStorage arg0, RegStorage arg1, int arg2, bool safepoint_pc) template void Mir2Lir::CallRuntimeHelperImmMethodRegLocation(ThreadOffset helper_offset, int arg0, RegLocation arg2, bool safepoint_pc) { RegStorage r_tgt = CallHelperSetup(helper_offset); LoadValueDirectFixed(arg2, TargetReg(kArg2)); LoadCurrMethodDirect(TargetReg(kArg1)); LoadConstant(TargetReg(kArg0), arg0); ClobberCallerSave(); CallHelper(r_tgt, helper_offset, safepoint_pc); } INSTANTIATE(void Mir2Lir::CallRuntimeHelperImmMethodRegLocation, int arg0, RegLocation arg2, bool safepoint_pc) template void Mir2Lir::CallRuntimeHelperImmMethodImm(ThreadOffset helper_offset, int arg0, int arg2, bool safepoint_pc) { RegStorage r_tgt = CallHelperSetup(helper_offset); LoadCurrMethodDirect(TargetReg(kArg1)); LoadConstant(TargetReg(kArg2), arg2); LoadConstant(TargetReg(kArg0), arg0); ClobberCallerSave(); CallHelper(r_tgt, helper_offset, safepoint_pc); } INSTANTIATE(void Mir2Lir::CallRuntimeHelperImmMethodImm, int arg0, int arg2, bool safepoint_pc) template void Mir2Lir::CallRuntimeHelperImmRegLocationRegLocation(ThreadOffset helper_offset, int arg0, RegLocation arg1, RegLocation arg2, bool safepoint_pc) { RegStorage r_tgt = CallHelperSetup(helper_offset); DCHECK_EQ(static_cast(arg1.wide), 0U); // The static_cast works around an // instantiation bug in GCC. LoadValueDirectFixed(arg1, TargetReg(kArg1)); if (arg2.wide == 0) { LoadValueDirectFixed(arg2, TargetReg(kArg2)); } else { RegStorage r_tmp = RegStorage::MakeRegPair(TargetReg(kArg2), TargetReg(kArg3)); LoadValueDirectWideFixed(arg2, r_tmp); } LoadConstant(TargetReg(kArg0), arg0); ClobberCallerSave(); CallHelper(r_tgt, helper_offset, safepoint_pc); } INSTANTIATE(void Mir2Lir::CallRuntimeHelperImmRegLocationRegLocation, int arg0, RegLocation arg1, RegLocation arg2, bool safepoint_pc) template void Mir2Lir::CallRuntimeHelperRegLocationRegLocationRegLocation(ThreadOffset helper_offset, RegLocation arg0, RegLocation arg1, RegLocation arg2, bool safepoint_pc) { RegStorage r_tgt = CallHelperSetup(helper_offset); DCHECK_EQ(static_cast(arg0.wide), 0U); LoadValueDirectFixed(arg0, TargetReg(kArg0)); DCHECK_EQ(static_cast(arg1.wide), 0U); LoadValueDirectFixed(arg1, TargetReg(kArg1)); DCHECK_EQ(static_cast(arg1.wide), 0U); LoadValueDirectFixed(arg2, TargetReg(kArg2)); ClobberCallerSave(); CallHelper(r_tgt, helper_offset, safepoint_pc); } INSTANTIATE(void Mir2Lir::CallRuntimeHelperRegLocationRegLocationRegLocation, RegLocation arg0, RegLocation arg1, RegLocation arg2, bool safepoint_pc) /* * If there are any ins passed in registers that have not been promoted * to a callee-save register, flush them to the frame. Perform initial * assignment of promoted arguments. * * ArgLocs is an array of location records describing the incoming arguments * with one location record per word of argument. */ void Mir2Lir::FlushIns(RegLocation* ArgLocs, RegLocation rl_method) { /* * Dummy up a RegLocation for the incoming Method* * It will attempt to keep kArg0 live (or copy it to home location * if promoted). */ RegLocation rl_src = rl_method; rl_src.location = kLocPhysReg; rl_src.reg = TargetReg(kArg0); rl_src.home = false; MarkLive(rl_src); if (rl_method.wide) { StoreValueWide(rl_method, rl_src); } else { StoreValue(rl_method, rl_src); } // If Method* has been promoted, explicitly flush if (rl_method.location == kLocPhysReg) { StoreWordDisp(TargetReg(kSp), 0, TargetReg(kArg0)); } if (cu_->num_ins == 0) { return; } int start_vreg = cu_->num_dalvik_registers - cu_->num_ins; /* * Copy incoming arguments to their proper home locations. * NOTE: an older version of dx had an issue in which * it would reuse static method argument registers. * This could result in the same Dalvik virtual register * being promoted to both core and fp regs. To account for this, * we only copy to the corresponding promoted physical register * if it matches the type of the SSA name for the incoming * argument. It is also possible that long and double arguments * end up half-promoted. In those cases, we must flush the promoted * half to memory as well. */ for (int i = 0; i < cu_->num_ins; i++) { PromotionMap* v_map = &promotion_map_[start_vreg + i]; RegStorage reg = GetArgMappingToPhysicalReg(i); if (reg.Valid()) { // If arriving in register bool need_flush = true; RegLocation* t_loc = &ArgLocs[i]; if ((v_map->core_location == kLocPhysReg) && !t_loc->fp) { OpRegCopy(RegStorage::Solo32(v_map->core_reg), reg); need_flush = false; } else if ((v_map->fp_location == kLocPhysReg) && t_loc->fp) { OpRegCopy(RegStorage::Solo32(v_map->FpReg), reg); need_flush = false; } else { need_flush = true; } // For wide args, force flush if not fully promoted if (t_loc->wide) { PromotionMap* p_map = v_map + (t_loc->high_word ? -1 : +1); // Is only half promoted? need_flush |= (p_map->core_location != v_map->core_location) || (p_map->fp_location != v_map->fp_location); if ((cu_->instruction_set == kThumb2) && t_loc->fp && !need_flush) { /* * In Arm, a double is represented as a pair of consecutive single float * registers starting at an even number. It's possible that both Dalvik vRegs * representing the incoming double were independently promoted as singles - but * not in a form usable as a double. If so, we need to flush - even though the * incoming arg appears fully in register. At this point in the code, both * halves of the double are promoted. Make sure they are in a usable form. */ int lowreg_index = start_vreg + i + (t_loc->high_word ? -1 : 0); int low_reg = promotion_map_[lowreg_index].FpReg; int high_reg = promotion_map_[lowreg_index + 1].FpReg; if (((low_reg & 0x1) != 0) || (high_reg != (low_reg + 1))) { need_flush = true; } } } if (need_flush) { Store32Disp(TargetReg(kSp), SRegOffset(start_vreg + i), reg); } } else { // If arriving in frame & promoted if (v_map->core_location == kLocPhysReg) { Load32Disp(TargetReg(kSp), SRegOffset(start_vreg + i), RegStorage::Solo32(v_map->core_reg)); } if (v_map->fp_location == kLocPhysReg) { Load32Disp(TargetReg(kSp), SRegOffset(start_vreg + i), RegStorage::Solo32(v_map->FpReg)); } } } } /* * Bit of a hack here - in the absence of a real scheduling pass, * emit the next instruction in static & direct invoke sequences. */ static int NextSDCallInsn(CompilationUnit* cu, CallInfo* info, int state, const MethodReference& target_method, uint32_t unused, uintptr_t direct_code, uintptr_t direct_method, InvokeType type) { Mir2Lir* cg = static_cast(cu->cg.get()); if (direct_code != 0 && direct_method != 0) { switch (state) { case 0: // Get the current Method* [sets kArg0] if (direct_code != static_cast(-1)) { if (cu->instruction_set != kX86 && cu->instruction_set != kX86_64) { cg->LoadConstant(cg->TargetReg(kInvokeTgt), direct_code); } } else if (cu->instruction_set != kX86 && cu->instruction_set != kX86_64) { cg->LoadCodeAddress(target_method, type, kInvokeTgt); } if (direct_method != static_cast(-1)) { cg->LoadConstant(cg->TargetReg(kArg0), direct_method); } else { cg->LoadMethodAddress(target_method, type, kArg0); } break; default: return -1; } } else { switch (state) { case 0: // Get the current Method* [sets kArg0] // TUNING: we can save a reg copy if Method* has been promoted. cg->LoadCurrMethodDirect(cg->TargetReg(kArg0)); break; case 1: // Get method->dex_cache_resolved_methods_ cg->LoadRefDisp(cg->TargetReg(kArg0), mirror::ArtMethod::DexCacheResolvedMethodsOffset().Int32Value(), cg->TargetReg(kArg0)); // Set up direct code if known. if (direct_code != 0) { if (direct_code != static_cast(-1)) { cg->LoadConstant(cg->TargetReg(kInvokeTgt), direct_code); } else if (cu->instruction_set != kX86 && cu->instruction_set != kX86_64) { CHECK_LT(target_method.dex_method_index, target_method.dex_file->NumMethodIds()); cg->LoadCodeAddress(target_method, type, kInvokeTgt); } } break; case 2: // Grab target method* CHECK_EQ(cu->dex_file, target_method.dex_file); cg->LoadRefDisp(cg->TargetReg(kArg0), ObjArray::OffsetOfElement(target_method.dex_method_index).Int32Value(), cg->TargetReg(kArg0)); break; case 3: // Grab the code from the method* if (cu->instruction_set != kX86 && cu->instruction_set != kX86_64) { if (direct_code == 0) { cg->LoadWordDisp(cg->TargetReg(kArg0), mirror::ArtMethod::EntryPointFromQuickCompiledCodeOffset().Int32Value(), cg->TargetReg(kInvokeTgt)); } break; } // Intentional fallthrough for x86 default: return -1; } } return state + 1; } /* * Bit of a hack here - in the absence of a real scheduling pass, * emit the next instruction in a virtual invoke sequence. * We can use kLr as a temp prior to target address loading * Note also that we'll load the first argument ("this") into * kArg1 here rather than the standard LoadArgRegs. */ static int NextVCallInsn(CompilationUnit* cu, CallInfo* info, int state, const MethodReference& target_method, uint32_t method_idx, uintptr_t unused, uintptr_t unused2, InvokeType unused3) { Mir2Lir* cg = static_cast(cu->cg.get()); /* * This is the fast path in which the target virtual method is * fully resolved at compile time. */ switch (state) { case 0: { // Get "this" [set kArg1] RegLocation rl_arg = info->args[0]; cg->LoadValueDirectFixed(rl_arg, cg->TargetReg(kArg1)); break; } case 1: // Is "this" null? [use kArg1] cg->GenNullCheck(cg->TargetReg(kArg1), info->opt_flags); // get this->klass_ [use kArg1, set kInvokeTgt] cg->LoadRefDisp(cg->TargetReg(kArg1), mirror::Object::ClassOffset().Int32Value(), cg->TargetReg(kInvokeTgt)); cg->MarkPossibleNullPointerException(info->opt_flags); break; case 2: // Get this->klass_->vtable [usr kInvokeTgt, set kInvokeTgt] cg->LoadRefDisp(cg->TargetReg(kInvokeTgt), mirror::Class::VTableOffset().Int32Value(), cg->TargetReg(kInvokeTgt)); break; case 3: // Get target method [use kInvokeTgt, set kArg0] cg->LoadRefDisp(cg->TargetReg(kInvokeTgt), ObjArray::OffsetOfElement(method_idx).Int32Value(), cg->TargetReg(kArg0)); break; case 4: // Get the compiled code address [uses kArg0, sets kInvokeTgt] if (cu->instruction_set != kX86 && cu->instruction_set != kX86_64) { cg->LoadWordDisp(cg->TargetReg(kArg0), mirror::ArtMethod::EntryPointFromQuickCompiledCodeOffset().Int32Value(), cg->TargetReg(kInvokeTgt)); break; } // Intentional fallthrough for X86 default: return -1; } return state + 1; } /* * Emit the next instruction in an invoke interface sequence. This will do a lookup in the * class's IMT, calling either the actual method or art_quick_imt_conflict_trampoline if * more than one interface method map to the same index. Note also that we'll load the first * argument ("this") into kArg1 here rather than the standard LoadArgRegs. */ static int NextInterfaceCallInsn(CompilationUnit* cu, CallInfo* info, int state, const MethodReference& target_method, uint32_t method_idx, uintptr_t unused, uintptr_t direct_method, InvokeType unused2) { Mir2Lir* cg = static_cast(cu->cg.get()); switch (state) { case 0: // Set target method index in case of conflict [set kHiddenArg, kHiddenFpArg (x86)] CHECK_LT(target_method.dex_method_index, target_method.dex_file->NumMethodIds()); cg->LoadConstant(cg->TargetReg(kHiddenArg), target_method.dex_method_index); if (cu->instruction_set == kX86 || cu->instruction_set == kX86_64) { cg->OpRegCopy(cg->TargetReg(kHiddenFpArg), cg->TargetReg(kHiddenArg)); } break; case 1: { // Get "this" [set kArg1] RegLocation rl_arg = info->args[0]; cg->LoadValueDirectFixed(rl_arg, cg->TargetReg(kArg1)); break; } case 2: // Is "this" null? [use kArg1] cg->GenNullCheck(cg->TargetReg(kArg1), info->opt_flags); // Get this->klass_ [use kArg1, set kInvokeTgt] cg->LoadRefDisp(cg->TargetReg(kArg1), mirror::Object::ClassOffset().Int32Value(), cg->TargetReg(kInvokeTgt)); cg->MarkPossibleNullPointerException(info->opt_flags); break; case 3: // Get this->klass_->imtable [use kInvokeTgt, set kInvokeTgt] // NOTE: native pointer. cg->LoadRefDisp(cg->TargetReg(kInvokeTgt), mirror::Class::ImTableOffset().Int32Value(), cg->TargetReg(kInvokeTgt)); break; case 4: // Get target method [use kInvokeTgt, set kArg0] // NOTE: native pointer. cg->LoadRefDisp(cg->TargetReg(kInvokeTgt), ObjArray::OffsetOfElement(method_idx % ClassLinker::kImtSize).Int32Value(), cg->TargetReg(kArg0)); break; case 5: // Get the compiled code address [use kArg0, set kInvokeTgt] if (cu->instruction_set != kX86 && cu->instruction_set != kX86_64) { cg->LoadWordDisp(cg->TargetReg(kArg0), mirror::ArtMethod::EntryPointFromQuickCompiledCodeOffset().Int32Value(), cg->TargetReg(kInvokeTgt)); break; } // Intentional fallthrough for X86 default: return -1; } return state + 1; } template static int NextInvokeInsnSP(CompilationUnit* cu, CallInfo* info, ThreadOffset trampoline, int state, const MethodReference& target_method, uint32_t method_idx) { Mir2Lir* cg = static_cast(cu->cg.get()); /* * This handles the case in which the base method is not fully * resolved at compile time, we bail to a runtime helper. */ if (state == 0) { if (cu->instruction_set != kX86 && cu->instruction_set != kX86_64) { // Load trampoline target cg->LoadWordDisp(cg->TargetReg(kSelf), trampoline.Int32Value(), cg->TargetReg(kInvokeTgt)); } // Load kArg0 with method index CHECK_EQ(cu->dex_file, target_method.dex_file); cg->LoadConstant(cg->TargetReg(kArg0), target_method.dex_method_index); return 1; } return -1; } static int NextStaticCallInsnSP(CompilationUnit* cu, CallInfo* info, int state, const MethodReference& target_method, uint32_t unused, uintptr_t unused2, uintptr_t unused3, InvokeType unused4) { if (Is64BitInstructionSet(cu->instruction_set)) { ThreadOffset<8> trampoline = QUICK_ENTRYPOINT_OFFSET(8, pInvokeStaticTrampolineWithAccessCheck); return NextInvokeInsnSP<8>(cu, info, trampoline, state, target_method, 0); } else { ThreadOffset<4> trampoline = QUICK_ENTRYPOINT_OFFSET(4, pInvokeStaticTrampolineWithAccessCheck); return NextInvokeInsnSP<4>(cu, info, trampoline, state, target_method, 0); } } static int NextDirectCallInsnSP(CompilationUnit* cu, CallInfo* info, int state, const MethodReference& target_method, uint32_t unused, uintptr_t unused2, uintptr_t unused3, InvokeType unused4) { if (Is64BitInstructionSet(cu->instruction_set)) { ThreadOffset<8> trampoline = QUICK_ENTRYPOINT_OFFSET(8, pInvokeDirectTrampolineWithAccessCheck); return NextInvokeInsnSP<8>(cu, info, trampoline, state, target_method, 0); } else { ThreadOffset<4> trampoline = QUICK_ENTRYPOINT_OFFSET(4, pInvokeDirectTrampolineWithAccessCheck); return NextInvokeInsnSP<4>(cu, info, trampoline, state, target_method, 0); } } static int NextSuperCallInsnSP(CompilationUnit* cu, CallInfo* info, int state, const MethodReference& target_method, uint32_t unused, uintptr_t unused2, uintptr_t unused3, InvokeType unused4) { if (Is64BitInstructionSet(cu->instruction_set)) { ThreadOffset<8> trampoline = QUICK_ENTRYPOINT_OFFSET(8, pInvokeSuperTrampolineWithAccessCheck); return NextInvokeInsnSP<8>(cu, info, trampoline, state, target_method, 0); } else { ThreadOffset<4> trampoline = QUICK_ENTRYPOINT_OFFSET(4, pInvokeSuperTrampolineWithAccessCheck); return NextInvokeInsnSP<4>(cu, info, trampoline, state, target_method, 0); } } static int NextVCallInsnSP(CompilationUnit* cu, CallInfo* info, int state, const MethodReference& target_method, uint32_t unused, uintptr_t unused2, uintptr_t unused3, InvokeType unused4) { if (Is64BitInstructionSet(cu->instruction_set)) { ThreadOffset<8> trampoline = QUICK_ENTRYPOINT_OFFSET(8, pInvokeVirtualTrampolineWithAccessCheck); return NextInvokeInsnSP<8>(cu, info, trampoline, state, target_method, 0); } else { ThreadOffset<4> trampoline = QUICK_ENTRYPOINT_OFFSET(4, pInvokeVirtualTrampolineWithAccessCheck); return NextInvokeInsnSP<4>(cu, info, trampoline, state, target_method, 0); } } static int NextInterfaceCallInsnWithAccessCheck(CompilationUnit* cu, CallInfo* info, int state, const MethodReference& target_method, uint32_t unused, uintptr_t unused2, uintptr_t unused3, InvokeType unused4) { if (Is64BitInstructionSet(cu->instruction_set)) { ThreadOffset<8> trampoline = QUICK_ENTRYPOINT_OFFSET(8, pInvokeInterfaceTrampolineWithAccessCheck); return NextInvokeInsnSP<8>(cu, info, trampoline, state, target_method, 0); } else { ThreadOffset<4> trampoline = QUICK_ENTRYPOINT_OFFSET(4, pInvokeInterfaceTrampolineWithAccessCheck); return NextInvokeInsnSP<4>(cu, info, trampoline, state, target_method, 0); } } int Mir2Lir::LoadArgRegs(CallInfo* info, int call_state, NextCallInsn next_call_insn, const MethodReference& target_method, uint32_t vtable_idx, uintptr_t direct_code, uintptr_t direct_method, InvokeType type, bool skip_this) { int last_arg_reg = 3 - 1; int arg_regs[3] = {TargetReg(kArg1).GetReg(), TargetReg(kArg2).GetReg(), TargetReg(kArg3).GetReg()}; int next_reg = 0; int next_arg = 0; if (skip_this) { next_reg++; next_arg++; } for (; (next_reg <= last_arg_reg) && (next_arg < info->num_arg_words); next_reg++) { RegLocation rl_arg = info->args[next_arg++]; rl_arg = UpdateRawLoc(rl_arg); if (rl_arg.wide && (next_reg <= last_arg_reg - 1)) { RegStorage r_tmp(RegStorage::k64BitPair, arg_regs[next_reg], arg_regs[next_reg + 1]); LoadValueDirectWideFixed(rl_arg, r_tmp); next_reg++; next_arg++; } else { if (rl_arg.wide) { rl_arg = NarrowRegLoc(rl_arg); rl_arg.is_const = false; } LoadValueDirectFixed(rl_arg, RegStorage::Solo32(arg_regs[next_reg])); } call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx, direct_code, direct_method, type); } return call_state; } /* * Load up to 5 arguments, the first three of which will be in * kArg1 .. kArg3. On entry kArg0 contains the current method pointer, * and as part of the load sequence, it must be replaced with * the target method pointer. Note, this may also be called * for "range" variants if the number of arguments is 5 or fewer. */ int Mir2Lir::GenDalvikArgsNoRange(CallInfo* info, int call_state, LIR** pcrLabel, NextCallInsn next_call_insn, const MethodReference& target_method, uint32_t vtable_idx, uintptr_t direct_code, uintptr_t direct_method, InvokeType type, bool skip_this) { RegLocation rl_arg; /* If no arguments, just return */ if (info->num_arg_words == 0) return call_state; call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx, direct_code, direct_method, type); DCHECK_LE(info->num_arg_words, 5); if (info->num_arg_words > 3) { int32_t next_use = 3; // Detect special case of wide arg spanning arg3/arg4 RegLocation rl_use0 = info->args[0]; RegLocation rl_use1 = info->args[1]; RegLocation rl_use2 = info->args[2]; if (((!rl_use0.wide && !rl_use1.wide) || rl_use0.wide) && rl_use2.wide) { RegStorage reg; // Wide spans, we need the 2nd half of uses[2]. rl_arg = UpdateLocWide(rl_use2); if (rl_arg.location == kLocPhysReg) { if (rl_arg.reg.IsPair()) { reg = rl_arg.reg.GetHigh(); } else { RegisterInfo* info = GetRegInfo(rl_arg.reg); info = info->FindMatchingView(RegisterInfo::kHighSingleStorageMask); if (info == nullptr) { // NOTE: For hard float convention we won't split arguments across reg/mem. UNIMPLEMENTED(FATAL) << "Needs hard float api."; } reg = info->GetReg(); } } else { // kArg2 & rArg3 can safely be used here reg = TargetReg(kArg3); Load32Disp(TargetReg(kSp), SRegOffset(rl_arg.s_reg_low) + 4, reg); call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx, direct_code, direct_method, type); } Store32Disp(TargetReg(kSp), (next_use + 1) * 4, reg); call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx, direct_code, direct_method, type); next_use++; } // Loop through the rest while (next_use < info->num_arg_words) { RegStorage arg_reg; rl_arg = info->args[next_use]; rl_arg = UpdateRawLoc(rl_arg); if (rl_arg.location == kLocPhysReg) { arg_reg = rl_arg.reg; } else { arg_reg = rl_arg.wide ? RegStorage::MakeRegPair(TargetReg(kArg2), TargetReg(kArg3)) : TargetReg(kArg2); if (rl_arg.wide) { LoadValueDirectWideFixed(rl_arg, arg_reg); } else { LoadValueDirectFixed(rl_arg, arg_reg); } call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx, direct_code, direct_method, type); } int outs_offset = (next_use + 1) * 4; if (rl_arg.wide) { StoreBaseDisp(TargetReg(kSp), outs_offset, arg_reg, k64); next_use += 2; } else { Store32Disp(TargetReg(kSp), outs_offset, arg_reg); next_use++; } call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx, direct_code, direct_method, type); } } call_state = LoadArgRegs(info, call_state, next_call_insn, target_method, vtable_idx, direct_code, direct_method, type, skip_this); if (pcrLabel) { if (Runtime::Current()->ExplicitNullChecks()) { *pcrLabel = GenExplicitNullCheck(TargetReg(kArg1), info->opt_flags); } else { *pcrLabel = nullptr; // In lieu of generating a check for kArg1 being null, we need to // perform a load when doing implicit checks. RegStorage tmp = AllocTemp(); Load32Disp(TargetReg(kArg1), 0, tmp); MarkPossibleNullPointerException(info->opt_flags); FreeTemp(tmp); } } return call_state; } /* * May have 0+ arguments (also used for jumbo). Note that * source virtual registers may be in physical registers, so may * need to be flushed to home location before copying. This * applies to arg3 and above (see below). * * Two general strategies: * If < 20 arguments * Pass args 3-18 using vldm/vstm block copy * Pass arg0, arg1 & arg2 in kArg1-kArg3 * If 20+ arguments * Pass args arg19+ using memcpy block copy * Pass arg0, arg1 & arg2 in kArg1-kArg3 * */ int Mir2Lir::GenDalvikArgsRange(CallInfo* info, int call_state, LIR** pcrLabel, NextCallInsn next_call_insn, const MethodReference& target_method, uint32_t vtable_idx, uintptr_t direct_code, uintptr_t direct_method, InvokeType type, bool skip_this) { // If we can treat it as non-range (Jumbo ops will use range form) if (info->num_arg_words <= 5) return GenDalvikArgsNoRange(info, call_state, pcrLabel, next_call_insn, target_method, vtable_idx, direct_code, direct_method, type, skip_this); /* * First load the non-register arguments. Both forms expect all * of the source arguments to be in their home frame location, so * scan the s_reg names and flush any that have been promoted to * frame backing storage. */ // Scan the rest of the args - if in phys_reg flush to memory for (int next_arg = 0; next_arg < info->num_arg_words;) { RegLocation loc = info->args[next_arg]; if (loc.wide) { loc = UpdateLocWide(loc); if ((next_arg >= 2) && (loc.location == kLocPhysReg)) { StoreBaseDisp(TargetReg(kSp), SRegOffset(loc.s_reg_low), loc.reg, k64); } next_arg += 2; } else { loc = UpdateLoc(loc); if ((next_arg >= 3) && (loc.location == kLocPhysReg)) { Store32Disp(TargetReg(kSp), SRegOffset(loc.s_reg_low), loc.reg); } next_arg++; } } // Logic below assumes that Method pointer is at offset zero from SP. DCHECK_EQ(VRegOffset(static_cast(kVRegMethodPtrBaseReg)), 0); // The first 3 arguments are passed via registers. // TODO: For 64-bit, instead of hardcoding 4 for Method* size, we should either // get size of uintptr_t or size of object reference according to model being used. int outs_offset = 4 /* Method* */ + (3 * sizeof(uint32_t)); int start_offset = SRegOffset(info->args[3].s_reg_low); int regs_left_to_pass_via_stack = info->num_arg_words - 3; DCHECK_GT(regs_left_to_pass_via_stack, 0); if (cu_->instruction_set == kThumb2 && regs_left_to_pass_via_stack <= 16) { // Use vldm/vstm pair using kArg3 as a temp call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx, direct_code, direct_method, type); OpRegRegImm(kOpAdd, TargetReg(kArg3), TargetReg(kSp), start_offset); LIR* ld = OpVldm(TargetReg(kArg3), regs_left_to_pass_via_stack); // TUNING: loosen barrier ld->u.m.def_mask = ENCODE_ALL; SetMemRefType(ld, true /* is_load */, kDalvikReg); call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx, direct_code, direct_method, type); OpRegRegImm(kOpAdd, TargetReg(kArg3), TargetReg(kSp), 4 /* Method* */ + (3 * 4)); call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx, direct_code, direct_method, type); LIR* st = OpVstm(TargetReg(kArg3), regs_left_to_pass_via_stack); SetMemRefType(st, false /* is_load */, kDalvikReg); st->u.m.def_mask = ENCODE_ALL; call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx, direct_code, direct_method, type); } else if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) { int current_src_offset = start_offset; int current_dest_offset = outs_offset; while (regs_left_to_pass_via_stack > 0) { // This is based on the knowledge that the stack itself is 16-byte aligned. bool src_is_16b_aligned = (current_src_offset & 0xF) == 0; bool dest_is_16b_aligned = (current_dest_offset & 0xF) == 0; size_t bytes_to_move; /* * The amount to move defaults to 32-bit. If there are 4 registers left to move, then do a * a 128-bit move because we won't get the chance to try to aligned. If there are more than * 4 registers left to move, consider doing a 128-bit only if either src or dest are aligned. * We do this because we could potentially do a smaller move to align. */ if (regs_left_to_pass_via_stack == 4 || (regs_left_to_pass_via_stack > 4 && (src_is_16b_aligned || dest_is_16b_aligned))) { // Moving 128-bits via xmm register. bytes_to_move = sizeof(uint32_t) * 4; // Allocate a free xmm temp. Since we are working through the calling sequence, // we expect to have an xmm temporary available. AllocTempDouble will abort if // there are no free registers. RegStorage temp = AllocTempDouble(); LIR* ld1 = nullptr; LIR* ld2 = nullptr; LIR* st1 = nullptr; LIR* st2 = nullptr; /* * The logic is similar for both loads and stores. If we have 16-byte alignment, * do an aligned move. If we have 8-byte alignment, then do the move in two * parts. This approach prevents possible cache line splits. Finally, fall back * to doing an unaligned move. In most cases we likely won't split the cache * line but we cannot prove it and thus take a conservative approach. */ bool src_is_8b_aligned = (current_src_offset & 0x7) == 0; bool dest_is_8b_aligned = (current_dest_offset & 0x7) == 0; if (src_is_16b_aligned) { ld1 = OpMovRegMem(temp, TargetReg(kSp), current_src_offset, kMovA128FP); } else if (src_is_8b_aligned) { ld1 = OpMovRegMem(temp, TargetReg(kSp), current_src_offset, kMovLo128FP); ld2 = OpMovRegMem(temp, TargetReg(kSp), current_src_offset + (bytes_to_move >> 1), kMovHi128FP); } else { ld1 = OpMovRegMem(temp, TargetReg(kSp), current_src_offset, kMovU128FP); } if (dest_is_16b_aligned) { st1 = OpMovMemReg(TargetReg(kSp), current_dest_offset, temp, kMovA128FP); } else if (dest_is_8b_aligned) { st1 = OpMovMemReg(TargetReg(kSp), current_dest_offset, temp, kMovLo128FP); st2 = OpMovMemReg(TargetReg(kSp), current_dest_offset + (bytes_to_move >> 1), temp, kMovHi128FP); } else { st1 = OpMovMemReg(TargetReg(kSp), current_dest_offset, temp, kMovU128FP); } // TODO If we could keep track of aliasing information for memory accesses that are wider // than 64-bit, we wouldn't need to set up a barrier. if (ld1 != nullptr) { if (ld2 != nullptr) { // For 64-bit load we can actually set up the aliasing information. AnnotateDalvikRegAccess(ld1, current_src_offset >> 2, true, true); AnnotateDalvikRegAccess(ld2, (current_src_offset + (bytes_to_move >> 1)) >> 2, true, true); } else { // Set barrier for 128-bit load. SetMemRefType(ld1, true /* is_load */, kDalvikReg); ld1->u.m.def_mask = ENCODE_ALL; } } if (st1 != nullptr) { if (st2 != nullptr) { // For 64-bit store we can actually set up the aliasing information. AnnotateDalvikRegAccess(st1, current_dest_offset >> 2, false, true); AnnotateDalvikRegAccess(st2, (current_dest_offset + (bytes_to_move >> 1)) >> 2, false, true); } else { // Set barrier for 128-bit store. SetMemRefType(st1, false /* is_load */, kDalvikReg); st1->u.m.def_mask = ENCODE_ALL; } } // Free the temporary used for the data movement. FreeTemp(temp); } else { // Moving 32-bits via general purpose register. bytes_to_move = sizeof(uint32_t); // Instead of allocating a new temp, simply reuse one of the registers being used // for argument passing. RegStorage temp = TargetReg(kArg3); // Now load the argument VR and store to the outs. Load32Disp(TargetReg(kSp), current_src_offset, temp); Store32Disp(TargetReg(kSp), current_dest_offset, temp); } current_src_offset += bytes_to_move; current_dest_offset += bytes_to_move; regs_left_to_pass_via_stack -= (bytes_to_move >> 2); } } else { // Generate memcpy OpRegRegImm(kOpAdd, TargetReg(kArg0), TargetReg(kSp), outs_offset); OpRegRegImm(kOpAdd, TargetReg(kArg1), TargetReg(kSp), start_offset); if (Is64BitInstructionSet(cu_->instruction_set)) { CallRuntimeHelperRegRegImm(QUICK_ENTRYPOINT_OFFSET(8, pMemcpy), TargetReg(kArg0), TargetReg(kArg1), (info->num_arg_words - 3) * 4, false); } else { CallRuntimeHelperRegRegImm(QUICK_ENTRYPOINT_OFFSET(4, pMemcpy), TargetReg(kArg0), TargetReg(kArg1), (info->num_arg_words - 3) * 4, false); } } call_state = LoadArgRegs(info, call_state, next_call_insn, target_method, vtable_idx, direct_code, direct_method, type, skip_this); call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx, direct_code, direct_method, type); if (pcrLabel) { if (Runtime::Current()->ExplicitNullChecks()) { *pcrLabel = GenExplicitNullCheck(TargetReg(kArg1), info->opt_flags); } else { *pcrLabel = nullptr; // In lieu of generating a check for kArg1 being null, we need to // perform a load when doing implicit checks. RegStorage tmp = AllocTemp(); Load32Disp(TargetReg(kArg1), 0, tmp); MarkPossibleNullPointerException(info->opt_flags); FreeTemp(tmp); } } return call_state; } RegLocation Mir2Lir::InlineTarget(CallInfo* info) { RegLocation res; if (info->result.location == kLocInvalid) { res = GetReturn(false); } else { res = info->result; } return res; } RegLocation Mir2Lir::InlineTargetWide(CallInfo* info) { RegLocation res; if (info->result.location == kLocInvalid) { res = GetReturnWide(false); } else { res = info->result; } return res; } bool Mir2Lir::GenInlinedCharAt(CallInfo* info) { if (cu_->instruction_set == kMips) { // TODO - add Mips implementation return false; } // Location of reference to data array int value_offset = mirror::String::ValueOffset().Int32Value(); // Location of count int count_offset = mirror::String::CountOffset().Int32Value(); // Starting offset within data array int offset_offset = mirror::String::OffsetOffset().Int32Value(); // Start of char data with array_ int data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Int32Value(); RegLocation rl_obj = info->args[0]; RegLocation rl_idx = info->args[1]; rl_obj = LoadValue(rl_obj, kCoreReg); // X86 wants to avoid putting a constant index into a register. if (!((cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64)&& rl_idx.is_const)) { rl_idx = LoadValue(rl_idx, kCoreReg); } RegStorage reg_max; GenNullCheck(rl_obj.reg, info->opt_flags); bool range_check = (!(info->opt_flags & MIR_IGNORE_RANGE_CHECK)); LIR* range_check_branch = nullptr; RegStorage reg_off; RegStorage reg_ptr; if (cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64) { reg_off = AllocTemp(); reg_ptr = AllocTemp(); if (range_check) { reg_max = AllocTemp(); Load32Disp(rl_obj.reg, count_offset, reg_max); MarkPossibleNullPointerException(info->opt_flags); } Load32Disp(rl_obj.reg, offset_offset, reg_off); MarkPossibleNullPointerException(info->opt_flags); Load32Disp(rl_obj.reg, value_offset, reg_ptr); if (range_check) { // Set up a slow path to allow retry in case of bounds violation */ OpRegReg(kOpCmp, rl_idx.reg, reg_max); FreeTemp(reg_max); range_check_branch = OpCondBranch(kCondUge, nullptr); } OpRegImm(kOpAdd, reg_ptr, data_offset); } else { if (range_check) { // On x86, we can compare to memory directly // Set up a launch pad to allow retry in case of bounds violation */ if (rl_idx.is_const) { range_check_branch = OpCmpMemImmBranch( kCondUlt, RegStorage::InvalidReg(), rl_obj.reg, count_offset, mir_graph_->ConstantValue(rl_idx.orig_sreg), nullptr); } else { OpRegMem(kOpCmp, rl_idx.reg, rl_obj.reg, count_offset); range_check_branch = OpCondBranch(kCondUge, nullptr); } } reg_off = AllocTemp(); reg_ptr = AllocTemp(); Load32Disp(rl_obj.reg, offset_offset, reg_off); Load32Disp(rl_obj.reg, value_offset, reg_ptr); } if (rl_idx.is_const) { OpRegImm(kOpAdd, reg_off, mir_graph_->ConstantValue(rl_idx.orig_sreg)); } else { OpRegReg(kOpAdd, reg_off, rl_idx.reg); } FreeTemp(rl_obj.reg); if (rl_idx.location == kLocPhysReg) { FreeTemp(rl_idx.reg); } RegLocation rl_dest = InlineTarget(info); RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); if (cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64) { LoadBaseIndexed(reg_ptr, reg_off, rl_result.reg, 1, kUnsignedHalf); } else { LoadBaseIndexedDisp(reg_ptr, reg_off, 1, data_offset, rl_result.reg, kUnsignedHalf); } FreeTemp(reg_off); FreeTemp(reg_ptr); StoreValue(rl_dest, rl_result); if (range_check) { DCHECK(range_check_branch != nullptr); info->opt_flags |= MIR_IGNORE_NULL_CHECK; // Record that we've already null checked. AddIntrinsicSlowPath(info, range_check_branch); } return true; } // Generates an inlined String.is_empty or String.length. bool Mir2Lir::GenInlinedStringIsEmptyOrLength(CallInfo* info, bool is_empty) { if (cu_->instruction_set == kMips) { // TODO - add Mips implementation return false; } // dst = src.length(); RegLocation rl_obj = info->args[0]; rl_obj = LoadValue(rl_obj, kCoreReg); RegLocation rl_dest = InlineTarget(info); RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); GenNullCheck(rl_obj.reg, info->opt_flags); Load32Disp(rl_obj.reg, mirror::String::CountOffset().Int32Value(), rl_result.reg); MarkPossibleNullPointerException(info->opt_flags); if (is_empty) { // dst = (dst == 0); if (cu_->instruction_set == kThumb2) { RegStorage t_reg = AllocTemp(); OpRegReg(kOpNeg, t_reg, rl_result.reg); OpRegRegReg(kOpAdc, rl_result.reg, rl_result.reg, t_reg); } else { DCHECK(cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64); OpRegImm(kOpSub, rl_result.reg, 1); OpRegImm(kOpLsr, rl_result.reg, 31); } } StoreValue(rl_dest, rl_result); return true; } bool Mir2Lir::GenInlinedReverseBytes(CallInfo* info, OpSize size) { if (cu_->instruction_set == kMips) { // TODO - add Mips implementation return false; } RegLocation rl_src_i = info->args[0]; RegLocation rl_dest = (size == k64) ? InlineTargetWide(info) : InlineTarget(info); // result reg RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); if (size == k64) { RegLocation rl_i = LoadValueWide(rl_src_i, kCoreReg); RegStorage r_i_low = rl_i.reg.GetLow(); if (rl_i.reg.GetLowReg() == rl_result.reg.GetLowReg()) { // First REV shall clobber rl_result.reg.GetReg(), save the value in a temp for the second REV. r_i_low = AllocTemp(); OpRegCopy(r_i_low, rl_i.reg); } OpRegReg(kOpRev, rl_result.reg.GetLow(), rl_i.reg.GetHigh()); OpRegReg(kOpRev, rl_result.reg.GetHigh(), r_i_low); if (rl_i.reg.GetLowReg() == rl_result.reg.GetLowReg()) { FreeTemp(r_i_low); } StoreValueWide(rl_dest, rl_result); } else { DCHECK(size == k32 || size == kSignedHalf); OpKind op = (size == k32) ? kOpRev : kOpRevsh; RegLocation rl_i = LoadValue(rl_src_i, kCoreReg); OpRegReg(op, rl_result.reg, rl_i.reg); StoreValue(rl_dest, rl_result); } return true; } bool Mir2Lir::GenInlinedAbsInt(CallInfo* info) { if (cu_->instruction_set == kMips) { // TODO - add Mips implementation return false; } RegLocation rl_src = info->args[0]; rl_src = LoadValue(rl_src, kCoreReg); RegLocation rl_dest = InlineTarget(info); RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); RegStorage sign_reg = AllocTemp(); // abs(x) = y<=x>>31, (x+y)^y. OpRegRegImm(kOpAsr, sign_reg, rl_src.reg, 31); OpRegRegReg(kOpAdd, rl_result.reg, rl_src.reg, sign_reg); OpRegReg(kOpXor, rl_result.reg, sign_reg); StoreValue(rl_dest, rl_result); return true; } bool Mir2Lir::GenInlinedAbsLong(CallInfo* info) { if (cu_->instruction_set == kMips) { // TODO - add Mips implementation return false; } RegLocation rl_src = info->args[0]; rl_src = LoadValueWide(rl_src, kCoreReg); RegLocation rl_dest = InlineTargetWide(info); RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); // If on x86 or if we would clobber a register needed later, just copy the source first. if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64 || rl_result.reg.GetLowReg() == rl_src.reg.GetHighReg()) { OpRegCopyWide(rl_result.reg, rl_src.reg); if (rl_result.reg.GetLowReg() != rl_src.reg.GetLowReg() && rl_result.reg.GetLowReg() != rl_src.reg.GetHighReg() && rl_result.reg.GetHighReg() != rl_src.reg.GetLowReg() && rl_result.reg.GetHighReg() != rl_src.reg.GetHighReg()) { // Reuse source registers to avoid running out of temps. FreeTemp(rl_src.reg); } rl_src = rl_result; } // abs(x) = y<=x>>31, (x+y)^y. RegStorage sign_reg = AllocTemp(); OpRegRegImm(kOpAsr, sign_reg, rl_src.reg.GetHigh(), 31); OpRegRegReg(kOpAdd, rl_result.reg.GetLow(), rl_src.reg.GetLow(), sign_reg); OpRegRegReg(kOpAdc, rl_result.reg.GetHigh(), rl_src.reg.GetHigh(), sign_reg); OpRegReg(kOpXor, rl_result.reg.GetLow(), sign_reg); OpRegReg(kOpXor, rl_result.reg.GetHigh(), sign_reg); FreeTemp(sign_reg); StoreValueWide(rl_dest, rl_result); return true; } bool Mir2Lir::GenInlinedAbsFloat(CallInfo* info) { if (cu_->instruction_set == kMips) { // TODO - add Mips implementation return false; } RegLocation rl_src = info->args[0]; rl_src = LoadValue(rl_src, kCoreReg); RegLocation rl_dest = InlineTarget(info); RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); OpRegRegImm(kOpAnd, rl_result.reg, rl_src.reg, 0x7fffffff); StoreValue(rl_dest, rl_result); return true; } bool Mir2Lir::GenInlinedAbsDouble(CallInfo* info) { if (cu_->instruction_set == kMips) { // TODO - add Mips implementation return false; } RegLocation rl_src = info->args[0]; rl_src = LoadValueWide(rl_src, kCoreReg); RegLocation rl_dest = InlineTargetWide(info); RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); OpRegCopyWide(rl_result.reg, rl_src.reg); OpRegImm(kOpAnd, rl_result.reg.GetHigh(), 0x7fffffff); StoreValueWide(rl_dest, rl_result); return true; } bool Mir2Lir::GenInlinedFloatCvt(CallInfo* info) { if (cu_->instruction_set == kMips) { // TODO - add Mips implementation return false; } RegLocation rl_src = info->args[0]; RegLocation rl_dest = InlineTarget(info); StoreValue(rl_dest, rl_src); return true; } bool Mir2Lir::GenInlinedDoubleCvt(CallInfo* info) { if (cu_->instruction_set == kMips) { // TODO - add Mips implementation return false; } RegLocation rl_src = info->args[0]; RegLocation rl_dest = InlineTargetWide(info); StoreValueWide(rl_dest, rl_src); return true; } /* * Fast String.indexOf(I) & (II). Tests for simple case of char <= 0xFFFF, * otherwise bails to standard library code. */ bool Mir2Lir::GenInlinedIndexOf(CallInfo* info, bool zero_based) { if (cu_->instruction_set == kMips) { // TODO - add Mips implementation return false; } RegLocation rl_obj = info->args[0]; RegLocation rl_char = info->args[1]; if (rl_char.is_const && (mir_graph_->ConstantValue(rl_char) & ~0xFFFF) != 0) { // Code point beyond 0xFFFF. Punt to the real String.indexOf(). return false; } ClobberCallerSave(); LockCallTemps(); // Using fixed registers RegStorage reg_ptr = TargetReg(kArg0); RegStorage reg_char = TargetReg(kArg1); RegStorage reg_start = TargetReg(kArg2); LoadValueDirectFixed(rl_obj, reg_ptr); LoadValueDirectFixed(rl_char, reg_char); if (zero_based) { LoadConstant(reg_start, 0); } else { RegLocation rl_start = info->args[2]; // 3rd arg only present in III flavor of IndexOf. LoadValueDirectFixed(rl_start, reg_start); } RegStorage r_tgt = Is64BitInstructionSet(cu_->instruction_set) ? LoadHelper(QUICK_ENTRYPOINT_OFFSET(8, pIndexOf)) : LoadHelper(QUICK_ENTRYPOINT_OFFSET(4, pIndexOf)); GenExplicitNullCheck(reg_ptr, info->opt_flags); LIR* high_code_point_branch = rl_char.is_const ? nullptr : OpCmpImmBranch(kCondGt, reg_char, 0xFFFF, nullptr); // NOTE: not a safepoint OpReg(kOpBlx, r_tgt); if (!rl_char.is_const) { // Add the slow path for code points beyond 0xFFFF. DCHECK(high_code_point_branch != nullptr); LIR* resume_tgt = NewLIR0(kPseudoTargetLabel); info->opt_flags |= MIR_IGNORE_NULL_CHECK; // Record that we've null checked. AddIntrinsicSlowPath(info, high_code_point_branch, resume_tgt); } else { DCHECK_EQ(mir_graph_->ConstantValue(rl_char) & ~0xFFFF, 0); DCHECK(high_code_point_branch == nullptr); } RegLocation rl_return = GetReturn(false); RegLocation rl_dest = InlineTarget(info); StoreValue(rl_dest, rl_return); return true; } /* Fast string.compareTo(Ljava/lang/string;)I. */ bool Mir2Lir::GenInlinedStringCompareTo(CallInfo* info) { if (cu_->instruction_set == kMips) { // TODO - add Mips implementation return false; } ClobberCallerSave(); LockCallTemps(); // Using fixed registers RegStorage reg_this = TargetReg(kArg0); RegStorage reg_cmp = TargetReg(kArg1); RegLocation rl_this = info->args[0]; RegLocation rl_cmp = info->args[1]; LoadValueDirectFixed(rl_this, reg_this); LoadValueDirectFixed(rl_cmp, reg_cmp); RegStorage r_tgt; if (cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64) { if (Is64BitInstructionSet(cu_->instruction_set)) { r_tgt = LoadHelper(QUICK_ENTRYPOINT_OFFSET(8, pStringCompareTo)); } else { r_tgt = LoadHelper(QUICK_ENTRYPOINT_OFFSET(4, pStringCompareTo)); } } else { r_tgt = RegStorage::InvalidReg(); } GenExplicitNullCheck(reg_this, info->opt_flags); info->opt_flags |= MIR_IGNORE_NULL_CHECK; // Record that we've null checked. // TUNING: check if rl_cmp.s_reg_low is already null checked LIR* cmp_null_check_branch = OpCmpImmBranch(kCondEq, reg_cmp, 0, nullptr); AddIntrinsicSlowPath(info, cmp_null_check_branch); // NOTE: not a safepoint if (cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64) { OpReg(kOpBlx, r_tgt); } else { if (Is64BitInstructionSet(cu_->instruction_set)) { OpThreadMem(kOpBlx, QUICK_ENTRYPOINT_OFFSET(8, pStringCompareTo)); } else { OpThreadMem(kOpBlx, QUICK_ENTRYPOINT_OFFSET(4, pStringCompareTo)); } } RegLocation rl_return = GetReturn(false); RegLocation rl_dest = InlineTarget(info); StoreValue(rl_dest, rl_return); return true; } bool Mir2Lir::GenInlinedCurrentThread(CallInfo* info) { RegLocation rl_dest = InlineTarget(info); RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); switch (cu_->instruction_set) { case kArm: // Fall-through. case kThumb2: // Fall-through. case kMips: Load32Disp(TargetReg(kSelf), Thread::PeerOffset<4>().Int32Value(), rl_result.reg); break; case kArm64: Load32Disp(TargetReg(kSelf), Thread::PeerOffset<8>().Int32Value(), rl_result.reg); break; case kX86: reinterpret_cast(this)->OpRegThreadMem(kOpMov, rl_result.reg, Thread::PeerOffset<4>()); break; case kX86_64: reinterpret_cast(this)->OpRegThreadMem(kOpMov, rl_result.reg, Thread::PeerOffset<8>()); break; default: LOG(FATAL) << "Unexpected isa " << cu_->instruction_set; } StoreValue(rl_dest, rl_result); return true; } bool Mir2Lir::GenInlinedUnsafeGet(CallInfo* info, bool is_long, bool is_volatile) { if (cu_->instruction_set == kMips) { // TODO - add Mips implementation return false; } // Unused - RegLocation rl_src_unsafe = info->args[0]; RegLocation rl_src_obj = info->args[1]; // Object RegLocation rl_src_offset = info->args[2]; // long low rl_src_offset = NarrowRegLoc(rl_src_offset); // ignore high half in info->args[3] RegLocation rl_dest = is_long ? InlineTargetWide(info) : InlineTarget(info); // result reg RegLocation rl_object = LoadValue(rl_src_obj, kCoreReg); RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg); RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); if (is_long) { if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) { LoadBaseIndexedDisp(rl_object.reg, rl_offset.reg, 0, 0, rl_result.reg, k64); } else { RegStorage rl_temp_offset = AllocTemp(); OpRegRegReg(kOpAdd, rl_temp_offset, rl_object.reg, rl_offset.reg); LoadBaseDisp(rl_temp_offset, 0, rl_result.reg, k64); FreeTemp(rl_temp_offset); } } else { LoadBaseIndexed(rl_object.reg, rl_offset.reg, rl_result.reg, 0, k32); } if (is_volatile) { // Without context sensitive analysis, we must issue the most conservative barriers. // In this case, either a load or store may follow so we issue both barriers. GenMemBarrier(kLoadLoad); GenMemBarrier(kLoadStore); } if (is_long) { StoreValueWide(rl_dest, rl_result); } else { StoreValue(rl_dest, rl_result); } return true; } bool Mir2Lir::GenInlinedUnsafePut(CallInfo* info, bool is_long, bool is_object, bool is_volatile, bool is_ordered) { if (cu_->instruction_set == kMips) { // TODO - add Mips implementation return false; } // Unused - RegLocation rl_src_unsafe = info->args[0]; RegLocation rl_src_obj = info->args[1]; // Object RegLocation rl_src_offset = info->args[2]; // long low rl_src_offset = NarrowRegLoc(rl_src_offset); // ignore high half in info->args[3] RegLocation rl_src_value = info->args[4]; // value to store if (is_volatile || is_ordered) { // There might have been a store before this volatile one so insert StoreStore barrier. GenMemBarrier(kStoreStore); } RegLocation rl_object = LoadValue(rl_src_obj, kCoreReg); RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg); RegLocation rl_value; if (is_long) { rl_value = LoadValueWide(rl_src_value, kCoreReg); if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) { StoreBaseIndexedDisp(rl_object.reg, rl_offset.reg, 0, 0, rl_value.reg, k64); } else { RegStorage rl_temp_offset = AllocTemp(); OpRegRegReg(kOpAdd, rl_temp_offset, rl_object.reg, rl_offset.reg); StoreBaseDisp(rl_temp_offset, 0, rl_value.reg, k64); FreeTemp(rl_temp_offset); } } else { rl_value = LoadValue(rl_src_value, kCoreReg); StoreBaseIndexed(rl_object.reg, rl_offset.reg, rl_value.reg, 0, k32); } // Free up the temp early, to ensure x86 doesn't run out of temporaries in MarkGCCard. FreeTemp(rl_offset.reg); if (is_volatile) { // A load might follow the volatile store so insert a StoreLoad barrier. GenMemBarrier(kStoreLoad); } if (is_object) { MarkGCCard(rl_value.reg, rl_object.reg); } return true; } void Mir2Lir::GenInvoke(CallInfo* info) { if ((info->opt_flags & MIR_INLINED) != 0) { // Already inlined but we may still need the null check. if (info->type != kStatic && ((cu_->disable_opt & (1 << kNullCheckElimination)) != 0 || (info->opt_flags & MIR_IGNORE_NULL_CHECK) == 0)) { RegLocation rl_obj = LoadValue(info->args[0], kCoreReg); GenNullCheck(rl_obj.reg); } return; } DCHECK(cu_->compiler_driver->GetMethodInlinerMap() != nullptr); // TODO: Enable instrinsics for x86_64 // Temporary disable intrinsics for x86_64. We will enable them later step by step. if (cu_->instruction_set != kX86_64) { if (cu_->compiler_driver->GetMethodInlinerMap()->GetMethodInliner(cu_->dex_file) ->GenIntrinsic(this, info)) { return; } } GenInvokeNoInline(info); } template static LIR* GenInvokeNoInlineCall(Mir2Lir* mir_to_lir, InvokeType type) { ThreadOffset trampoline(-1); switch (type) { case kInterface: trampoline = QUICK_ENTRYPOINT_OFFSET(pointer_size, pInvokeInterfaceTrampolineWithAccessCheck); break; case kDirect: trampoline = QUICK_ENTRYPOINT_OFFSET(pointer_size, pInvokeDirectTrampolineWithAccessCheck); break; case kStatic: trampoline = QUICK_ENTRYPOINT_OFFSET(pointer_size, pInvokeStaticTrampolineWithAccessCheck); break; case kSuper: trampoline = QUICK_ENTRYPOINT_OFFSET(pointer_size, pInvokeSuperTrampolineWithAccessCheck); break; case kVirtual: trampoline = QUICK_ENTRYPOINT_OFFSET(pointer_size, pInvokeVirtualTrampolineWithAccessCheck); break; default: LOG(FATAL) << "Unexpected invoke type"; } return mir_to_lir->OpThreadMem(kOpBlx, trampoline); } void Mir2Lir::GenInvokeNoInline(CallInfo* info) { int call_state = 0; LIR* null_ck; LIR** p_null_ck = NULL; NextCallInsn next_call_insn; FlushAllRegs(); /* Everything to home location */ // Explicit register usage LockCallTemps(); const MirMethodLoweringInfo& method_info = mir_graph_->GetMethodLoweringInfo(info->mir); cu_->compiler_driver->ProcessedInvoke(method_info.GetInvokeType(), method_info.StatsFlags()); BeginInvoke(info); InvokeType original_type = static_cast(method_info.GetInvokeType()); info->type = static_cast(method_info.GetSharpType()); bool fast_path = method_info.FastPath(); bool skip_this; if (info->type == kInterface) { next_call_insn = fast_path ? NextInterfaceCallInsn : NextInterfaceCallInsnWithAccessCheck; skip_this = fast_path; } else if (info->type == kDirect) { if (fast_path) { p_null_ck = &null_ck; } next_call_insn = fast_path ? NextSDCallInsn : NextDirectCallInsnSP; skip_this = false; } else if (info->type == kStatic) { next_call_insn = fast_path ? NextSDCallInsn : NextStaticCallInsnSP; skip_this = false; } else if (info->type == kSuper) { DCHECK(!fast_path); // Fast path is a direct call. next_call_insn = NextSuperCallInsnSP; skip_this = false; } else { DCHECK_EQ(info->type, kVirtual); next_call_insn = fast_path ? NextVCallInsn : NextVCallInsnSP; skip_this = fast_path; } MethodReference target_method = method_info.GetTargetMethod(); if (!info->is_range) { call_state = GenDalvikArgsNoRange(info, call_state, p_null_ck, next_call_insn, target_method, method_info.VTableIndex(), method_info.DirectCode(), method_info.DirectMethod(), original_type, skip_this); } else { call_state = GenDalvikArgsRange(info, call_state, p_null_ck, next_call_insn, target_method, method_info.VTableIndex(), method_info.DirectCode(), method_info.DirectMethod(), original_type, skip_this); } // Finish up any of the call sequence not interleaved in arg loading while (call_state >= 0) { call_state = next_call_insn(cu_, info, call_state, target_method, method_info.VTableIndex(), method_info.DirectCode(), method_info.DirectMethod(), original_type); } LIR* call_inst; if (cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64) { call_inst = OpReg(kOpBlx, TargetReg(kInvokeTgt)); } else { if (fast_path) { if (method_info.DirectCode() == static_cast(-1)) { // We can have the linker fixup a call relative. call_inst = reinterpret_cast(this)->CallWithLinkerFixup(target_method, info->type); } else { call_inst = OpMem(kOpBlx, TargetReg(kArg0), mirror::ArtMethod::EntryPointFromQuickCompiledCodeOffset().Int32Value()); } } else { // TODO: Extract? if (Is64BitInstructionSet(cu_->instruction_set)) { call_inst = GenInvokeNoInlineCall<8>(this, info->type); } else { call_inst = GenInvokeNoInlineCall<4>(this, info->type); } } } EndInvoke(info); MarkSafepointPC(call_inst); ClobberCallerSave(); if (info->result.location != kLocInvalid) { // We have a following MOVE_RESULT - do it now. if (info->result.wide) { RegLocation ret_loc = GetReturnWide(info->result.fp); StoreValueWide(info->result, ret_loc); } else { RegLocation ret_loc = GetReturn(info->result.fp); StoreValue(info->result, ret_loc); } } } } // namespace art