/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "verified_method.h" #include #include #include #include "base/logging.h" #include "base/stl_util.h" #include "dex_file.h" #include "dex_instruction-inl.h" #include "dex_instruction_utils.h" #include "mirror/art_method-inl.h" #include "mirror/class-inl.h" #include "mirror/dex_cache-inl.h" #include "mirror/object-inl.h" #include "utils.h" #include "verifier/dex_gc_map.h" #include "verifier/method_verifier-inl.h" #include "verifier/reg_type-inl.h" #include "verifier/register_line-inl.h" namespace art { const VerifiedMethod* VerifiedMethod::Create(verifier::MethodVerifier* method_verifier, bool compile) { std::unique_ptr verified_method(new VerifiedMethod); verified_method->has_verification_failures_ = method_verifier->HasFailures(); if (compile) { /* Generate a register map. */ if (!verified_method->GenerateGcMap(method_verifier)) { return nullptr; // Not a real failure, but a failure to encode. } if (kIsDebugBuild) { VerifyGcMap(method_verifier, verified_method->dex_gc_map_); } // TODO: move this out when DEX-to-DEX supports devirtualization. if (method_verifier->HasVirtualOrInterfaceInvokes()) { verified_method->GenerateDevirtMap(method_verifier); } // Only need dequicken info for JIT so far. if (Runtime::Current()->UseJit() && !verified_method->GenerateDequickenMap(method_verifier)) { return nullptr; } } if (method_verifier->HasCheckCasts()) { verified_method->GenerateSafeCastSet(method_verifier); } return verified_method.release(); } const MethodReference* VerifiedMethod::GetDevirtTarget(uint32_t dex_pc) const { auto it = devirt_map_.find(dex_pc); return (it != devirt_map_.end()) ? &it->second : nullptr; } const DexFileReference* VerifiedMethod::GetDequickenIndex(uint32_t dex_pc) const { DCHECK(Runtime::Current()->UseJit()); auto it = dequicken_map_.find(dex_pc); return (it != dequicken_map_.end()) ? &it->second : nullptr; } bool VerifiedMethod::IsSafeCast(uint32_t pc) const { return std::binary_search(safe_cast_set_.begin(), safe_cast_set_.end(), pc); } bool VerifiedMethod::GenerateGcMap(verifier::MethodVerifier* method_verifier) { DCHECK(dex_gc_map_.empty()); size_t num_entries, ref_bitmap_bits, pc_bits; ComputeGcMapSizes(method_verifier, &num_entries, &ref_bitmap_bits, &pc_bits); // There's a single byte to encode the size of each bitmap. if (ref_bitmap_bits >= kBitsPerByte * 8192 /* 13-bit size */) { LOG(WARNING) << "Cannot encode GC map for method with " << ref_bitmap_bits << " registers: " << PrettyMethod(method_verifier->GetMethodReference().dex_method_index, *method_verifier->GetMethodReference().dex_file); return false; } size_t ref_bitmap_bytes = RoundUp(ref_bitmap_bits, kBitsPerByte) / kBitsPerByte; // There are 2 bytes to encode the number of entries. if (num_entries >= 65536) { LOG(WARNING) << "Cannot encode GC map for method with " << num_entries << " entries: " << PrettyMethod(method_verifier->GetMethodReference().dex_method_index, *method_verifier->GetMethodReference().dex_file); return false; } size_t pc_bytes; verifier::RegisterMapFormat format; if (pc_bits <= kBitsPerByte) { format = verifier::kRegMapFormatCompact8; pc_bytes = 1; } else if (pc_bits <= kBitsPerByte * 2) { format = verifier::kRegMapFormatCompact16; pc_bytes = 2; } else { LOG(WARNING) << "Cannot encode GC map for method with " << (1 << pc_bits) << " instructions (number is rounded up to nearest power of 2): " << PrettyMethod(method_verifier->GetMethodReference().dex_method_index, *method_verifier->GetMethodReference().dex_file); return false; } size_t table_size = ((pc_bytes + ref_bitmap_bytes) * num_entries) + 4; dex_gc_map_.reserve(table_size); // Write table header. dex_gc_map_.push_back(format | ((ref_bitmap_bytes & ~0xFF) >> 5)); dex_gc_map_.push_back(ref_bitmap_bytes & 0xFF); dex_gc_map_.push_back(num_entries & 0xFF); dex_gc_map_.push_back((num_entries >> 8) & 0xFF); // Write table data. const DexFile::CodeItem* code_item = method_verifier->CodeItem(); for (size_t i = 0; i < code_item->insns_size_in_code_units_; i++) { if (method_verifier->GetInstructionFlags(i).IsCompileTimeInfoPoint()) { dex_gc_map_.push_back(i & 0xFF); if (pc_bytes == 2) { dex_gc_map_.push_back((i >> 8) & 0xFF); } verifier::RegisterLine* line = method_verifier->GetRegLine(i); line->WriteReferenceBitMap(method_verifier, &dex_gc_map_, ref_bitmap_bytes); } } DCHECK_EQ(dex_gc_map_.size(), table_size); return true; } void VerifiedMethod::VerifyGcMap(verifier::MethodVerifier* method_verifier, const std::vector& data) { // Check that for every GC point there is a map entry, there aren't entries for non-GC points, // that the table data is well formed and all references are marked (or not) in the bitmap. verifier::DexPcToReferenceMap map(&data[0]); DCHECK_EQ(data.size(), map.RawSize()); size_t map_index = 0; const DexFile::CodeItem* code_item = method_verifier->CodeItem(); for (size_t i = 0; i < code_item->insns_size_in_code_units_; i++) { const uint8_t* reg_bitmap = map.FindBitMap(i, false); if (method_verifier->GetInstructionFlags(i).IsCompileTimeInfoPoint()) { DCHECK_LT(map_index, map.NumEntries()); DCHECK_EQ(map.GetDexPc(map_index), i); DCHECK_EQ(map.GetBitMap(map_index), reg_bitmap); map_index++; verifier::RegisterLine* line = method_verifier->GetRegLine(i); for (size_t j = 0; j < code_item->registers_size_; j++) { if (line->GetRegisterType(method_verifier, j).IsNonZeroReferenceTypes()) { DCHECK_LT(j / kBitsPerByte, map.RegWidth()); DCHECK_EQ((reg_bitmap[j / kBitsPerByte] >> (j % kBitsPerByte)) & 1, 1); } else if ((j / kBitsPerByte) < map.RegWidth()) { DCHECK_EQ((reg_bitmap[j / kBitsPerByte] >> (j % kBitsPerByte)) & 1, 0); } else { // If a register doesn't contain a reference then the bitmap may be shorter than the line. } } } else { DCHECK(i >= 65536 || reg_bitmap == NULL); } } } void VerifiedMethod::ComputeGcMapSizes(verifier::MethodVerifier* method_verifier, size_t* gc_points, size_t* ref_bitmap_bits, size_t* log2_max_gc_pc) { size_t local_gc_points = 0; size_t max_insn = 0; size_t max_ref_reg = -1; const DexFile::CodeItem* code_item = method_verifier->CodeItem(); for (size_t i = 0; i < code_item->insns_size_in_code_units_; i++) { if (method_verifier->GetInstructionFlags(i).IsCompileTimeInfoPoint()) { local_gc_points++; max_insn = i; verifier::RegisterLine* line = method_verifier->GetRegLine(i); max_ref_reg = line->GetMaxNonZeroReferenceReg(method_verifier, max_ref_reg); } } *gc_points = local_gc_points; *ref_bitmap_bits = max_ref_reg + 1; // If max register is 0 we need 1 bit to encode (ie +1). size_t i = 0; while ((1U << i) <= max_insn) { i++; } *log2_max_gc_pc = i; } bool VerifiedMethod::GenerateDequickenMap(verifier::MethodVerifier* method_verifier) { if (method_verifier->HasFailures()) { return false; } const DexFile::CodeItem* code_item = method_verifier->CodeItem(); const uint16_t* insns = code_item->insns_; const Instruction* inst = Instruction::At(insns); const Instruction* end = Instruction::At(insns + code_item->insns_size_in_code_units_); for (; inst < end; inst = inst->Next()) { const bool is_virtual_quick = inst->Opcode() == Instruction::INVOKE_VIRTUAL_QUICK; const bool is_range_quick = inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK; if (is_virtual_quick || is_range_quick) { uint32_t dex_pc = inst->GetDexPc(insns); verifier::RegisterLine* line = method_verifier->GetRegLine(dex_pc); mirror::ArtMethod* method = method_verifier->GetQuickInvokedMethod(inst, line, is_range_quick, true); if (method == nullptr) { // It can be null if the line wasn't verified since it was unreachable. return false; } // The verifier must know what the type of the object was or else we would have gotten a // failure. Put the dex method index in the dequicken map since we need this to get number of // arguments in the compiler. dequicken_map_.Put(dex_pc, DexFileReference(method->GetDexFile(), method->GetDexMethodIndex())); } else if (IsInstructionIGetQuickOrIPutQuick(inst->Opcode())) { uint32_t dex_pc = inst->GetDexPc(insns); verifier::RegisterLine* line = method_verifier->GetRegLine(dex_pc); ArtField* field = method_verifier->GetQuickFieldAccess(inst, line); if (field == nullptr) { // It can be null if the line wasn't verified since it was unreachable. return false; } // The verifier must know what the type of the field was or else we would have gotten a // failure. Put the dex field index in the dequicken map since we need this for lowering // in the compiler. // TODO: Putting a field index in a method reference is gross. dequicken_map_.Put(dex_pc, DexFileReference(field->GetDexFile(), field->GetDexFieldIndex())); } } return true; } void VerifiedMethod::GenerateDevirtMap(verifier::MethodVerifier* method_verifier) { // It is risky to rely on reg_types for sharpening in cases of soft // verification, we might end up sharpening to a wrong implementation. Just abort. if (method_verifier->HasFailures()) { return; } const DexFile::CodeItem* code_item = method_verifier->CodeItem(); const uint16_t* insns = code_item->insns_; const Instruction* inst = Instruction::At(insns); const Instruction* end = Instruction::At(insns + code_item->insns_size_in_code_units_); for (; inst < end; inst = inst->Next()) { const bool is_virtual = inst->Opcode() == Instruction::INVOKE_VIRTUAL || inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE; const bool is_interface = inst->Opcode() == Instruction::INVOKE_INTERFACE || inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE; if (!is_interface && !is_virtual) { continue; } // Get reg type for register holding the reference to the object that will be dispatched upon. uint32_t dex_pc = inst->GetDexPc(insns); verifier::RegisterLine* line = method_verifier->GetRegLine(dex_pc); const bool is_range = inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE || inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE; const verifier::RegType& reg_type(line->GetRegisterType(method_verifier, is_range ? inst->VRegC_3rc() : inst->VRegC_35c())); if (!reg_type.HasClass()) { // We will compute devirtualization information only when we know the Class of the reg type. continue; } mirror::Class* reg_class = reg_type.GetClass(); if (reg_class->IsInterface()) { // We can't devirtualize when the known type of the register is an interface. continue; } if (reg_class->IsAbstract() && !reg_class->IsArrayClass()) { // We can't devirtualize abstract classes except on arrays of abstract classes. continue; } mirror::ArtMethod* abstract_method = method_verifier->GetDexCache()->GetResolvedMethod( is_range ? inst->VRegB_3rc() : inst->VRegB_35c()); if (abstract_method == NULL) { // If the method is not found in the cache this means that it was never found // by ResolveMethodAndCheckAccess() called when verifying invoke_*. continue; } // Find the concrete method. mirror::ArtMethod* concrete_method = nullptr; if (is_interface) { concrete_method = reg_type.GetClass()->FindVirtualMethodForInterface(abstract_method); } if (is_virtual) { concrete_method = reg_type.GetClass()->FindVirtualMethodForVirtual(abstract_method); } if (concrete_method == nullptr || concrete_method->IsAbstract()) { // In cases where concrete_method is not found, or is abstract, continue to the next invoke. continue; } if (reg_type.IsPreciseReference() || concrete_method->IsFinal() || concrete_method->GetDeclaringClass()->IsFinal()) { // If we knew exactly the class being dispatched upon, or if the target method cannot be // overridden record the target to be used in the compiler driver. devirt_map_.Put(dex_pc, concrete_method->ToMethodReference()); } } } void VerifiedMethod::GenerateSafeCastSet(verifier::MethodVerifier* method_verifier) { /* * Walks over the method code and adds any cast instructions in which * the type cast is implicit to a set, which is used in the code generation * to elide these casts. */ if (method_verifier->HasFailures()) { return; } const DexFile::CodeItem* code_item = method_verifier->CodeItem(); const Instruction* inst = Instruction::At(code_item->insns_); const Instruction* end = Instruction::At(code_item->insns_ + code_item->insns_size_in_code_units_); for (; inst < end; inst = inst->Next()) { Instruction::Code code = inst->Opcode(); if ((code == Instruction::CHECK_CAST) || (code == Instruction::APUT_OBJECT)) { uint32_t dex_pc = inst->GetDexPc(code_item->insns_); if (!method_verifier->GetInstructionFlags(dex_pc).IsVisited()) { // Do not attempt to quicken this instruction, it's unreachable anyway. continue; } const verifier::RegisterLine* line = method_verifier->GetRegLine(dex_pc); bool is_safe_cast = false; if (code == Instruction::CHECK_CAST) { const verifier::RegType& reg_type(line->GetRegisterType(method_verifier, inst->VRegA_21c())); const verifier::RegType& cast_type = method_verifier->ResolveCheckedClass(inst->VRegB_21c()); is_safe_cast = cast_type.IsStrictlyAssignableFrom(reg_type); } else { const verifier::RegType& array_type(line->GetRegisterType(method_verifier, inst->VRegB_23x())); // We only know its safe to assign to an array if the array type is precise. For example, // an Object[] can have any type of object stored in it, but it may also be assigned a // String[] in which case the stores need to be of Strings. if (array_type.IsPreciseReference()) { const verifier::RegType& value_type(line->GetRegisterType(method_verifier, inst->VRegA_23x())); const verifier::RegType& component_type = method_verifier->GetRegTypeCache() ->GetComponentType(array_type, method_verifier->GetClassLoader()); is_safe_cast = component_type.IsStrictlyAssignableFrom(value_type); } } if (is_safe_cast) { // Verify ordering for push_back() to the sorted vector. DCHECK(safe_cast_set_.empty() || safe_cast_set_.back() < dex_pc); safe_cast_set_.push_back(dex_pc); } } } } } // namespace art