/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "mir_to_lir-inl.h" #include "dex/dataflow_iterator-inl.h" #include "dex/quick/dex_file_method_inliner.h" #include "driver/compiler_driver.h" #include "primitive.h" #include "thread-inl.h" namespace art { class Mir2Lir::SpecialSuspendCheckSlowPath : public Mir2Lir::LIRSlowPath { public: SpecialSuspendCheckSlowPath(Mir2Lir* m2l, LIR* branch, LIR* cont) : LIRSlowPath(m2l, branch, cont), num_used_args_(0u) { } void PreserveArg(int in_position) { // Avoid duplicates. for (size_t i = 0; i != num_used_args_; ++i) { if (used_args_[i] == in_position) { return; } } DCHECK_LT(num_used_args_, kMaxArgsToPreserve); used_args_[num_used_args_] = in_position; ++num_used_args_; } void Compile() OVERRIDE { m2l_->ResetRegPool(); m2l_->ResetDefTracking(); GenerateTargetLabel(kPseudoSuspendTarget); m2l_->LockCallTemps(); // Generate frame. m2l_->GenSpecialEntryForSuspend(); // Spill all args. for (size_t i = 0, end = m2l_->in_to_reg_storage_mapping_.GetEndMappedIn(); i < end; i += m2l_->in_to_reg_storage_mapping_.GetShorty(i).IsWide() ? 2u : 1u) { m2l_->SpillArg(i); } m2l_->FreeCallTemps(); // Do the actual suspend call to runtime. m2l_->CallRuntimeHelper(kQuickTestSuspend, true); m2l_->LockCallTemps(); // Unspill used regs. (Don't unspill unused args.) for (size_t i = 0; i != num_used_args_; ++i) { m2l_->UnspillArg(used_args_[i]); } // Pop the frame. m2l_->GenSpecialExitForSuspend(); // Branch to the continue label. DCHECK(cont_ != nullptr); m2l_->OpUnconditionalBranch(cont_); m2l_->FreeCallTemps(); } private: static constexpr size_t kMaxArgsToPreserve = 2u; size_t num_used_args_; int used_args_[kMaxArgsToPreserve]; }; RegisterClass Mir2Lir::ShortyToRegClass(char shorty_type) { RegisterClass res; switch (shorty_type) { case 'L': res = kRefReg; break; case 'F': // Expected fallthrough. case 'D': res = kFPReg; break; default: res = kCoreReg; } return res; } void Mir2Lir::LockArg(size_t in_position) { RegStorage reg_arg = in_to_reg_storage_mapping_.GetReg(in_position); if (reg_arg.Valid()) { LockTemp(reg_arg); } } RegStorage Mir2Lir::LoadArg(size_t in_position, RegisterClass reg_class, bool wide) { ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg); int offset = StackVisitor::GetOutVROffset(in_position, cu_->instruction_set); if (cu_->instruction_set == kX86) { /* * When doing a call for x86, it moves the stack pointer in order to push return. * Thus, we add another 4 bytes to figure out the out of caller (in of callee). */ offset += sizeof(uint32_t); } if (cu_->instruction_set == kX86_64) { /* * When doing a call for x86, it moves the stack pointer in order to push return. * Thus, we add another 8 bytes to figure out the out of caller (in of callee). */ offset += sizeof(uint64_t); } RegStorage reg_arg = in_to_reg_storage_mapping_.GetReg(in_position); // TODO: REVISIT: This adds a spill of low part while we could just copy it. if (reg_arg.Valid() && wide && (reg_arg.GetWideKind() == kNotWide)) { // For wide register we've got only half of it. // Flush it to memory then. StoreBaseDisp(TargetPtrReg(kSp), offset, reg_arg, k32, kNotVolatile); reg_arg = RegStorage::InvalidReg(); } if (!reg_arg.Valid()) { reg_arg = wide ? AllocTypedTempWide(false, reg_class) : AllocTypedTemp(false, reg_class); LoadBaseDisp(TargetPtrReg(kSp), offset, reg_arg, wide ? k64 : k32, kNotVolatile); } else { // Check if we need to copy the arg to a different reg_class. if (!RegClassMatches(reg_class, reg_arg)) { if (wide) { RegStorage new_reg = AllocTypedTempWide(false, reg_class); OpRegCopyWide(new_reg, reg_arg); reg_arg = new_reg; } else { RegStorage new_reg = AllocTypedTemp(false, reg_class); OpRegCopy(new_reg, reg_arg); reg_arg = new_reg; } } } return reg_arg; } void Mir2Lir::LoadArgDirect(size_t in_position, RegLocation rl_dest) { DCHECK_EQ(rl_dest.location, kLocPhysReg); ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg); int offset = StackVisitor::GetOutVROffset(in_position, cu_->instruction_set); if (cu_->instruction_set == kX86) { /* * When doing a call for x86, it moves the stack pointer in order to push return. * Thus, we add another 4 bytes to figure out the out of caller (in of callee). */ offset += sizeof(uint32_t); } if (cu_->instruction_set == kX86_64) { /* * When doing a call for x86, it moves the stack pointer in order to push return. * Thus, we add another 8 bytes to figure out the out of caller (in of callee). */ offset += sizeof(uint64_t); } RegStorage reg_arg = in_to_reg_storage_mapping_.GetReg(in_position); // TODO: REVISIT: This adds a spill of low part while we could just copy it. if (reg_arg.Valid() && rl_dest.wide && (reg_arg.GetWideKind() == kNotWide)) { // For wide register we've got only half of it. // Flush it to memory then. StoreBaseDisp(TargetPtrReg(kSp), offset, reg_arg, k32, kNotVolatile); reg_arg = RegStorage::InvalidReg(); } if (!reg_arg.Valid()) { OpSize op_size = rl_dest.wide ? k64 : (rl_dest.ref ? kReference : k32); LoadBaseDisp(TargetPtrReg(kSp), offset, rl_dest.reg, op_size, kNotVolatile); } else { if (rl_dest.wide) { OpRegCopyWide(rl_dest.reg, reg_arg); } else { OpRegCopy(rl_dest.reg, reg_arg); } } } void Mir2Lir::SpillArg(size_t in_position) { RegStorage reg_arg = in_to_reg_storage_mapping_.GetReg(in_position); if (reg_arg.Valid()) { int offset = frame_size_ + StackVisitor::GetOutVROffset(in_position, cu_->instruction_set); ShortyArg arg = in_to_reg_storage_mapping_.GetShorty(in_position); OpSize size = arg.IsRef() ? kReference : (arg.IsWide() && reg_arg.GetWideKind() == kWide) ? k64 : k32; StoreBaseDisp(TargetPtrReg(kSp), offset, reg_arg, size, kNotVolatile); } } void Mir2Lir::UnspillArg(size_t in_position) { RegStorage reg_arg = in_to_reg_storage_mapping_.GetReg(in_position); if (reg_arg.Valid()) { int offset = frame_size_ + StackVisitor::GetOutVROffset(in_position, cu_->instruction_set); ShortyArg arg = in_to_reg_storage_mapping_.GetShorty(in_position); OpSize size = arg.IsRef() ? kReference : (arg.IsWide() && reg_arg.GetWideKind() == kWide) ? k64 : k32; LoadBaseDisp(TargetPtrReg(kSp), offset, reg_arg, size, kNotVolatile); } } Mir2Lir::SpecialSuspendCheckSlowPath* Mir2Lir::GenSpecialSuspendTest() { LockCallTemps(); LIR* branch = OpTestSuspend(nullptr); FreeCallTemps(); LIR* cont = NewLIR0(kPseudoTargetLabel); SpecialSuspendCheckSlowPath* slow_path = new (arena_) SpecialSuspendCheckSlowPath(this, branch, cont); AddSlowPath(slow_path); return slow_path; } bool Mir2Lir::GenSpecialIGet(MIR* mir, const InlineMethod& special) { // FastInstance() already checked by DexFileMethodInliner. const InlineIGetIPutData& data = special.d.ifield_data; if (data.method_is_static != 0u || data.object_arg != 0u) { // The object is not "this" and has to be null-checked. return false; } OpSize size; switch (data.op_variant) { case InlineMethodAnalyser::IGetVariant(Instruction::IGET): size = in_to_reg_storage_mapping_.GetShorty(data.src_arg).IsFP() ? kSingle : k32; break; case InlineMethodAnalyser::IGetVariant(Instruction::IGET_WIDE): size = in_to_reg_storage_mapping_.GetShorty(data.src_arg).IsFP() ? kDouble : k64; break; case InlineMethodAnalyser::IGetVariant(Instruction::IGET_OBJECT): size = kReference; break; case InlineMethodAnalyser::IGetVariant(Instruction::IGET_SHORT): size = kSignedHalf; break; case InlineMethodAnalyser::IGetVariant(Instruction::IGET_CHAR): size = kUnsignedHalf; break; case InlineMethodAnalyser::IGetVariant(Instruction::IGET_BYTE): size = kSignedByte; break; case InlineMethodAnalyser::IGetVariant(Instruction::IGET_BOOLEAN): size = kUnsignedByte; break; default: LOG(FATAL) << "Unknown variant: " << data.op_variant; UNREACHABLE(); } // Point of no return - no aborts after this if (!kLeafOptimization) { auto* slow_path = GenSpecialSuspendTest(); slow_path->PreserveArg(data.object_arg); } LockArg(data.object_arg); GenPrintLabel(mir); RegStorage reg_obj = LoadArg(data.object_arg, kRefReg); RegisterClass reg_class = RegClassForFieldLoadStore(size, data.is_volatile); RegisterClass ret_reg_class = ShortyToRegClass(cu_->shorty[0]); RegLocation rl_dest = IsWide(size) ? GetReturnWide(ret_reg_class) : GetReturn(ret_reg_class); RegStorage r_result = rl_dest.reg; if (!RegClassMatches(reg_class, r_result)) { r_result = IsWide(size) ? AllocTypedTempWide(rl_dest.fp, reg_class) : AllocTypedTemp(rl_dest.fp, reg_class); } if (IsRef(size)) { LoadRefDisp(reg_obj, data.field_offset, r_result, data.is_volatile ? kVolatile : kNotVolatile); } else { LoadBaseDisp(reg_obj, data.field_offset, r_result, size, data.is_volatile ? kVolatile : kNotVolatile); } if (r_result.NotExactlyEquals(rl_dest.reg)) { if (IsWide(size)) { OpRegCopyWide(rl_dest.reg, r_result); } else { OpRegCopy(rl_dest.reg, r_result); } } return true; } bool Mir2Lir::GenSpecialIPut(MIR* mir, const InlineMethod& special) { // FastInstance() already checked by DexFileMethodInliner. const InlineIGetIPutData& data = special.d.ifield_data; if (data.method_is_static != 0u || data.object_arg != 0u) { // The object is not "this" and has to be null-checked. return false; } if (data.return_arg_plus1 != 0u) { // The setter returns a method argument which we don't support here. return false; } OpSize size; switch (data.op_variant) { case InlineMethodAnalyser::IPutVariant(Instruction::IPUT): size = in_to_reg_storage_mapping_.GetShorty(data.src_arg).IsFP() ? kSingle : k32; break; case InlineMethodAnalyser::IPutVariant(Instruction::IPUT_WIDE): size = in_to_reg_storage_mapping_.GetShorty(data.src_arg).IsFP() ? kDouble : k64; break; case InlineMethodAnalyser::IPutVariant(Instruction::IPUT_OBJECT): size = kReference; break; case InlineMethodAnalyser::IPutVariant(Instruction::IPUT_SHORT): size = kSignedHalf; break; case InlineMethodAnalyser::IPutVariant(Instruction::IPUT_CHAR): size = kUnsignedHalf; break; case InlineMethodAnalyser::IPutVariant(Instruction::IPUT_BYTE): size = kSignedByte; break; case InlineMethodAnalyser::IPutVariant(Instruction::IPUT_BOOLEAN): size = kUnsignedByte; break; default: LOG(FATAL) << "Unknown variant: " << data.op_variant; UNREACHABLE(); } // Point of no return - no aborts after this if (!kLeafOptimization) { auto* slow_path = GenSpecialSuspendTest(); slow_path->PreserveArg(data.object_arg); slow_path->PreserveArg(data.src_arg); } LockArg(data.object_arg); LockArg(data.src_arg); GenPrintLabel(mir); RegStorage reg_obj = LoadArg(data.object_arg, kRefReg); RegisterClass reg_class = RegClassForFieldLoadStore(size, data.is_volatile); RegStorage reg_src = LoadArg(data.src_arg, reg_class, IsWide(size)); if (IsRef(size)) { StoreRefDisp(reg_obj, data.field_offset, reg_src, data.is_volatile ? kVolatile : kNotVolatile); } else { StoreBaseDisp(reg_obj, data.field_offset, reg_src, size, data.is_volatile ? kVolatile : kNotVolatile); } if (IsRef(size)) { MarkGCCard(0, reg_src, reg_obj); } return true; } bool Mir2Lir::GenSpecialIdentity(MIR* mir, const InlineMethod& special) { const InlineReturnArgData& data = special.d.return_data; bool wide = (data.is_wide != 0u); // Point of no return - no aborts after this if (!kLeafOptimization) { auto* slow_path = GenSpecialSuspendTest(); slow_path->PreserveArg(data.arg); } LockArg(data.arg); GenPrintLabel(mir); RegisterClass reg_class = ShortyToRegClass(cu_->shorty[0]); RegLocation rl_dest = wide ? GetReturnWide(reg_class) : GetReturn(reg_class); LoadArgDirect(data.arg, rl_dest); return true; } /* * Special-case code generation for simple non-throwing leaf methods. */ bool Mir2Lir::GenSpecialCase(BasicBlock* bb, MIR* mir, const InlineMethod& special) { DCHECK(special.flags & kInlineSpecial); current_dalvik_offset_ = mir->offset; DCHECK(current_mir_ == nullptr); // Safepoints attributed to prologue. MIR* return_mir = nullptr; bool successful = false; EnsureInitializedArgMappingToPhysicalReg(); switch (special.opcode) { case kInlineOpNop: successful = true; DCHECK_EQ(mir->dalvikInsn.opcode, Instruction::RETURN_VOID); if (!kLeafOptimization) { GenSpecialSuspendTest(); } return_mir = mir; break; case kInlineOpNonWideConst: { successful = true; if (!kLeafOptimization) { GenSpecialSuspendTest(); } RegLocation rl_dest = GetReturn(ShortyToRegClass(cu_->shorty[0])); GenPrintLabel(mir); LoadConstant(rl_dest.reg, static_cast(special.d.data)); return_mir = bb->GetNextUnconditionalMir(mir_graph_, mir); break; } case kInlineOpReturnArg: successful = GenSpecialIdentity(mir, special); return_mir = mir; break; case kInlineOpIGet: successful = GenSpecialIGet(mir, special); return_mir = bb->GetNextUnconditionalMir(mir_graph_, mir); break; case kInlineOpIPut: successful = GenSpecialIPut(mir, special); return_mir = bb->GetNextUnconditionalMir(mir_graph_, mir); break; default: break; } if (successful) { if (kIsDebugBuild) { // Clear unreachable catch entries. mir_graph_->catches_.clear(); } // Handle verbosity for return MIR. if (return_mir != nullptr) { current_dalvik_offset_ = return_mir->offset; // Not handling special identity case because it already generated code as part // of the return. The label should have been added before any code was generated. if (special.opcode != kInlineOpReturnArg) { GenPrintLabel(return_mir); } } GenSpecialExitSequence(); if (!kLeafOptimization) { HandleSlowPaths(); } else { core_spill_mask_ = 0; num_core_spills_ = 0; fp_spill_mask_ = 0; num_fp_spills_ = 0; frame_size_ = 0; core_vmap_table_.clear(); fp_vmap_table_.clear(); } } return successful; } /* * Target-independent code generation. Use only high-level * load/store utilities here, or target-dependent genXX() handlers * when necessary. */ void Mir2Lir::CompileDalvikInstruction(MIR* mir, BasicBlock* bb, LIR* label_list) { RegLocation rl_src[3]; RegLocation rl_dest = mir_graph_->GetBadLoc(); RegLocation rl_result = mir_graph_->GetBadLoc(); const Instruction::Code opcode = mir->dalvikInsn.opcode; const int opt_flags = mir->optimization_flags; const uint32_t vB = mir->dalvikInsn.vB; const uint32_t vC = mir->dalvikInsn.vC; DCHECK(CheckCorePoolSanity()) << PrettyMethod(cu_->method_idx, *cu_->dex_file) << " @ 0x:" << std::hex << current_dalvik_offset_; // Prep Src and Dest locations. int next_sreg = 0; int next_loc = 0; uint64_t attrs = MIRGraph::GetDataFlowAttributes(opcode); rl_src[0] = rl_src[1] = rl_src[2] = mir_graph_->GetBadLoc(); if (attrs & DF_UA) { if (attrs & DF_A_WIDE) { rl_src[next_loc++] = mir_graph_->GetSrcWide(mir, next_sreg); next_sreg+= 2; } else { rl_src[next_loc++] = mir_graph_->GetSrc(mir, next_sreg); next_sreg++; } } if (attrs & DF_UB) { if (attrs & DF_B_WIDE) { rl_src[next_loc++] = mir_graph_->GetSrcWide(mir, next_sreg); next_sreg+= 2; } else { rl_src[next_loc++] = mir_graph_->GetSrc(mir, next_sreg); next_sreg++; } } if (attrs & DF_UC) { if (attrs & DF_C_WIDE) { rl_src[next_loc++] = mir_graph_->GetSrcWide(mir, next_sreg); } else { rl_src[next_loc++] = mir_graph_->GetSrc(mir, next_sreg); } } if (attrs & DF_DA) { if (attrs & DF_A_WIDE) { rl_dest = mir_graph_->GetDestWide(mir); } else { rl_dest = mir_graph_->GetDest(mir); } } switch (opcode) { case Instruction::NOP: break; case Instruction::MOVE_EXCEPTION: GenMoveException(rl_dest); break; case Instruction::RETURN_VOID_NO_BARRIER: case Instruction::RETURN_VOID: if (((cu_->access_flags & kAccConstructor) != 0) && cu_->compiler_driver->RequiresConstructorBarrier(Thread::Current(), cu_->dex_file, cu_->class_def_idx)) { GenMemBarrier(kStoreStore); } if (!kLeafOptimization || !mir_graph_->MethodIsLeaf()) { GenSuspendTest(opt_flags); } break; case Instruction::RETURN_OBJECT: DCHECK(rl_src[0].ref); FALLTHROUGH_INTENDED; case Instruction::RETURN: if (!kLeafOptimization || !mir_graph_->MethodIsLeaf()) { GenSuspendTest(opt_flags); } StoreValue(GetReturn(ShortyToRegClass(cu_->shorty[0])), rl_src[0]); break; case Instruction::RETURN_WIDE: if (!kLeafOptimization || !mir_graph_->MethodIsLeaf()) { GenSuspendTest(opt_flags); } StoreValueWide(GetReturnWide(ShortyToRegClass(cu_->shorty[0])), rl_src[0]); break; case Instruction::MOVE_RESULT: case Instruction::MOVE_RESULT_WIDE: case Instruction::MOVE_RESULT_OBJECT: // Already processed with invoke or filled-new-array. break; case Instruction::MOVE: case Instruction::MOVE_OBJECT: case Instruction::MOVE_16: case Instruction::MOVE_OBJECT_16: case Instruction::MOVE_FROM16: case Instruction::MOVE_OBJECT_FROM16: StoreValue(rl_dest, rl_src[0]); break; case Instruction::MOVE_WIDE: case Instruction::MOVE_WIDE_16: case Instruction::MOVE_WIDE_FROM16: StoreValueWide(rl_dest, rl_src[0]); break; case Instruction::CONST: case Instruction::CONST_4: case Instruction::CONST_16: GenConst(rl_dest, vB); break; case Instruction::CONST_HIGH16: GenConst(rl_dest, vB << 16); break; case Instruction::CONST_WIDE_16: case Instruction::CONST_WIDE_32: GenConstWide(rl_dest, static_cast(static_cast(vB))); break; case Instruction::CONST_WIDE: GenConstWide(rl_dest, mir->dalvikInsn.vB_wide); break; case Instruction::CONST_WIDE_HIGH16: rl_result = EvalLoc(rl_dest, kAnyReg, true); LoadConstantWide(rl_result.reg, static_cast(vB) << 48); StoreValueWide(rl_dest, rl_result); break; case Instruction::MONITOR_ENTER: GenMonitorEnter(opt_flags, rl_src[0]); break; case Instruction::MONITOR_EXIT: GenMonitorExit(opt_flags, rl_src[0]); break; case Instruction::CHECK_CAST: { GenCheckCast(opt_flags, mir->offset, vB, rl_src[0]); break; } case Instruction::INSTANCE_OF: GenInstanceof(vC, rl_dest, rl_src[0]); break; case Instruction::NEW_INSTANCE: GenNewInstance(vB, rl_dest); break; case Instruction::THROW: GenThrow(rl_src[0]); break; case Instruction::ARRAY_LENGTH: { int len_offset; len_offset = mirror::Array::LengthOffset().Int32Value(); rl_src[0] = LoadValue(rl_src[0], kRefReg); GenNullCheck(rl_src[0].reg, opt_flags); rl_result = EvalLoc(rl_dest, kCoreReg, true); Load32Disp(rl_src[0].reg, len_offset, rl_result.reg); MarkPossibleNullPointerException(opt_flags); StoreValue(rl_dest, rl_result); break; } case Instruction::CONST_STRING: case Instruction::CONST_STRING_JUMBO: GenConstString(vB, rl_dest); break; case Instruction::CONST_CLASS: GenConstClass(vB, rl_dest); break; case Instruction::FILL_ARRAY_DATA: GenFillArrayData(mir, vB, rl_src[0]); break; case Instruction::FILLED_NEW_ARRAY: GenFilledNewArray(mir_graph_->NewMemCallInfo(bb, mir, kStatic, false /* not range */)); break; case Instruction::FILLED_NEW_ARRAY_RANGE: GenFilledNewArray(mir_graph_->NewMemCallInfo(bb, mir, kStatic, true /* range */)); break; case Instruction::NEW_ARRAY: GenNewArray(vC, rl_dest, rl_src[0]); break; case Instruction::GOTO: case Instruction::GOTO_16: case Instruction::GOTO_32: if (mir_graph_->IsBackEdge(bb, bb->taken)) { GenSuspendTestAndBranch(opt_flags, &label_list[bb->taken]); } else { OpUnconditionalBranch(&label_list[bb->taken]); } break; case Instruction::PACKED_SWITCH: GenPackedSwitch(mir, vB, rl_src[0]); break; case Instruction::SPARSE_SWITCH: GenSparseSwitch(mir, vB, rl_src[0]); break; case Instruction::CMPL_FLOAT: case Instruction::CMPG_FLOAT: case Instruction::CMPL_DOUBLE: case Instruction::CMPG_DOUBLE: GenCmpFP(opcode, rl_dest, rl_src[0], rl_src[1]); break; case Instruction::CMP_LONG: GenCmpLong(rl_dest, rl_src[0], rl_src[1]); break; case Instruction::IF_EQ: case Instruction::IF_NE: case Instruction::IF_LT: case Instruction::IF_GE: case Instruction::IF_GT: case Instruction::IF_LE: { if (mir_graph_->IsBackEdge(bb, bb->taken) || mir_graph_->IsBackEdge(bb, bb->fall_through)) { GenSuspendTest(opt_flags); } LIR* taken = &label_list[bb->taken]; GenCompareAndBranch(opcode, rl_src[0], rl_src[1], taken); break; } case Instruction::IF_EQZ: case Instruction::IF_NEZ: case Instruction::IF_LTZ: case Instruction::IF_GEZ: case Instruction::IF_GTZ: case Instruction::IF_LEZ: { if (mir_graph_->IsBackEdge(bb, bb->taken) || mir_graph_->IsBackEdge(bb, bb->fall_through)) { GenSuspendTest(opt_flags); } LIR* taken = &label_list[bb->taken]; GenCompareZeroAndBranch(opcode, rl_src[0], taken); break; } case Instruction::AGET_WIDE: GenArrayGet(opt_flags, rl_dest.fp ? kDouble : k64, rl_src[0], rl_src[1], rl_dest, 3); break; case Instruction::AGET_OBJECT: GenArrayGet(opt_flags, kReference, rl_src[0], rl_src[1], rl_dest, 2); break; case Instruction::AGET: GenArrayGet(opt_flags, rl_dest.fp ? kSingle : k32, rl_src[0], rl_src[1], rl_dest, 2); break; case Instruction::AGET_BOOLEAN: GenArrayGet(opt_flags, kUnsignedByte, rl_src[0], rl_src[1], rl_dest, 0); break; case Instruction::AGET_BYTE: GenArrayGet(opt_flags, kSignedByte, rl_src[0], rl_src[1], rl_dest, 0); break; case Instruction::AGET_CHAR: GenArrayGet(opt_flags, kUnsignedHalf, rl_src[0], rl_src[1], rl_dest, 1); break; case Instruction::AGET_SHORT: GenArrayGet(opt_flags, kSignedHalf, rl_src[0], rl_src[1], rl_dest, 1); break; case Instruction::APUT_WIDE: GenArrayPut(opt_flags, rl_src[0].fp ? kDouble : k64, rl_src[1], rl_src[2], rl_src[0], 3, false); break; case Instruction::APUT: GenArrayPut(opt_flags, rl_src[0].fp ? kSingle : k32, rl_src[1], rl_src[2], rl_src[0], 2, false); break; case Instruction::APUT_OBJECT: { bool is_null = mir_graph_->IsConstantNullRef(rl_src[0]); bool is_safe = is_null; // Always safe to store null. if (!is_safe) { // Check safety from verifier type information. const DexCompilationUnit* unit = mir_graph_->GetCurrentDexCompilationUnit(); is_safe = cu_->compiler_driver->IsSafeCast(unit, mir->offset); } if (is_null || is_safe) { // Store of constant null doesn't require an assignability test and can be generated inline // without fixed register usage or a card mark. GenArrayPut(opt_flags, kReference, rl_src[1], rl_src[2], rl_src[0], 2, !is_null); } else { GenArrayObjPut(opt_flags, rl_src[1], rl_src[2], rl_src[0]); } break; } case Instruction::APUT_SHORT: case Instruction::APUT_CHAR: GenArrayPut(opt_flags, kUnsignedHalf, rl_src[1], rl_src[2], rl_src[0], 1, false); break; case Instruction::APUT_BYTE: case Instruction::APUT_BOOLEAN: GenArrayPut(opt_flags, kUnsignedByte, rl_src[1], rl_src[2], rl_src[0], 0, false); break; case Instruction::IGET_OBJECT_QUICK: case Instruction::IGET_OBJECT: GenIGet(mir, opt_flags, kReference, Primitive::kPrimNot, rl_dest, rl_src[0]); break; case Instruction::IGET_WIDE_QUICK: case Instruction::IGET_WIDE: // kPrimLong and kPrimDouble share the same entrypoints. if (rl_dest.fp) { GenIGet(mir, opt_flags, kDouble, Primitive::kPrimDouble, rl_dest, rl_src[0]); } else { GenIGet(mir, opt_flags, k64, Primitive::kPrimLong, rl_dest, rl_src[0]); } break; case Instruction::IGET_QUICK: case Instruction::IGET: if (rl_dest.fp) { GenIGet(mir, opt_flags, kSingle, Primitive::kPrimFloat, rl_dest, rl_src[0]); } else { GenIGet(mir, opt_flags, k32, Primitive::kPrimInt, rl_dest, rl_src[0]); } break; case Instruction::IGET_CHAR_QUICK: case Instruction::IGET_CHAR: GenIGet(mir, opt_flags, kUnsignedHalf, Primitive::kPrimChar, rl_dest, rl_src[0]); break; case Instruction::IGET_SHORT_QUICK: case Instruction::IGET_SHORT: GenIGet(mir, opt_flags, kSignedHalf, Primitive::kPrimShort, rl_dest, rl_src[0]); break; case Instruction::IGET_BOOLEAN_QUICK: case Instruction::IGET_BOOLEAN: GenIGet(mir, opt_flags, kUnsignedByte, Primitive::kPrimBoolean, rl_dest, rl_src[0]); break; case Instruction::IGET_BYTE_QUICK: case Instruction::IGET_BYTE: GenIGet(mir, opt_flags, kSignedByte, Primitive::kPrimByte, rl_dest, rl_src[0]); break; case Instruction::IPUT_WIDE_QUICK: case Instruction::IPUT_WIDE: GenIPut(mir, opt_flags, rl_src[0].fp ? kDouble : k64, rl_src[0], rl_src[1]); break; case Instruction::IPUT_OBJECT_QUICK: case Instruction::IPUT_OBJECT: GenIPut(mir, opt_flags, kReference, rl_src[0], rl_src[1]); break; case Instruction::IPUT_QUICK: case Instruction::IPUT: GenIPut(mir, opt_flags, rl_src[0].fp ? kSingle : k32, rl_src[0], rl_src[1]); break; case Instruction::IPUT_BYTE_QUICK: case Instruction::IPUT_BOOLEAN_QUICK: case Instruction::IPUT_BYTE: case Instruction::IPUT_BOOLEAN: GenIPut(mir, opt_flags, kUnsignedByte, rl_src[0], rl_src[1]); break; case Instruction::IPUT_CHAR_QUICK: case Instruction::IPUT_CHAR: GenIPut(mir, opt_flags, kUnsignedHalf, rl_src[0], rl_src[1]); break; case Instruction::IPUT_SHORT_QUICK: case Instruction::IPUT_SHORT: GenIPut(mir, opt_flags, kSignedHalf, rl_src[0], rl_src[1]); break; case Instruction::SGET_OBJECT: GenSget(mir, rl_dest, kReference, Primitive::kPrimNot); break; case Instruction::SGET: GenSget(mir, rl_dest, rl_dest.fp ? kSingle : k32, Primitive::kPrimInt); break; case Instruction::SGET_CHAR: GenSget(mir, rl_dest, kUnsignedHalf, Primitive::kPrimChar); break; case Instruction::SGET_SHORT: GenSget(mir, rl_dest, kSignedHalf, Primitive::kPrimShort); break; case Instruction::SGET_BOOLEAN: GenSget(mir, rl_dest, kUnsignedByte, Primitive::kPrimBoolean); break; case Instruction::SGET_BYTE: GenSget(mir, rl_dest, kSignedByte, Primitive::kPrimByte); break; case Instruction::SGET_WIDE: // kPrimLong and kPrimDouble share the same entrypoints. GenSget(mir, rl_dest, rl_dest.fp ? kDouble : k64, Primitive::kPrimDouble); break; case Instruction::SPUT_OBJECT: GenSput(mir, rl_src[0], kReference); break; case Instruction::SPUT: GenSput(mir, rl_src[0], rl_src[0].fp ? kSingle : k32); break; case Instruction::SPUT_BYTE: case Instruction::SPUT_BOOLEAN: GenSput(mir, rl_src[0], kUnsignedByte); break; case Instruction::SPUT_CHAR: GenSput(mir, rl_src[0], kUnsignedHalf); break; case Instruction::SPUT_SHORT: GenSput(mir, rl_src[0], kSignedHalf); break; case Instruction::SPUT_WIDE: GenSput(mir, rl_src[0], rl_src[0].fp ? kDouble : k64); break; case Instruction::INVOKE_STATIC_RANGE: GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kStatic, true)); break; case Instruction::INVOKE_STATIC: GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kStatic, false)); break; case Instruction::INVOKE_DIRECT: GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kDirect, false)); break; case Instruction::INVOKE_DIRECT_RANGE: GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kDirect, true)); break; case Instruction::INVOKE_VIRTUAL_QUICK: case Instruction::INVOKE_VIRTUAL: GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kVirtual, false)); break; case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: case Instruction::INVOKE_VIRTUAL_RANGE: GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kVirtual, true)); break; case Instruction::INVOKE_SUPER: GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kSuper, false)); break; case Instruction::INVOKE_SUPER_RANGE: GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kSuper, true)); break; case Instruction::INVOKE_INTERFACE: GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kInterface, false)); break; case Instruction::INVOKE_INTERFACE_RANGE: GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kInterface, true)); break; case Instruction::NEG_INT: case Instruction::NOT_INT: GenArithOpInt(opcode, rl_dest, rl_src[0], rl_src[0], opt_flags); break; case Instruction::NEG_LONG: case Instruction::NOT_LONG: GenArithOpLong(opcode, rl_dest, rl_src[0], rl_src[0], opt_flags); break; case Instruction::NEG_FLOAT: GenArithOpFloat(opcode, rl_dest, rl_src[0], rl_src[0]); break; case Instruction::NEG_DOUBLE: GenArithOpDouble(opcode, rl_dest, rl_src[0], rl_src[0]); break; case Instruction::INT_TO_LONG: GenIntToLong(rl_dest, rl_src[0]); break; case Instruction::LONG_TO_INT: GenLongToInt(rl_dest, rl_src[0]); break; case Instruction::INT_TO_BYTE: case Instruction::INT_TO_SHORT: case Instruction::INT_TO_CHAR: GenIntNarrowing(opcode, rl_dest, rl_src[0]); break; case Instruction::INT_TO_FLOAT: case Instruction::INT_TO_DOUBLE: case Instruction::LONG_TO_FLOAT: case Instruction::LONG_TO_DOUBLE: case Instruction::FLOAT_TO_INT: case Instruction::FLOAT_TO_LONG: case Instruction::FLOAT_TO_DOUBLE: case Instruction::DOUBLE_TO_INT: case Instruction::DOUBLE_TO_LONG: case Instruction::DOUBLE_TO_FLOAT: GenConversion(opcode, rl_dest, rl_src[0]); break; case Instruction::ADD_INT: case Instruction::ADD_INT_2ADDR: case Instruction::MUL_INT: case Instruction::MUL_INT_2ADDR: case Instruction::AND_INT: case Instruction::AND_INT_2ADDR: case Instruction::OR_INT: case Instruction::OR_INT_2ADDR: case Instruction::XOR_INT: case Instruction::XOR_INT_2ADDR: if (rl_src[0].is_const && InexpensiveConstantInt(mir_graph_->ConstantValue(rl_src[0]), opcode)) { GenArithOpIntLit(opcode, rl_dest, rl_src[1], mir_graph_->ConstantValue(rl_src[0].orig_sreg)); } else if (rl_src[1].is_const && InexpensiveConstantInt(mir_graph_->ConstantValue(rl_src[1]), opcode)) { GenArithOpIntLit(opcode, rl_dest, rl_src[0], mir_graph_->ConstantValue(rl_src[1].orig_sreg)); } else { GenArithOpInt(opcode, rl_dest, rl_src[0], rl_src[1], opt_flags); } break; case Instruction::SUB_INT: case Instruction::SUB_INT_2ADDR: case Instruction::DIV_INT: case Instruction::DIV_INT_2ADDR: case Instruction::REM_INT: case Instruction::REM_INT_2ADDR: case Instruction::SHL_INT: case Instruction::SHL_INT_2ADDR: case Instruction::SHR_INT: case Instruction::SHR_INT_2ADDR: case Instruction::USHR_INT: case Instruction::USHR_INT_2ADDR: if (rl_src[1].is_const && InexpensiveConstantInt(mir_graph_->ConstantValue(rl_src[1]), opcode)) { GenArithOpIntLit(opcode, rl_dest, rl_src[0], mir_graph_->ConstantValue(rl_src[1])); } else { GenArithOpInt(opcode, rl_dest, rl_src[0], rl_src[1], opt_flags); } break; case Instruction::ADD_LONG: case Instruction::SUB_LONG: case Instruction::AND_LONG: case Instruction::OR_LONG: case Instruction::XOR_LONG: case Instruction::ADD_LONG_2ADDR: case Instruction::SUB_LONG_2ADDR: case Instruction::AND_LONG_2ADDR: case Instruction::OR_LONG_2ADDR: case Instruction::XOR_LONG_2ADDR: if (rl_src[0].is_const || rl_src[1].is_const) { GenArithImmOpLong(opcode, rl_dest, rl_src[0], rl_src[1], opt_flags); break; } FALLTHROUGH_INTENDED; case Instruction::MUL_LONG: case Instruction::DIV_LONG: case Instruction::REM_LONG: case Instruction::MUL_LONG_2ADDR: case Instruction::DIV_LONG_2ADDR: case Instruction::REM_LONG_2ADDR: GenArithOpLong(opcode, rl_dest, rl_src[0], rl_src[1], opt_flags); break; case Instruction::SHL_LONG: case Instruction::SHR_LONG: case Instruction::USHR_LONG: case Instruction::SHL_LONG_2ADDR: case Instruction::SHR_LONG_2ADDR: case Instruction::USHR_LONG_2ADDR: if (rl_src[1].is_const) { GenShiftImmOpLong(opcode, rl_dest, rl_src[0], rl_src[1], opt_flags); } else { GenShiftOpLong(opcode, rl_dest, rl_src[0], rl_src[1]); } break; case Instruction::DIV_FLOAT: case Instruction::DIV_FLOAT_2ADDR: if (HandleEasyFloatingPointDiv(rl_dest, rl_src[0], rl_src[1])) { break; } FALLTHROUGH_INTENDED; case Instruction::ADD_FLOAT: case Instruction::SUB_FLOAT: case Instruction::MUL_FLOAT: case Instruction::REM_FLOAT: case Instruction::ADD_FLOAT_2ADDR: case Instruction::SUB_FLOAT_2ADDR: case Instruction::MUL_FLOAT_2ADDR: case Instruction::REM_FLOAT_2ADDR: GenArithOpFloat(opcode, rl_dest, rl_src[0], rl_src[1]); break; case Instruction::DIV_DOUBLE: case Instruction::DIV_DOUBLE_2ADDR: if (HandleEasyFloatingPointDiv(rl_dest, rl_src[0], rl_src[1])) { break; } FALLTHROUGH_INTENDED; case Instruction::ADD_DOUBLE: case Instruction::SUB_DOUBLE: case Instruction::MUL_DOUBLE: case Instruction::REM_DOUBLE: case Instruction::ADD_DOUBLE_2ADDR: case Instruction::SUB_DOUBLE_2ADDR: case Instruction::MUL_DOUBLE_2ADDR: case Instruction::REM_DOUBLE_2ADDR: GenArithOpDouble(opcode, rl_dest, rl_src[0], rl_src[1]); break; case Instruction::RSUB_INT: case Instruction::ADD_INT_LIT16: case Instruction::MUL_INT_LIT16: case Instruction::DIV_INT_LIT16: case Instruction::REM_INT_LIT16: case Instruction::AND_INT_LIT16: case Instruction::OR_INT_LIT16: case Instruction::XOR_INT_LIT16: case Instruction::ADD_INT_LIT8: case Instruction::RSUB_INT_LIT8: case Instruction::MUL_INT_LIT8: case Instruction::DIV_INT_LIT8: case Instruction::REM_INT_LIT8: case Instruction::AND_INT_LIT8: case Instruction::OR_INT_LIT8: case Instruction::XOR_INT_LIT8: case Instruction::SHL_INT_LIT8: case Instruction::SHR_INT_LIT8: case Instruction::USHR_INT_LIT8: GenArithOpIntLit(opcode, rl_dest, rl_src[0], vC); break; default: LOG(FATAL) << "Unexpected opcode: " << opcode; } DCHECK(CheckCorePoolSanity()); } // NOLINT(readability/fn_size) // Process extended MIR instructions void Mir2Lir::HandleExtendedMethodMIR(BasicBlock* bb, MIR* mir) { switch (static_cast(mir->dalvikInsn.opcode)) { case kMirOpCopy: { RegLocation rl_src = mir_graph_->GetSrc(mir, 0); RegLocation rl_dest = mir_graph_->GetDest(mir); StoreValue(rl_dest, rl_src); break; } case kMirOpFusedCmplFloat: if (mir_graph_->IsBackEdge(bb, bb->taken) || mir_graph_->IsBackEdge(bb, bb->fall_through)) { GenSuspendTest(mir->optimization_flags); } GenFusedFPCmpBranch(bb, mir, false /*gt bias*/, false /*double*/); break; case kMirOpFusedCmpgFloat: if (mir_graph_->IsBackEdge(bb, bb->taken) || mir_graph_->IsBackEdge(bb, bb->fall_through)) { GenSuspendTest(mir->optimization_flags); } GenFusedFPCmpBranch(bb, mir, true /*gt bias*/, false /*double*/); break; case kMirOpFusedCmplDouble: if (mir_graph_->IsBackEdge(bb, bb->taken) || mir_graph_->IsBackEdge(bb, bb->fall_through)) { GenSuspendTest(mir->optimization_flags); } GenFusedFPCmpBranch(bb, mir, false /*gt bias*/, true /*double*/); break; case kMirOpFusedCmpgDouble: if (mir_graph_->IsBackEdge(bb, bb->taken) || mir_graph_->IsBackEdge(bb, bb->fall_through)) { GenSuspendTest(mir->optimization_flags); } GenFusedFPCmpBranch(bb, mir, true /*gt bias*/, true /*double*/); break; case kMirOpFusedCmpLong: if (mir_graph_->IsBackEdge(bb, bb->taken) || mir_graph_->IsBackEdge(bb, bb->fall_through)) { GenSuspendTest(mir->optimization_flags); } GenFusedLongCmpBranch(bb, mir); break; case kMirOpSelect: GenSelect(bb, mir); break; case kMirOpNullCheck: { RegLocation rl_obj = mir_graph_->GetSrc(mir, 0); rl_obj = LoadValue(rl_obj, kRefReg); // An explicit check is done because it is not expected that when this is used, // that it will actually trip up the implicit checks (since an invalid access // is needed on the null object). GenExplicitNullCheck(rl_obj.reg, mir->optimization_flags); break; } case kMirOpPhi: case kMirOpNop: case kMirOpRangeCheck: case kMirOpDivZeroCheck: case kMirOpCheck: // Ignore these known opcodes break; default: // Give the backends a chance to handle unknown extended MIR opcodes. GenMachineSpecificExtendedMethodMIR(bb, mir); break; } } void Mir2Lir::GenPrintLabel(MIR* mir) { // Mark the beginning of a Dalvik instruction for line tracking. if (cu_->verbose) { char* inst_str = mir_graph_->GetDalvikDisassembly(mir); MarkBoundary(mir->offset, inst_str); } } // Handle the content in each basic block. bool Mir2Lir::MethodBlockCodeGen(BasicBlock* bb) { if (bb->block_type == kDead) return false; current_dalvik_offset_ = bb->start_offset; MIR* mir; int block_id = bb->id; block_label_list_[block_id].operands[0] = bb->start_offset; // Insert the block label. block_label_list_[block_id].opcode = kPseudoNormalBlockLabel; block_label_list_[block_id].flags.fixup = kFixupLabel; AppendLIR(&block_label_list_[block_id]); LIR* head_lir = nullptr; // If this is a catch block, export the start address. if (bb->catch_entry) { head_lir = NewLIR0(kPseudoExportedPC); } // Free temp registers and reset redundant store tracking. ClobberAllTemps(); if (bb->block_type == kEntryBlock) { ResetRegPool(); int start_vreg = mir_graph_->GetFirstInVR(); AppendLIR(NewLIR0(kPseudoPrologueBegin)); DCHECK_EQ(cu_->target64, Is64BitInstructionSet(cu_->instruction_set)); if (cu_->target64) { DCHECK(mir_graph_->GetMethodLoc().wide); } GenEntrySequence(&mir_graph_->reg_location_[start_vreg], mir_graph_->GetMethodLoc()); AppendLIR(NewLIR0(kPseudoPrologueEnd)); DCHECK_EQ(cfi_.GetCurrentCFAOffset(), frame_size_); } else if (bb->block_type == kExitBlock) { ResetRegPool(); DCHECK_EQ(cfi_.GetCurrentCFAOffset(), frame_size_); AppendLIR(NewLIR0(kPseudoEpilogueBegin)); GenExitSequence(); AppendLIR(NewLIR0(kPseudoEpilogueEnd)); DCHECK_EQ(cfi_.GetCurrentCFAOffset(), frame_size_); } for (mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) { ResetRegPool(); if (cu_->disable_opt & (1 << kTrackLiveTemps)) { ClobberAllTemps(); // Reset temp allocation to minimize differences when A/B testing. reg_pool_->ResetNextTemp(); } if (cu_->disable_opt & (1 << kSuppressLoads)) { ResetDefTracking(); } // Reset temp tracking sanity check. if (kIsDebugBuild) { live_sreg_ = INVALID_SREG; } current_dalvik_offset_ = mir->offset; current_mir_ = mir; int opcode = mir->dalvikInsn.opcode; GenPrintLabel(mir); // Remember the first LIR for this block. if (head_lir == nullptr) { head_lir = &block_label_list_[bb->id]; // Set the first label as a scheduling barrier. DCHECK(!head_lir->flags.use_def_invalid); head_lir->u.m.def_mask = &kEncodeAll; } MachineSpecificPreprocessMIR(bb, mir); if (MIR::DecodedInstruction::IsPseudoMirOp(opcode)) { HandleExtendedMethodMIR(bb, mir); continue; } CompileDalvikInstruction(mir, bb, block_label_list_); } if (head_lir) { // Eliminate redundant loads/stores and delay stores into later slots. ApplyLocalOptimizations(head_lir, last_lir_insn_); // Apply architecture-specific optimizations ApplyArchOptimizations(head_lir, last_lir_insn_, bb); } return false; } bool Mir2Lir::SpecialMIR2LIR(const InlineMethod& special) { cu_->NewTimingSplit("SpecialMIR2LIR"); // Find the first DalvikByteCode block. DCHECK_EQ(mir_graph_->GetNumReachableBlocks(), mir_graph_->GetDfsOrder().size()); BasicBlock*bb = nullptr; for (BasicBlockId dfs_id : mir_graph_->GetDfsOrder()) { BasicBlock* candidate = mir_graph_->GetBasicBlock(dfs_id); if (candidate->block_type == kDalvikByteCode) { bb = candidate; break; } } if (bb == nullptr) { return false; } DCHECK_EQ(bb->start_offset, 0); DCHECK(bb->first_mir_insn != nullptr); // Get the first instruction. MIR* mir = bb->first_mir_insn; // Free temp registers and reset redundant store tracking. ResetRegPool(); ResetDefTracking(); ClobberAllTemps(); return GenSpecialCase(bb, mir, special); } void Mir2Lir::MethodMIR2LIR() { cu_->NewTimingSplit("MIR2LIR"); // Hold the labels of each block. block_label_list_ = arena_->AllocArray(mir_graph_->GetNumBlocks(), kArenaAllocLIR); PreOrderDfsIterator iter(mir_graph_); BasicBlock* curr_bb = iter.Next(); BasicBlock* next_bb = iter.Next(); while (curr_bb != nullptr) { MethodBlockCodeGen(curr_bb); // If the fall_through block is no longer laid out consecutively, drop in a branch. BasicBlock* curr_bb_fall_through = mir_graph_->GetBasicBlock(curr_bb->fall_through); if ((curr_bb_fall_through != nullptr) && (curr_bb_fall_through != next_bb)) { OpUnconditionalBranch(&block_label_list_[curr_bb->fall_through]); } curr_bb = next_bb; do { next_bb = iter.Next(); } while ((next_bb != nullptr) && (next_bb->block_type == kDead)); } HandleSlowPaths(); } // // LIR Slow Path // LIR* Mir2Lir::LIRSlowPath::GenerateTargetLabel(int opcode) { m2l_->SetCurrentDexPc(current_dex_pc_); m2l_->current_mir_ = current_mir_; LIR* target = m2l_->NewLIR0(opcode); fromfast_->target = target; return target; } void Mir2Lir::CheckRegStorageImpl(RegStorage rs, WidenessCheck wide, RefCheck ref, FPCheck fp, bool fail, bool report) const { if (rs.Valid()) { if (ref == RefCheck::kCheckRef) { if (cu_->target64 && !rs.Is64Bit()) { if (fail) { CHECK(false) << "Reg storage not 64b for ref."; } else if (report) { LOG(WARNING) << "Reg storage not 64b for ref."; } } } if (wide == WidenessCheck::kCheckWide) { if (!rs.Is64Bit()) { if (fail) { CHECK(false) << "Reg storage not 64b for wide."; } else if (report) { LOG(WARNING) << "Reg storage not 64b for wide."; } } } // A tighter check would be nice, but for now soft-float will not check float at all. if (fp == FPCheck::kCheckFP && cu_->instruction_set != kArm) { if (!rs.IsFloat()) { if (fail) { CHECK(false) << "Reg storage not float for fp."; } else if (report) { LOG(WARNING) << "Reg storage not float for fp."; } } } else if (fp == FPCheck::kCheckNotFP) { if (rs.IsFloat()) { if (fail) { CHECK(false) << "Reg storage float for not-fp."; } else if (report) { LOG(WARNING) << "Reg storage float for not-fp."; } } } } } void Mir2Lir::CheckRegLocationImpl(RegLocation rl, bool fail, bool report) const { // Regrettably can't use the fp part of rl, as that is not really indicative of where a value // will be stored. CheckRegStorageImpl(rl.reg, rl.wide ? WidenessCheck::kCheckWide : WidenessCheck::kCheckNotWide, rl.ref ? RefCheck::kCheckRef : RefCheck::kCheckNotRef, FPCheck::kIgnoreFP, fail, report); } size_t Mir2Lir::GetInstructionOffset(LIR* lir) { UNUSED(lir); UNIMPLEMENTED(FATAL) << "Unsupported GetInstructionOffset()"; UNREACHABLE(); } void Mir2Lir::InToRegStorageMapping::Initialize(ShortyIterator* shorty, InToRegStorageMapper* mapper) { DCHECK(mapper != nullptr); DCHECK(shorty != nullptr); DCHECK(!IsInitialized()); DCHECK_EQ(end_mapped_in_, 0u); DCHECK(!has_arguments_on_stack_); while (shorty->Next()) { ShortyArg arg = shorty->GetArg(); RegStorage reg = mapper->GetNextReg(arg); mapping_.emplace_back(arg, reg); if (arg.IsWide()) { mapping_.emplace_back(ShortyArg(kInvalidShorty), RegStorage::InvalidReg()); } if (reg.Valid()) { end_mapped_in_ = mapping_.size(); // If the VR is wide but wasn't mapped as wide then account for it. if (arg.IsWide() && !reg.Is64Bit()) { --end_mapped_in_; } } else { has_arguments_on_stack_ = true; } } initialized_ = true; } RegStorage Mir2Lir::InToRegStorageMapping::GetReg(size_t in_position) { DCHECK(IsInitialized()); DCHECK_LT(in_position, mapping_.size()); DCHECK_NE(mapping_[in_position].first.GetType(), kInvalidShorty); return mapping_[in_position].second; } Mir2Lir::ShortyArg Mir2Lir::InToRegStorageMapping::GetShorty(size_t in_position) { DCHECK(IsInitialized()); DCHECK_LT(static_cast(in_position), mapping_.size()); DCHECK_NE(mapping_[in_position].first.GetType(), kInvalidShorty); return mapping_[in_position].first; } } // namespace art