/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "verified_method.h" #include #include #include #include "base/logging.h" #include "base/stl_util.h" #include "dex_file.h" #include "dex_instruction.h" #include "dex_instruction-inl.h" #include "base/mutex.h" #include "base/mutex-inl.h" #include "mirror/art_method.h" #include "mirror/art_method-inl.h" #include "mirror/class.h" #include "mirror/class-inl.h" #include "mirror/dex_cache.h" #include "mirror/dex_cache-inl.h" #include "mirror/object.h" #include "mirror/object-inl.h" #include "verifier/dex_gc_map.h" #include "verifier/method_verifier.h" #include "verifier/method_verifier-inl.h" #include "verifier/reg_type-inl.h" #include "verifier/register_line-inl.h" namespace art { const VerifiedMethod* VerifiedMethod::Create(verifier::MethodVerifier* method_verifier, bool compile) { std::unique_ptr verified_method(new VerifiedMethod); if (compile) { /* Generate a register map. */ if (!verified_method->GenerateGcMap(method_verifier)) { CHECK(method_verifier->HasFailures()); return nullptr; // Not a real failure, but a failure to encode. } if (kIsDebugBuild) { VerifyGcMap(method_verifier, verified_method->dex_gc_map_); } // TODO: move this out when DEX-to-DEX supports devirtualization. if (method_verifier->HasVirtualOrInterfaceInvokes()) { verified_method->GenerateDevirtMap(method_verifier); } } if (method_verifier->HasCheckCasts()) { verified_method->GenerateSafeCastSet(method_verifier); } return verified_method.release(); } const MethodReference* VerifiedMethod::GetDevirtTarget(uint32_t dex_pc) const { auto it = devirt_map_.find(dex_pc); return (it != devirt_map_.end()) ? &it->second : nullptr; } bool VerifiedMethod::IsSafeCast(uint32_t pc) const { return std::binary_search(safe_cast_set_.begin(), safe_cast_set_.end(), pc); } bool VerifiedMethod::GenerateGcMap(verifier::MethodVerifier* method_verifier) { DCHECK(dex_gc_map_.empty()); size_t num_entries, ref_bitmap_bits, pc_bits; ComputeGcMapSizes(method_verifier, &num_entries, &ref_bitmap_bits, &pc_bits); // There's a single byte to encode the size of each bitmap. if (ref_bitmap_bits >= (8 /* bits per byte */ * 8192 /* 13-bit size */ )) { // TODO: either a better GC map format or per method failures method_verifier->Fail(verifier::VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot encode GC map for method with " << ref_bitmap_bits << " registers"; return false; } size_t ref_bitmap_bytes = (ref_bitmap_bits + 7) / 8; // There are 2 bytes to encode the number of entries. if (num_entries >= 65536) { // TODO: Either a better GC map format or per method failures. method_verifier->Fail(verifier::VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot encode GC map for method with " << num_entries << " entries"; return false; } size_t pc_bytes; verifier::RegisterMapFormat format; if (pc_bits <= 8) { format = verifier::kRegMapFormatCompact8; pc_bytes = 1; } else if (pc_bits <= 16) { format = verifier::kRegMapFormatCompact16; pc_bytes = 2; } else { // TODO: Either a better GC map format or per method failures. method_verifier->Fail(verifier::VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot encode GC map for method with " << (1 << pc_bits) << " instructions (number is rounded up to nearest power of 2)"; return false; } size_t table_size = ((pc_bytes + ref_bitmap_bytes) * num_entries) + 4; dex_gc_map_.reserve(table_size); // Write table header. dex_gc_map_.push_back(format | ((ref_bitmap_bytes & ~0xFF) >> 5)); dex_gc_map_.push_back(ref_bitmap_bytes & 0xFF); dex_gc_map_.push_back(num_entries & 0xFF); dex_gc_map_.push_back((num_entries >> 8) & 0xFF); // Write table data. const DexFile::CodeItem* code_item = method_verifier->CodeItem(); for (size_t i = 0; i < code_item->insns_size_in_code_units_; i++) { if (method_verifier->GetInstructionFlags(i).IsCompileTimeInfoPoint()) { dex_gc_map_.push_back(i & 0xFF); if (pc_bytes == 2) { dex_gc_map_.push_back((i >> 8) & 0xFF); } verifier::RegisterLine* line = method_verifier->GetRegLine(i); line->WriteReferenceBitMap(method_verifier, &dex_gc_map_, ref_bitmap_bytes); } } DCHECK_EQ(dex_gc_map_.size(), table_size); return true; } void VerifiedMethod::VerifyGcMap(verifier::MethodVerifier* method_verifier, const std::vector& data) { // Check that for every GC point there is a map entry, there aren't entries for non-GC points, // that the table data is well formed and all references are marked (or not) in the bitmap. verifier::DexPcToReferenceMap map(&data[0]); DCHECK_EQ(data.size(), map.RawSize()); size_t map_index = 0; const DexFile::CodeItem* code_item = method_verifier->CodeItem(); for (size_t i = 0; i < code_item->insns_size_in_code_units_; i++) { const uint8_t* reg_bitmap = map.FindBitMap(i, false); if (method_verifier->GetInstructionFlags(i).IsCompileTimeInfoPoint()) { DCHECK_LT(map_index, map.NumEntries()); DCHECK_EQ(map.GetDexPc(map_index), i); DCHECK_EQ(map.GetBitMap(map_index), reg_bitmap); map_index++; verifier::RegisterLine* line = method_verifier->GetRegLine(i); for (size_t j = 0; j < code_item->registers_size_; j++) { if (line->GetRegisterType(method_verifier, j).IsNonZeroReferenceTypes()) { DCHECK_LT(j / 8, map.RegWidth()); DCHECK_EQ((reg_bitmap[j / 8] >> (j % 8)) & 1, 1); } else if ((j / 8) < map.RegWidth()) { DCHECK_EQ((reg_bitmap[j / 8] >> (j % 8)) & 1, 0); } else { // If a register doesn't contain a reference then the bitmap may be shorter than the line. } } } else { DCHECK(reg_bitmap == NULL); } } } void VerifiedMethod::ComputeGcMapSizes(verifier::MethodVerifier* method_verifier, size_t* gc_points, size_t* ref_bitmap_bits, size_t* log2_max_gc_pc) { size_t local_gc_points = 0; size_t max_insn = 0; size_t max_ref_reg = -1; const DexFile::CodeItem* code_item = method_verifier->CodeItem(); for (size_t i = 0; i < code_item->insns_size_in_code_units_; i++) { if (method_verifier->GetInstructionFlags(i).IsCompileTimeInfoPoint()) { local_gc_points++; max_insn = i; verifier::RegisterLine* line = method_verifier->GetRegLine(i); max_ref_reg = line->GetMaxNonZeroReferenceReg(method_verifier, max_ref_reg); } } *gc_points = local_gc_points; *ref_bitmap_bits = max_ref_reg + 1; // If max register is 0 we need 1 bit to encode (ie +1). size_t i = 0; while ((1U << i) <= max_insn) { i++; } *log2_max_gc_pc = i; } void VerifiedMethod::GenerateDevirtMap(verifier::MethodVerifier* method_verifier) { // It is risky to rely on reg_types for sharpening in cases of soft // verification, we might end up sharpening to a wrong implementation. Just abort. if (method_verifier->HasFailures()) { return; } const DexFile::CodeItem* code_item = method_verifier->CodeItem(); const uint16_t* insns = code_item->insns_; const Instruction* inst = Instruction::At(insns); const Instruction* end = Instruction::At(insns + code_item->insns_size_in_code_units_); for (; inst < end; inst = inst->Next()) { bool is_virtual = (inst->Opcode() == Instruction::INVOKE_VIRTUAL) || (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE); bool is_interface = (inst->Opcode() == Instruction::INVOKE_INTERFACE) || (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE); if (!is_interface && !is_virtual) { continue; } // Get reg type for register holding the reference to the object that will be dispatched upon. uint32_t dex_pc = inst->GetDexPc(insns); verifier::RegisterLine* line = method_verifier->GetRegLine(dex_pc); bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE) || (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE); const verifier::RegType& reg_type(line->GetRegisterType(method_verifier, is_range ? inst->VRegC_3rc() : inst->VRegC_35c())); if (!reg_type.HasClass()) { // We will compute devirtualization information only when we know the Class of the reg type. continue; } mirror::Class* reg_class = reg_type.GetClass(); if (reg_class->IsInterface()) { // We can't devirtualize when the known type of the register is an interface. continue; } if (reg_class->IsAbstract() && !reg_class->IsArrayClass()) { // We can't devirtualize abstract classes except on arrays of abstract classes. continue; } mirror::ArtMethod* abstract_method = method_verifier->GetDexCache()->GetResolvedMethod( is_range ? inst->VRegB_3rc() : inst->VRegB_35c()); if (abstract_method == NULL) { // If the method is not found in the cache this means that it was never found // by ResolveMethodAndCheckAccess() called when verifying invoke_*. continue; } // Find the concrete method. mirror::ArtMethod* concrete_method = NULL; if (is_interface) { concrete_method = reg_type.GetClass()->FindVirtualMethodForInterface(abstract_method); } if (is_virtual) { concrete_method = reg_type.GetClass()->FindVirtualMethodForVirtual(abstract_method); } if (concrete_method == NULL || concrete_method->IsAbstract()) { // In cases where concrete_method is not found, or is abstract, continue to the next invoke. continue; } if (reg_type.IsPreciseReference() || concrete_method->IsFinal() || concrete_method->GetDeclaringClass()->IsFinal()) { // If we knew exactly the class being dispatched upon, or if the target method cannot be // overridden record the target to be used in the compiler driver. MethodReference concrete_ref( concrete_method->GetDeclaringClass()->GetDexCache()->GetDexFile(), concrete_method->GetDexMethodIndex()); devirt_map_.Put(dex_pc, concrete_ref); } } } void VerifiedMethod::GenerateSafeCastSet(verifier::MethodVerifier* method_verifier) { /* * Walks over the method code and adds any cast instructions in which * the type cast is implicit to a set, which is used in the code generation * to elide these casts. */ if (method_verifier->HasFailures()) { return; } const DexFile::CodeItem* code_item = method_verifier->CodeItem(); const Instruction* inst = Instruction::At(code_item->insns_); const Instruction* end = Instruction::At(code_item->insns_ + code_item->insns_size_in_code_units_); for (; inst < end; inst = inst->Next()) { Instruction::Code code = inst->Opcode(); if ((code == Instruction::CHECK_CAST) || (code == Instruction::APUT_OBJECT)) { uint32_t dex_pc = inst->GetDexPc(code_item->insns_); if (!method_verifier->GetInstructionFlags(dex_pc).IsVisited()) { // Do not attempt to quicken this instruction, it's unreachable anyway. continue; } const verifier::RegisterLine* line = method_verifier->GetRegLine(dex_pc); bool is_safe_cast = false; if (code == Instruction::CHECK_CAST) { const verifier::RegType& reg_type(line->GetRegisterType(method_verifier, inst->VRegA_21c())); const verifier::RegType& cast_type = method_verifier->ResolveCheckedClass(inst->VRegB_21c()); is_safe_cast = cast_type.IsStrictlyAssignableFrom(reg_type); } else { const verifier::RegType& array_type(line->GetRegisterType(method_verifier, inst->VRegB_23x())); // We only know its safe to assign to an array if the array type is precise. For example, // an Object[] can have any type of object stored in it, but it may also be assigned a // String[] in which case the stores need to be of Strings. if (array_type.IsPreciseReference()) { const verifier::RegType& value_type(line->GetRegisterType(method_verifier, inst->VRegA_23x())); const verifier::RegType& component_type = method_verifier->GetRegTypeCache() ->GetComponentType(array_type, method_verifier->GetClassLoader()); is_safe_cast = component_type.IsStrictlyAssignableFrom(value_type); } } if (is_safe_cast) { // Verify ordering for push_back() to the sorted vector. DCHECK(safe_cast_set_.empty() || safe_cast_set_.back() < dex_pc); safe_cast_set_.push_back(dex_pc); } } } } } // namespace art