/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "compiler_driver.h" #define ATRACE_TAG ATRACE_TAG_DALVIK #include #include #include #include #include #include "base/stl_util.h" #include "base/timing_logger.h" #include "class_linker.h" #include "compiler.h" #include "compiler_driver-inl.h" #include "dex_compilation_unit.h" #include "dex_file-inl.h" #include "dex/verification_results.h" #include "dex/verified_method.h" #include "dex/quick/dex_file_method_inliner.h" #include "driver/compiler_options.h" #include "jni_internal.h" #include "object_utils.h" #include "runtime.h" #include "gc/accounting/card_table-inl.h" #include "gc/accounting/heap_bitmap.h" #include "gc/space/space.h" #include "mirror/art_field-inl.h" #include "mirror/art_method-inl.h" #include "mirror/class_loader.h" #include "mirror/class-inl.h" #include "mirror/dex_cache-inl.h" #include "mirror/object-inl.h" #include "mirror/object_array-inl.h" #include "mirror/throwable.h" #include "scoped_thread_state_change.h" #include "ScopedLocalRef.h" #include "sirt_ref-inl.h" #include "thread.h" #include "thread_pool.h" #include "trampolines/trampoline_compiler.h" #include "transaction.h" #include "verifier/method_verifier.h" #include "verifier/method_verifier-inl.h" #ifdef HAVE_ANDROID_OS #include "cutils/properties.h" #endif namespace art { static double Percentage(size_t x, size_t y) { return 100.0 * (static_cast(x)) / (static_cast(x + y)); } static void DumpStat(size_t x, size_t y, const char* str) { if (x == 0 && y == 0) { return; } LOG(INFO) << Percentage(x, y) << "% of " << str << " for " << (x + y) << " cases"; } class CompilerDriver::AOTCompilationStats { public: AOTCompilationStats() : stats_lock_("AOT compilation statistics lock"), types_in_dex_cache_(0), types_not_in_dex_cache_(0), strings_in_dex_cache_(0), strings_not_in_dex_cache_(0), resolved_types_(0), unresolved_types_(0), resolved_instance_fields_(0), unresolved_instance_fields_(0), resolved_local_static_fields_(0), resolved_static_fields_(0), unresolved_static_fields_(0), type_based_devirtualization_(0), safe_casts_(0), not_safe_casts_(0) { for (size_t i = 0; i <= kMaxInvokeType; i++) { resolved_methods_[i] = 0; unresolved_methods_[i] = 0; virtual_made_direct_[i] = 0; direct_calls_to_boot_[i] = 0; direct_methods_to_boot_[i] = 0; } } void Dump() { DumpStat(types_in_dex_cache_, types_not_in_dex_cache_, "types known to be in dex cache"); DumpStat(strings_in_dex_cache_, strings_not_in_dex_cache_, "strings known to be in dex cache"); DumpStat(resolved_types_, unresolved_types_, "types resolved"); DumpStat(resolved_instance_fields_, unresolved_instance_fields_, "instance fields resolved"); DumpStat(resolved_local_static_fields_ + resolved_static_fields_, unresolved_static_fields_, "static fields resolved"); DumpStat(resolved_local_static_fields_, resolved_static_fields_ + unresolved_static_fields_, "static fields local to a class"); DumpStat(safe_casts_, not_safe_casts_, "check-casts removed based on type information"); // Note, the code below subtracts the stat value so that when added to the stat value we have // 100% of samples. TODO: clean this up. DumpStat(type_based_devirtualization_, resolved_methods_[kVirtual] + unresolved_methods_[kVirtual] + resolved_methods_[kInterface] + unresolved_methods_[kInterface] - type_based_devirtualization_, "virtual/interface calls made direct based on type information"); for (size_t i = 0; i <= kMaxInvokeType; i++) { std::ostringstream oss; oss << static_cast(i) << " methods were AOT resolved"; DumpStat(resolved_methods_[i], unresolved_methods_[i], oss.str().c_str()); if (virtual_made_direct_[i] > 0) { std::ostringstream oss2; oss2 << static_cast(i) << " methods made direct"; DumpStat(virtual_made_direct_[i], resolved_methods_[i] + unresolved_methods_[i] - virtual_made_direct_[i], oss2.str().c_str()); } if (direct_calls_to_boot_[i] > 0) { std::ostringstream oss2; oss2 << static_cast(i) << " method calls are direct into boot"; DumpStat(direct_calls_to_boot_[i], resolved_methods_[i] + unresolved_methods_[i] - direct_calls_to_boot_[i], oss2.str().c_str()); } if (direct_methods_to_boot_[i] > 0) { std::ostringstream oss2; oss2 << static_cast(i) << " method calls have methods in boot"; DumpStat(direct_methods_to_boot_[i], resolved_methods_[i] + unresolved_methods_[i] - direct_methods_to_boot_[i], oss2.str().c_str()); } } } // Allow lossy statistics in non-debug builds. #ifndef NDEBUG #define STATS_LOCK() MutexLock mu(Thread::Current(), stats_lock_) #else #define STATS_LOCK() #endif void TypeInDexCache() { STATS_LOCK(); types_in_dex_cache_++; } void TypeNotInDexCache() { STATS_LOCK(); types_not_in_dex_cache_++; } void StringInDexCache() { STATS_LOCK(); strings_in_dex_cache_++; } void StringNotInDexCache() { STATS_LOCK(); strings_not_in_dex_cache_++; } void TypeDoesntNeedAccessCheck() { STATS_LOCK(); resolved_types_++; } void TypeNeedsAccessCheck() { STATS_LOCK(); unresolved_types_++; } void ResolvedInstanceField() { STATS_LOCK(); resolved_instance_fields_++; } void UnresolvedInstanceField() { STATS_LOCK(); unresolved_instance_fields_++; } void ResolvedLocalStaticField() { STATS_LOCK(); resolved_local_static_fields_++; } void ResolvedStaticField() { STATS_LOCK(); resolved_static_fields_++; } void UnresolvedStaticField() { STATS_LOCK(); unresolved_static_fields_++; } // Indicate that type information from the verifier led to devirtualization. void PreciseTypeDevirtualization() { STATS_LOCK(); type_based_devirtualization_++; } // Indicate that a method of the given type was resolved at compile time. void ResolvedMethod(InvokeType type) { DCHECK_LE(type, kMaxInvokeType); STATS_LOCK(); resolved_methods_[type]++; } // Indicate that a method of the given type was unresolved at compile time as it was in an // unknown dex file. void UnresolvedMethod(InvokeType type) { DCHECK_LE(type, kMaxInvokeType); STATS_LOCK(); unresolved_methods_[type]++; } // Indicate that a type of virtual method dispatch has been converted into a direct method // dispatch. void VirtualMadeDirect(InvokeType type) { DCHECK(type == kVirtual || type == kInterface || type == kSuper); STATS_LOCK(); virtual_made_direct_[type]++; } // Indicate that a method of the given type was able to call directly into boot. void DirectCallsToBoot(InvokeType type) { DCHECK_LE(type, kMaxInvokeType); STATS_LOCK(); direct_calls_to_boot_[type]++; } // Indicate that a method of the given type was able to be resolved directly from boot. void DirectMethodsToBoot(InvokeType type) { DCHECK_LE(type, kMaxInvokeType); STATS_LOCK(); direct_methods_to_boot_[type]++; } void ProcessedInvoke(InvokeType type, int flags) { STATS_LOCK(); if (flags == 0) { unresolved_methods_[type]++; } else { DCHECK_NE((flags & kFlagMethodResolved), 0); resolved_methods_[type]++; if ((flags & kFlagVirtualMadeDirect) != 0) { virtual_made_direct_[type]++; if ((flags & kFlagPreciseTypeDevirtualization) != 0) { type_based_devirtualization_++; } } else { DCHECK_EQ((flags & kFlagPreciseTypeDevirtualization), 0); } if ((flags & kFlagDirectCallToBoot) != 0) { direct_calls_to_boot_[type]++; } if ((flags & kFlagDirectMethodToBoot) != 0) { direct_methods_to_boot_[type]++; } } } // A check-cast could be eliminated due to verifier type analysis. void SafeCast() { STATS_LOCK(); safe_casts_++; } // A check-cast couldn't be eliminated due to verifier type analysis. void NotASafeCast() { STATS_LOCK(); not_safe_casts_++; } private: Mutex stats_lock_; size_t types_in_dex_cache_; size_t types_not_in_dex_cache_; size_t strings_in_dex_cache_; size_t strings_not_in_dex_cache_; size_t resolved_types_; size_t unresolved_types_; size_t resolved_instance_fields_; size_t unresolved_instance_fields_; size_t resolved_local_static_fields_; size_t resolved_static_fields_; size_t unresolved_static_fields_; // Type based devirtualization for invoke interface and virtual. size_t type_based_devirtualization_; size_t resolved_methods_[kMaxInvokeType + 1]; size_t unresolved_methods_[kMaxInvokeType + 1]; size_t virtual_made_direct_[kMaxInvokeType + 1]; size_t direct_calls_to_boot_[kMaxInvokeType + 1]; size_t direct_methods_to_boot_[kMaxInvokeType + 1]; size_t safe_casts_; size_t not_safe_casts_; DISALLOW_COPY_AND_ASSIGN(AOTCompilationStats); }; extern "C" art::CompiledMethod* ArtCompileDEX(art::CompilerDriver& compiler, const art::DexFile::CodeItem* code_item, uint32_t access_flags, art::InvokeType invoke_type, uint16_t class_def_idx, uint32_t method_idx, jobject class_loader, const art::DexFile& dex_file); CompilerDriver::CompilerDriver(const CompilerOptions* compiler_options, VerificationResults* verification_results, DexFileToMethodInlinerMap* method_inliner_map, Compiler::Kind compiler_kind, InstructionSet instruction_set, InstructionSetFeatures instruction_set_features, bool image, DescriptorSet* image_classes, size_t thread_count, bool dump_stats, bool dump_passes, CumulativeLogger* timer, std::string profile_file) : profile_ok_(false), compiler_options_(compiler_options), verification_results_(verification_results), method_inliner_map_(method_inliner_map), compiler_(Compiler::Create(compiler_kind)), instruction_set_(instruction_set), instruction_set_features_(instruction_set_features), instruction_set_is_64_bit_(instruction_set == kX86_64 || instruction_set == kArm64), freezing_constructor_lock_("freezing constructor lock"), compiled_classes_lock_("compiled classes lock"), compiled_methods_lock_("compiled method lock"), image_(image), image_classes_(image_classes), thread_count_(thread_count), start_ns_(0), stats_(new AOTCompilationStats), dump_stats_(dump_stats), dump_passes_(dump_passes), timings_logger_(timer), compiler_library_(NULL), compiler_context_(NULL), compiler_enable_auto_elf_loading_(NULL), compiler_get_method_code_addr_(NULL), support_boot_image_fixup_(instruction_set != kMips), cfi_info_(nullptr), dedupe_code_("dedupe code"), dedupe_mapping_table_("dedupe mapping table"), dedupe_vmap_table_("dedupe vmap table"), dedupe_gc_map_("dedupe gc map"), dedupe_cfi_info_("dedupe cfi info") { DCHECK(compiler_options_ != nullptr); DCHECK(verification_results_ != nullptr); DCHECK(method_inliner_map_ != nullptr); CHECK_PTHREAD_CALL(pthread_key_create, (&tls_key_, NULL), "compiler tls key"); // Read the profile file if one is provided. if (profile_file != "") { profile_ok_ = ReadProfile(profile_file); } dex_to_dex_compiler_ = reinterpret_cast(ArtCompileDEX); compiler_->Init(*this); CHECK(!Runtime::Current()->IsStarted()); if (!image_) { CHECK(image_classes_.get() == NULL); } // Are we generating CFI information? if (compiler_options->GetGenerateGDBInformation()) { cfi_info_.reset(compiler_->GetCallFrameInformationInitialization(*this)); } } std::vector* CompilerDriver::DeduplicateCode(const std::vector& code) { return dedupe_code_.Add(Thread::Current(), code); } std::vector* CompilerDriver::DeduplicateMappingTable(const std::vector& code) { return dedupe_mapping_table_.Add(Thread::Current(), code); } std::vector* CompilerDriver::DeduplicateVMapTable(const std::vector& code) { return dedupe_vmap_table_.Add(Thread::Current(), code); } std::vector* CompilerDriver::DeduplicateGCMap(const std::vector& code) { return dedupe_gc_map_.Add(Thread::Current(), code); } std::vector* CompilerDriver::DeduplicateCFIInfo(const std::vector* cfi_info) { if (cfi_info == nullptr) { return nullptr; } return dedupe_cfi_info_.Add(Thread::Current(), *cfi_info); } CompilerDriver::~CompilerDriver() { Thread* self = Thread::Current(); { MutexLock mu(self, compiled_classes_lock_); STLDeleteValues(&compiled_classes_); } { MutexLock mu(self, compiled_methods_lock_); STLDeleteValues(&compiled_methods_); } { MutexLock mu(self, compiled_methods_lock_); STLDeleteElements(&code_to_patch_); } { MutexLock mu(self, compiled_methods_lock_); STLDeleteElements(&methods_to_patch_); } { MutexLock mu(self, compiled_methods_lock_); STLDeleteElements(&classes_to_patch_); } CHECK_PTHREAD_CALL(pthread_key_delete, (tls_key_), "delete tls key"); compiler_->UnInit(*this); } CompilerTls* CompilerDriver::GetTls() { // Lazily create thread-local storage CompilerTls* res = static_cast(pthread_getspecific(tls_key_)); if (res == NULL) { res = new CompilerTls(); CHECK_PTHREAD_CALL(pthread_setspecific, (tls_key_, res), "compiler tls"); } return res; } #define CREATE_TRAMPOLINE(type, abi, offset) \ if (instruction_set_is_64_bit_) { \ return CreateTrampoline64(instruction_set_, abi, \ type ## _ENTRYPOINT_OFFSET(8, offset)); \ } else { \ return CreateTrampoline32(instruction_set_, abi, \ type ## _ENTRYPOINT_OFFSET(4, offset)); \ } const std::vector* CompilerDriver::CreateInterpreterToInterpreterBridge() const { CREATE_TRAMPOLINE(INTERPRETER, kInterpreterAbi, pInterpreterToInterpreterBridge) } const std::vector* CompilerDriver::CreateInterpreterToCompiledCodeBridge() const { CREATE_TRAMPOLINE(INTERPRETER, kInterpreterAbi, pInterpreterToCompiledCodeBridge) } const std::vector* CompilerDriver::CreateJniDlsymLookup() const { CREATE_TRAMPOLINE(JNI, kJniAbi, pDlsymLookup) } const std::vector* CompilerDriver::CreatePortableImtConflictTrampoline() const { CREATE_TRAMPOLINE(PORTABLE, kPortableAbi, pPortableImtConflictTrampoline) } const std::vector* CompilerDriver::CreatePortableResolutionTrampoline() const { CREATE_TRAMPOLINE(PORTABLE, kPortableAbi, pPortableResolutionTrampoline) } const std::vector* CompilerDriver::CreatePortableToInterpreterBridge() const { CREATE_TRAMPOLINE(PORTABLE, kPortableAbi, pPortableToInterpreterBridge) } const std::vector* CompilerDriver::CreateQuickGenericJniTrampoline() const { CREATE_TRAMPOLINE(QUICK, kQuickAbi, pQuickGenericJniTrampoline) } const std::vector* CompilerDriver::CreateQuickImtConflictTrampoline() const { CREATE_TRAMPOLINE(QUICK, kQuickAbi, pQuickImtConflictTrampoline) } const std::vector* CompilerDriver::CreateQuickResolutionTrampoline() const { CREATE_TRAMPOLINE(QUICK, kQuickAbi, pQuickResolutionTrampoline) } const std::vector* CompilerDriver::CreateQuickToInterpreterBridge() const { CREATE_TRAMPOLINE(QUICK, kQuickAbi, pQuickToInterpreterBridge) } #undef CREATE_TRAMPOLINE void CompilerDriver::CompileAll(jobject class_loader, const std::vector& dex_files, TimingLogger* timings) { DCHECK(!Runtime::Current()->IsStarted()); UniquePtr thread_pool(new ThreadPool("Compiler driver thread pool", thread_count_ - 1)); PreCompile(class_loader, dex_files, thread_pool.get(), timings); Compile(class_loader, dex_files, thread_pool.get(), timings); if (dump_stats_) { stats_->Dump(); } } static DexToDexCompilationLevel GetDexToDexCompilationlevel( Thread* self, SirtRef& class_loader, const DexFile& dex_file, const DexFile::ClassDef& class_def) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { const char* descriptor = dex_file.GetClassDescriptor(class_def); ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); mirror::Class* klass = class_linker->FindClass(self, descriptor, class_loader); if (klass == NULL) { CHECK(self->IsExceptionPending()); self->ClearException(); return kDontDexToDexCompile; } // The verifier can only run on "quick" instructions at runtime (see usage of // FindAccessedFieldAtDexPc and FindInvokedMethodAtDexPc in ThrowNullPointerExceptionFromDexPC // function). Since image classes can be verified again while compiling an application, // we must prevent the DEX-to-DEX compiler from introducing them. // TODO: find a way to enable "quick" instructions for image classes and remove this check. bool compiling_image_classes = class_loader.get() == nullptr; if (compiling_image_classes) { return kRequired; } else if (klass->IsVerified()) { // Class is verified so we can enable DEX-to-DEX compilation for performance. return kOptimize; } else if (klass->IsCompileTimeVerified()) { // Class verification has soft-failed. Anyway, ensure at least correctness. DCHECK_EQ(klass->GetStatus(), mirror::Class::kStatusRetryVerificationAtRuntime); return kRequired; } else { // Class verification has failed: do not run DEX-to-DEX compilation. return kDontDexToDexCompile; } } void CompilerDriver::CompileOne(mirror::ArtMethod* method, TimingLogger* timings) { DCHECK(!Runtime::Current()->IsStarted()); Thread* self = Thread::Current(); jobject jclass_loader; const DexFile* dex_file; uint16_t class_def_idx; uint32_t method_idx = method->GetDexMethodIndex(); uint32_t access_flags = method->GetAccessFlags(); InvokeType invoke_type = method->GetInvokeType(); { ScopedObjectAccessUnchecked soa(self); ScopedLocalRef local_class_loader(soa.Env(), soa.AddLocalReference(method->GetDeclaringClass()->GetClassLoader())); jclass_loader = soa.Env()->NewGlobalRef(local_class_loader.get()); // Find the dex_file MethodHelper mh(method); dex_file = &mh.GetDexFile(); class_def_idx = mh.GetClassDefIndex(); } const DexFile::CodeItem* code_item = dex_file->GetCodeItem(method->GetCodeItemOffset()); self->TransitionFromRunnableToSuspended(kNative); std::vector dex_files; dex_files.push_back(dex_file); UniquePtr thread_pool(new ThreadPool("Compiler driver thread pool", 0U)); PreCompile(jclass_loader, dex_files, thread_pool.get(), timings); // Can we run DEX-to-DEX compiler on this class ? DexToDexCompilationLevel dex_to_dex_compilation_level = kDontDexToDexCompile; { ScopedObjectAccess soa(Thread::Current()); const DexFile::ClassDef& class_def = dex_file->GetClassDef(class_def_idx); SirtRef class_loader(soa.Self(), soa.Decode(jclass_loader)); dex_to_dex_compilation_level = GetDexToDexCompilationlevel(self, class_loader, *dex_file, class_def); } CompileMethod(code_item, access_flags, invoke_type, class_def_idx, method_idx, jclass_loader, *dex_file, dex_to_dex_compilation_level); self->GetJniEnv()->DeleteGlobalRef(jclass_loader); self->TransitionFromSuspendedToRunnable(); } void CompilerDriver::Resolve(jobject class_loader, const std::vector& dex_files, ThreadPool* thread_pool, TimingLogger* timings) { for (size_t i = 0; i != dex_files.size(); ++i) { const DexFile* dex_file = dex_files[i]; CHECK(dex_file != NULL); ResolveDexFile(class_loader, *dex_file, thread_pool, timings); } } void CompilerDriver::PreCompile(jobject class_loader, const std::vector& dex_files, ThreadPool* thread_pool, TimingLogger* timings) { LoadImageClasses(timings); if (!compiler_options_->IsVerificationEnabled()) { VLOG(compiler) << "Verify none mode specified, skipping pre-compilation"; return; } Resolve(class_loader, dex_files, thread_pool, timings); Verify(class_loader, dex_files, thread_pool, timings); InitializeClasses(class_loader, dex_files, thread_pool, timings); UpdateImageClasses(timings); } bool CompilerDriver::IsImageClass(const char* descriptor) const { if (!IsImage()) { return true; } else { return image_classes_->find(descriptor) != image_classes_->end(); } } static void ResolveExceptionsForMethod(MethodHelper* mh, std::set >& exceptions_to_resolve) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { const DexFile::CodeItem* code_item = mh->GetCodeItem(); if (code_item == NULL) { return; // native or abstract method } if (code_item->tries_size_ == 0) { return; // nothing to process } const byte* encoded_catch_handler_list = DexFile::GetCatchHandlerData(*code_item, 0); size_t num_encoded_catch_handlers = DecodeUnsignedLeb128(&encoded_catch_handler_list); for (size_t i = 0; i < num_encoded_catch_handlers; i++) { int32_t encoded_catch_handler_size = DecodeSignedLeb128(&encoded_catch_handler_list); bool has_catch_all = false; if (encoded_catch_handler_size <= 0) { encoded_catch_handler_size = -encoded_catch_handler_size; has_catch_all = true; } for (int32_t j = 0; j < encoded_catch_handler_size; j++) { uint16_t encoded_catch_handler_handlers_type_idx = DecodeUnsignedLeb128(&encoded_catch_handler_list); // Add to set of types to resolve if not already in the dex cache resolved types if (!mh->IsResolvedTypeIdx(encoded_catch_handler_handlers_type_idx)) { exceptions_to_resolve.insert( std::pair(encoded_catch_handler_handlers_type_idx, &mh->GetDexFile())); } // ignore address associated with catch handler DecodeUnsignedLeb128(&encoded_catch_handler_list); } if (has_catch_all) { // ignore catch all address DecodeUnsignedLeb128(&encoded_catch_handler_list); } } } static bool ResolveCatchBlockExceptionsClassVisitor(mirror::Class* c, void* arg) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { std::set >* exceptions_to_resolve = reinterpret_cast >*>(arg); MethodHelper mh; for (size_t i = 0; i < c->NumVirtualMethods(); ++i) { mirror::ArtMethod* m = c->GetVirtualMethod(i); mh.ChangeMethod(m); ResolveExceptionsForMethod(&mh, *exceptions_to_resolve); } for (size_t i = 0; i < c->NumDirectMethods(); ++i) { mirror::ArtMethod* m = c->GetDirectMethod(i); mh.ChangeMethod(m); ResolveExceptionsForMethod(&mh, *exceptions_to_resolve); } return true; } static bool RecordImageClassesVisitor(mirror::Class* klass, void* arg) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { CompilerDriver::DescriptorSet* image_classes = reinterpret_cast(arg); image_classes->insert(ClassHelper(klass).GetDescriptor()); return true; } // Make a list of descriptors for classes to include in the image void CompilerDriver::LoadImageClasses(TimingLogger* timings) LOCKS_EXCLUDED(Locks::mutator_lock_) { if (!IsImage()) { return; } timings->NewSplit("LoadImageClasses"); // Make a first class to load all classes explicitly listed in the file Thread* self = Thread::Current(); ScopedObjectAccess soa(self); ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); for (auto it = image_classes_->begin(), end = image_classes_->end(); it != end;) { const std::string& descriptor(*it); SirtRef klass(self, class_linker->FindSystemClass(self, descriptor.c_str())); if (klass.get() == NULL) { VLOG(compiler) << "Failed to find class " << descriptor; image_classes_->erase(it++); self->ClearException(); } else { ++it; } } // Resolve exception classes referenced by the loaded classes. The catch logic assumes // exceptions are resolved by the verifier when there is a catch block in an interested method. // Do this here so that exception classes appear to have been specified image classes. std::set > unresolved_exception_types; SirtRef java_lang_Throwable(self, class_linker->FindSystemClass(self, "Ljava/lang/Throwable;")); do { unresolved_exception_types.clear(); class_linker->VisitClasses(ResolveCatchBlockExceptionsClassVisitor, &unresolved_exception_types); for (const std::pair& exception_type : unresolved_exception_types) { uint16_t exception_type_idx = exception_type.first; const DexFile* dex_file = exception_type.second; SirtRef dex_cache(self, class_linker->FindDexCache(*dex_file)); SirtRef class_loader(self, nullptr); SirtRef klass(self, class_linker->ResolveType(*dex_file, exception_type_idx, dex_cache, class_loader)); if (klass.get() == NULL) { const DexFile::TypeId& type_id = dex_file->GetTypeId(exception_type_idx); const char* descriptor = dex_file->GetTypeDescriptor(type_id); LOG(FATAL) << "Failed to resolve class " << descriptor; } DCHECK(java_lang_Throwable->IsAssignableFrom(klass.get())); } // Resolving exceptions may load classes that reference more exceptions, iterate until no // more are found } while (!unresolved_exception_types.empty()); // We walk the roots looking for classes so that we'll pick up the // above classes plus any classes them depend on such super // classes, interfaces, and the required ClassLinker roots. class_linker->VisitClasses(RecordImageClassesVisitor, image_classes_.get()); CHECK_NE(image_classes_->size(), 0U); } static void MaybeAddToImageClasses(mirror::Class* klass, CompilerDriver::DescriptorSet* image_classes) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { while (!klass->IsObjectClass()) { ClassHelper kh(klass); const char* descriptor = kh.GetDescriptor(); std::pair result = image_classes->insert(descriptor); if (result.second) { VLOG(compiler) << "Adding " << descriptor << " to image classes"; } else { return; } for (size_t i = 0; i < kh.NumDirectInterfaces(); ++i) { MaybeAddToImageClasses(kh.GetDirectInterface(i), image_classes); } if (klass->IsArrayClass()) { MaybeAddToImageClasses(klass->GetComponentType(), image_classes); } klass = klass->GetSuperClass(); } } void CompilerDriver::FindClinitImageClassesCallback(mirror::Object* object, void* arg) { DCHECK(object != NULL); DCHECK(arg != NULL); CompilerDriver* compiler_driver = reinterpret_cast(arg); MaybeAddToImageClasses(object->GetClass(), compiler_driver->image_classes_.get()); } void CompilerDriver::UpdateImageClasses(TimingLogger* timings) { if (IsImage()) { timings->NewSplit("UpdateImageClasses"); // Update image_classes_ with classes for objects created by methods. Thread* self = Thread::Current(); const char* old_cause = self->StartAssertNoThreadSuspension("ImageWriter"); gc::Heap* heap = Runtime::Current()->GetHeap(); // TODO: Image spaces only? ScopedObjectAccess soa(Thread::Current()); WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); heap->VisitObjects(FindClinitImageClassesCallback, this); self->EndAssertNoThreadSuspension(old_cause); } } bool CompilerDriver::CanAssumeTypeIsPresentInDexCache(const DexFile& dex_file, uint32_t type_idx) { if (IsImage() && IsImageClass(dex_file.StringDataByIdx(dex_file.GetTypeId(type_idx).descriptor_idx_))) { if (kIsDebugBuild) { ScopedObjectAccess soa(Thread::Current()); mirror::DexCache* dex_cache = Runtime::Current()->GetClassLinker()->FindDexCache(dex_file); mirror::Class* resolved_class = dex_cache->GetResolvedType(type_idx); CHECK(resolved_class != NULL); } stats_->TypeInDexCache(); return true; } else { stats_->TypeNotInDexCache(); return false; } } bool CompilerDriver::CanAssumeStringIsPresentInDexCache(const DexFile& dex_file, uint32_t string_idx) { // See also Compiler::ResolveDexFile bool result = false; if (IsImage()) { // We resolve all const-string strings when building for the image. ScopedObjectAccess soa(Thread::Current()); SirtRef dex_cache(soa.Self(), Runtime::Current()->GetClassLinker()->FindDexCache(dex_file)); Runtime::Current()->GetClassLinker()->ResolveString(dex_file, string_idx, dex_cache); result = true; } if (result) { stats_->StringInDexCache(); } else { stats_->StringNotInDexCache(); } return result; } bool CompilerDriver::CanAccessTypeWithoutChecks(uint32_t referrer_idx, const DexFile& dex_file, uint32_t type_idx, bool* type_known_final, bool* type_known_abstract, bool* equals_referrers_class) { if (type_known_final != NULL) { *type_known_final = false; } if (type_known_abstract != NULL) { *type_known_abstract = false; } if (equals_referrers_class != NULL) { *equals_referrers_class = false; } ScopedObjectAccess soa(Thread::Current()); mirror::DexCache* dex_cache = Runtime::Current()->GetClassLinker()->FindDexCache(dex_file); // Get type from dex cache assuming it was populated by the verifier mirror::Class* resolved_class = dex_cache->GetResolvedType(type_idx); if (resolved_class == NULL) { stats_->TypeNeedsAccessCheck(); return false; // Unknown class needs access checks. } const DexFile::MethodId& method_id = dex_file.GetMethodId(referrer_idx); if (equals_referrers_class != NULL) { *equals_referrers_class = (method_id.class_idx_ == type_idx); } mirror::Class* referrer_class = dex_cache->GetResolvedType(method_id.class_idx_); if (referrer_class == NULL) { stats_->TypeNeedsAccessCheck(); return false; // Incomplete referrer knowledge needs access check. } // Perform access check, will return true if access is ok or false if we're going to have to // check this at runtime (for example for class loaders). bool result = referrer_class->CanAccess(resolved_class); if (result) { stats_->TypeDoesntNeedAccessCheck(); if (type_known_final != NULL) { *type_known_final = resolved_class->IsFinal() && !resolved_class->IsArrayClass(); } if (type_known_abstract != NULL) { *type_known_abstract = resolved_class->IsAbstract() && !resolved_class->IsArrayClass(); } } else { stats_->TypeNeedsAccessCheck(); } return result; } bool CompilerDriver::CanAccessInstantiableTypeWithoutChecks(uint32_t referrer_idx, const DexFile& dex_file, uint32_t type_idx) { ScopedObjectAccess soa(Thread::Current()); mirror::DexCache* dex_cache = Runtime::Current()->GetClassLinker()->FindDexCache(dex_file); // Get type from dex cache assuming it was populated by the verifier. mirror::Class* resolved_class = dex_cache->GetResolvedType(type_idx); if (resolved_class == NULL) { stats_->TypeNeedsAccessCheck(); return false; // Unknown class needs access checks. } const DexFile::MethodId& method_id = dex_file.GetMethodId(referrer_idx); mirror::Class* referrer_class = dex_cache->GetResolvedType(method_id.class_idx_); if (referrer_class == NULL) { stats_->TypeNeedsAccessCheck(); return false; // Incomplete referrer knowledge needs access check. } // Perform access and instantiable checks, will return true if access is ok or false if we're // going to have to check this at runtime (for example for class loaders). bool result = referrer_class->CanAccess(resolved_class) && resolved_class->IsInstantiable(); if (result) { stats_->TypeDoesntNeedAccessCheck(); } else { stats_->TypeNeedsAccessCheck(); } return result; } bool CompilerDriver::CanEmbedTypeInCode(const DexFile& dex_file, uint32_t type_idx, bool* is_type_initialized, bool* use_direct_type_ptr, uintptr_t* direct_type_ptr) { ScopedObjectAccess soa(Thread::Current()); mirror::DexCache* dex_cache = Runtime::Current()->GetClassLinker()->FindDexCache(dex_file); mirror::Class* resolved_class = dex_cache->GetResolvedType(type_idx); if (resolved_class == nullptr) { return false; } const bool compiling_boot = Runtime::Current()->GetHeap()->IsCompilingBoot(); if (compiling_boot) { // boot -> boot class pointers. // True if the class is in the image at boot compiling time. const bool is_image_class = IsImage() && IsImageClass( dex_file.StringDataByIdx(dex_file.GetTypeId(type_idx).descriptor_idx_)); // True if pc relative load works. const bool support_boot_image_fixup = GetSupportBootImageFixup(); if (is_image_class && support_boot_image_fixup) { *is_type_initialized = resolved_class->IsInitialized(); *use_direct_type_ptr = false; *direct_type_ptr = 0; return true; } else { return false; } } else { // True if the class is in the image at app compiling time. const bool class_in_image = Runtime::Current()->GetHeap()->FindSpaceFromObject(resolved_class, false)->IsImageSpace(); if (class_in_image) { // boot -> app class pointers. *is_type_initialized = resolved_class->IsInitialized(); *use_direct_type_ptr = true; *direct_type_ptr = reinterpret_cast(resolved_class); return true; } else { // app -> app class pointers. // Give up because app does not have an image and class // isn't created at compile time. TODO: implement this // if/when each app gets an image. return false; } } } void CompilerDriver::ProcessedInstanceField(bool resolved) { if (!resolved) { stats_->UnresolvedInstanceField(); } else { stats_->ResolvedInstanceField(); } } void CompilerDriver::ProcessedStaticField(bool resolved, bool local) { if (!resolved) { stats_->UnresolvedStaticField(); } else if (local) { stats_->ResolvedLocalStaticField(); } else { stats_->ResolvedStaticField(); } } void CompilerDriver::ProcessedInvoke(InvokeType invoke_type, int flags) { stats_->ProcessedInvoke(invoke_type, flags); } bool CompilerDriver::ComputeInstanceFieldInfo(uint32_t field_idx, const DexCompilationUnit* mUnit, bool is_put, MemberOffset* field_offset, bool* is_volatile) { ScopedObjectAccess soa(Thread::Current()); // Try to resolve the field and compiling method's class. mirror::ArtField* resolved_field; mirror::Class* referrer_class; mirror::DexCache* dex_cache; { SirtRef dex_cache_sirt(soa.Self(), mUnit->GetClassLinker()->FindDexCache(*mUnit->GetDexFile())); SirtRef class_loader_sirt(soa.Self(), soa.Decode(mUnit->GetClassLoader())); SirtRef resolved_field_sirt(soa.Self(), ResolveField(soa, dex_cache_sirt, class_loader_sirt, mUnit, field_idx, false)); referrer_class = (resolved_field_sirt.get() != nullptr) ? ResolveCompilingMethodsClass(soa, dex_cache_sirt, class_loader_sirt, mUnit) : nullptr; resolved_field = resolved_field_sirt.get(); dex_cache = dex_cache_sirt.get(); } bool result = false; if (resolved_field != nullptr && referrer_class != nullptr) { *is_volatile = IsFieldVolatile(resolved_field); std::pair fast_path = IsFastInstanceField( dex_cache, referrer_class, resolved_field, field_idx, field_offset); result = is_put ? fast_path.second : fast_path.first; } if (!result) { // Conservative defaults. *is_volatile = true; *field_offset = MemberOffset(static_cast(-1)); } ProcessedInstanceField(result); return result; } bool CompilerDriver::ComputeStaticFieldInfo(uint32_t field_idx, const DexCompilationUnit* mUnit, bool is_put, MemberOffset* field_offset, uint32_t* storage_index, bool* is_referrers_class, bool* is_volatile, bool* is_initialized) { ScopedObjectAccess soa(Thread::Current()); // Try to resolve the field and compiling method's class. mirror::ArtField* resolved_field; mirror::Class* referrer_class; mirror::DexCache* dex_cache; { SirtRef dex_cache_sirt(soa.Self(), mUnit->GetClassLinker()->FindDexCache(*mUnit->GetDexFile())); SirtRef class_loader_sirt(soa.Self(), soa.Decode(mUnit->GetClassLoader())); SirtRef resolved_field_sirt(soa.Self(), ResolveField(soa, dex_cache_sirt, class_loader_sirt, mUnit, field_idx, true)); referrer_class = (resolved_field_sirt.get() != nullptr) ? ResolveCompilingMethodsClass(soa, dex_cache_sirt, class_loader_sirt, mUnit) : nullptr; resolved_field = resolved_field_sirt.get(); dex_cache = dex_cache_sirt.get(); } bool result = false; if (resolved_field != nullptr && referrer_class != nullptr) { *is_volatile = IsFieldVolatile(resolved_field); std::pair fast_path = IsFastStaticField( dex_cache, referrer_class, resolved_field, field_idx, field_offset, storage_index, is_referrers_class, is_initialized); result = is_put ? fast_path.second : fast_path.first; } if (!result) { // Conservative defaults. *is_volatile = true; *field_offset = MemberOffset(static_cast(-1)); *storage_index = -1; *is_referrers_class = false; *is_initialized = false; } ProcessedStaticField(result, *is_referrers_class); return result; } void CompilerDriver::GetCodeAndMethodForDirectCall(InvokeType* type, InvokeType sharp_type, bool no_guarantee_of_dex_cache_entry, mirror::Class* referrer_class, mirror::ArtMethod* method, int* stats_flags, MethodReference* target_method, uintptr_t* direct_code, uintptr_t* direct_method) { // For direct and static methods compute possible direct_code and direct_method values, ie // an address for the Method* being invoked and an address of the code for that Method*. // For interface calls compute a value for direct_method that is the interface method being // invoked, so this can be passed to the out-of-line runtime support code. *direct_code = 0; *direct_method = 0; bool use_dex_cache = false; const bool compiling_boot = Runtime::Current()->GetHeap()->IsCompilingBoot(); if (compiler_->IsPortable()) { if (sharp_type != kStatic && sharp_type != kDirect) { return; } use_dex_cache = true; } else { if (sharp_type != kStatic && sharp_type != kDirect) { return; } // TODO: support patching on all architectures. use_dex_cache = compiling_boot && !support_boot_image_fixup_; } bool method_code_in_boot = (method->GetDeclaringClass()->GetClassLoader() == nullptr); if (!use_dex_cache) { if (!method_code_in_boot) { use_dex_cache = true; } else { bool has_clinit_trampoline = method->IsStatic() && !method->GetDeclaringClass()->IsInitialized(); if (has_clinit_trampoline && (method->GetDeclaringClass() != referrer_class)) { // Ensure we run the clinit trampoline unless we are invoking a static method in the same // class. use_dex_cache = true; } } } if (method_code_in_boot) { *stats_flags |= kFlagDirectCallToBoot | kFlagDirectMethodToBoot; } if (!use_dex_cache && compiling_boot) { MethodHelper mh(method); if (!IsImageClass(mh.GetDeclaringClassDescriptor())) { // We can only branch directly to Methods that are resolved in the DexCache. // Otherwise we won't invoke the resolution trampoline. use_dex_cache = true; } } // The method is defined not within this dex file. We need a dex cache slot within the current // dex file or direct pointers. bool must_use_direct_pointers = false; if (target_method->dex_file == method->GetDeclaringClass()->GetDexCache()->GetDexFile()) { target_method->dex_method_index = method->GetDexMethodIndex(); } else { if (no_guarantee_of_dex_cache_entry) { // See if the method is also declared in this dex cache. uint32_t dex_method_idx = MethodHelper(method).FindDexMethodIndexInOtherDexFile( *target_method->dex_file, target_method->dex_method_index); if (dex_method_idx != DexFile::kDexNoIndex) { target_method->dex_method_index = dex_method_idx; } else { if (compiling_boot) { target_method->dex_method_index = method->GetDexMethodIndex(); target_method->dex_file = method->GetDeclaringClass()->GetDexCache()->GetDexFile(); } must_use_direct_pointers = true; } } } if (use_dex_cache) { if (must_use_direct_pointers) { // Fail. Test above showed the only safe dispatch was via the dex cache, however, the direct // pointers are required as the dex cache lacks an appropriate entry. VLOG(compiler) << "Dex cache devirtualization failed for: " << PrettyMethod(method); } else { *type = sharp_type; } } else { if (compiling_boot) { *type = sharp_type; *direct_method = -1; *direct_code = -1; } else { bool method_in_image = Runtime::Current()->GetHeap()->FindSpaceFromObject(method, false)->IsImageSpace(); if (method_in_image) { CHECK(!method->IsAbstract()); *type = sharp_type; *direct_method = reinterpret_cast(method); *direct_code = compiler_->GetEntryPointOf(method); target_method->dex_file = method->GetDeclaringClass()->GetDexCache()->GetDexFile(); target_method->dex_method_index = method->GetDexMethodIndex(); } else if (!must_use_direct_pointers) { // Set the code and rely on the dex cache for the method. *type = sharp_type; *direct_code = compiler_->GetEntryPointOf(method); } else { // Direct pointers were required but none were available. VLOG(compiler) << "Dex cache devirtualization failed for: " << PrettyMethod(method); } } } } bool CompilerDriver::ComputeInvokeInfo(const DexCompilationUnit* mUnit, const uint32_t dex_pc, bool update_stats, bool enable_devirtualization, InvokeType* invoke_type, MethodReference* target_method, int* vtable_idx, uintptr_t* direct_code, uintptr_t* direct_method) { InvokeType orig_invoke_type = *invoke_type; int stats_flags = 0; ScopedObjectAccess soa(Thread::Current()); // Try to resolve the method and compiling method's class. mirror::ArtMethod* resolved_method; mirror::Class* referrer_class; SirtRef dex_cache(soa.Self(), mUnit->GetClassLinker()->FindDexCache(*mUnit->GetDexFile())); SirtRef class_loader(soa.Self(), soa.Decode(mUnit->GetClassLoader())); { uint32_t method_idx = target_method->dex_method_index; SirtRef resolved_method_sirt(soa.Self(), ResolveMethod(soa, dex_cache, class_loader, mUnit, method_idx, orig_invoke_type)); referrer_class = (resolved_method_sirt.get() != nullptr) ? ResolveCompilingMethodsClass(soa, dex_cache, class_loader, mUnit) : nullptr; resolved_method = resolved_method_sirt.get(); } bool result = false; if (resolved_method != nullptr) { *vtable_idx = GetResolvedMethodVTableIndex(resolved_method, orig_invoke_type); if (enable_devirtualization) { DCHECK(mUnit->GetVerifiedMethod() != nullptr); const MethodReference* devirt_target = mUnit->GetVerifiedMethod()->GetDevirtTarget(dex_pc); stats_flags = IsFastInvoke( soa, dex_cache, class_loader, mUnit, referrer_class, resolved_method, invoke_type, target_method, devirt_target, direct_code, direct_method); result = stats_flags != 0; } else { // Devirtualization not enabled. Inline IsFastInvoke(), dropping the devirtualization parts. if (UNLIKELY(referrer_class == nullptr) || UNLIKELY(!referrer_class->CanAccessResolvedMethod(resolved_method->GetDeclaringClass(), resolved_method, dex_cache.get(), target_method->dex_method_index)) || *invoke_type == kSuper) { // Slow path. (Without devirtualization, all super calls go slow path as well.) } else { // Sharpening failed so generate a regular resolved method dispatch. stats_flags = kFlagMethodResolved; GetCodeAndMethodForDirectCall(invoke_type, *invoke_type, false, referrer_class, resolved_method, &stats_flags, target_method, direct_code, direct_method); result = true; } } } if (!result) { // Conservative defaults. *vtable_idx = -1; *direct_code = 0u; *direct_method = 0u; } if (update_stats) { ProcessedInvoke(orig_invoke_type, stats_flags); } return result; } const VerifiedMethod* CompilerDriver::GetVerifiedMethod(const DexFile* dex_file, uint32_t method_idx) const { MethodReference ref(dex_file, method_idx); return verification_results_->GetVerifiedMethod(ref); } bool CompilerDriver::IsSafeCast(const DexCompilationUnit* mUnit, uint32_t dex_pc) { DCHECK(mUnit->GetVerifiedMethod() != nullptr); bool result = mUnit->GetVerifiedMethod()->IsSafeCast(dex_pc); if (result) { stats_->SafeCast(); } else { stats_->NotASafeCast(); } return result; } void CompilerDriver::AddCodePatch(const DexFile* dex_file, uint16_t referrer_class_def_idx, uint32_t referrer_method_idx, InvokeType referrer_invoke_type, uint32_t target_method_idx, const DexFile* target_dex_file, InvokeType target_invoke_type, size_t literal_offset) { MutexLock mu(Thread::Current(), compiled_methods_lock_); code_to_patch_.push_back(new CallPatchInformation(dex_file, referrer_class_def_idx, referrer_method_idx, referrer_invoke_type, target_method_idx, target_dex_file, target_invoke_type, literal_offset)); } void CompilerDriver::AddRelativeCodePatch(const DexFile* dex_file, uint16_t referrer_class_def_idx, uint32_t referrer_method_idx, InvokeType referrer_invoke_type, uint32_t target_method_idx, const DexFile* target_dex_file, InvokeType target_invoke_type, size_t literal_offset, int32_t pc_relative_offset) { MutexLock mu(Thread::Current(), compiled_methods_lock_); code_to_patch_.push_back(new RelativeCallPatchInformation(dex_file, referrer_class_def_idx, referrer_method_idx, referrer_invoke_type, target_method_idx, target_dex_file, target_invoke_type, literal_offset, pc_relative_offset)); } void CompilerDriver::AddMethodPatch(const DexFile* dex_file, uint16_t referrer_class_def_idx, uint32_t referrer_method_idx, InvokeType referrer_invoke_type, uint32_t target_method_idx, const DexFile* target_dex_file, InvokeType target_invoke_type, size_t literal_offset) { MutexLock mu(Thread::Current(), compiled_methods_lock_); methods_to_patch_.push_back(new CallPatchInformation(dex_file, referrer_class_def_idx, referrer_method_idx, referrer_invoke_type, target_method_idx, target_dex_file, target_invoke_type, literal_offset)); } void CompilerDriver::AddClassPatch(const DexFile* dex_file, uint16_t referrer_class_def_idx, uint32_t referrer_method_idx, uint32_t target_type_idx, size_t literal_offset) { MutexLock mu(Thread::Current(), compiled_methods_lock_); classes_to_patch_.push_back(new TypePatchInformation(dex_file, referrer_class_def_idx, referrer_method_idx, target_type_idx, literal_offset)); } class ParallelCompilationManager { public: typedef void Callback(const ParallelCompilationManager* manager, size_t index); ParallelCompilationManager(ClassLinker* class_linker, jobject class_loader, CompilerDriver* compiler, const DexFile* dex_file, ThreadPool* thread_pool) : index_(0), class_linker_(class_linker), class_loader_(class_loader), compiler_(compiler), dex_file_(dex_file), thread_pool_(thread_pool) {} ClassLinker* GetClassLinker() const { CHECK(class_linker_ != NULL); return class_linker_; } jobject GetClassLoader() const { return class_loader_; } CompilerDriver* GetCompiler() const { CHECK(compiler_ != NULL); return compiler_; } const DexFile* GetDexFile() const { CHECK(dex_file_ != NULL); return dex_file_; } void ForAll(size_t begin, size_t end, Callback callback, size_t work_units) { Thread* self = Thread::Current(); self->AssertNoPendingException(); CHECK_GT(work_units, 0U); index_ = begin; for (size_t i = 0; i < work_units; ++i) { thread_pool_->AddTask(self, new ForAllClosure(this, end, callback)); } thread_pool_->StartWorkers(self); // Ensure we're suspended while we're blocked waiting for the other threads to finish (worker // thread destructor's called below perform join). CHECK_NE(self->GetState(), kRunnable); // Wait for all the worker threads to finish. thread_pool_->Wait(self, true, false); } size_t NextIndex() { return index_.FetchAndAdd(1); } private: class ForAllClosure : public Task { public: ForAllClosure(ParallelCompilationManager* manager, size_t end, Callback* callback) : manager_(manager), end_(end), callback_(callback) {} virtual void Run(Thread* self) { while (true) { const size_t index = manager_->NextIndex(); if (UNLIKELY(index >= end_)) { break; } callback_(manager_, index); self->AssertNoPendingException(); } } virtual void Finalize() { delete this; } private: ParallelCompilationManager* const manager_; const size_t end_; Callback* const callback_; }; AtomicInteger index_; ClassLinker* const class_linker_; const jobject class_loader_; CompilerDriver* const compiler_; const DexFile* const dex_file_; ThreadPool* const thread_pool_; DISALLOW_COPY_AND_ASSIGN(ParallelCompilationManager); }; // Return true if the class should be skipped during compilation. // // The first case where we skip is for redundant class definitions in // the boot classpath. We skip all but the first definition in that case. // // The second case where we skip is when an app bundles classes found // in the boot classpath. Since at runtime we will select the class from // the boot classpath, we ignore the one from the app. static bool SkipClass(ClassLinker* class_linker, jobject class_loader, const DexFile& dex_file, const DexFile::ClassDef& class_def) { const char* descriptor = dex_file.GetClassDescriptor(class_def); if (class_loader == NULL) { DexFile::ClassPathEntry pair = DexFile::FindInClassPath(descriptor, class_linker->GetBootClassPath()); CHECK(pair.second != NULL); if (pair.first != &dex_file) { LOG(WARNING) << "Skipping class " << descriptor << " from " << dex_file.GetLocation() << " previously found in " << pair.first->GetLocation(); return true; } return false; } return class_linker->IsInBootClassPath(descriptor); } // A fast version of SkipClass above if the class pointer is available // that avoids the expensive FindInClassPath search. static bool SkipClass(jobject class_loader, const DexFile& dex_file, mirror::Class* klass) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { DCHECK(klass != NULL); const DexFile& original_dex_file = *klass->GetDexCache()->GetDexFile(); if (&dex_file != &original_dex_file) { if (class_loader == NULL) { LOG(WARNING) << "Skipping class " << PrettyDescriptor(klass) << " from " << dex_file.GetLocation() << " previously found in " << original_dex_file.GetLocation(); } return true; } return false; } static void ResolveClassFieldsAndMethods(const ParallelCompilationManager* manager, size_t class_def_index) LOCKS_EXCLUDED(Locks::mutator_lock_) { ATRACE_CALL(); Thread* self = Thread::Current(); jobject jclass_loader = manager->GetClassLoader(); const DexFile& dex_file = *manager->GetDexFile(); ClassLinker* class_linker = manager->GetClassLinker(); // If an instance field is final then we need to have a barrier on the return, static final // fields are assigned within the lock held for class initialization. Conservatively assume // constructor barriers are always required. bool requires_constructor_barrier = true; // Method and Field are the worst. We can't resolve without either // context from the code use (to disambiguate virtual vs direct // method and instance vs static field) or from class // definitions. While the compiler will resolve what it can as it // needs it, here we try to resolve fields and methods used in class // definitions, since many of them many never be referenced by // generated code. const DexFile::ClassDef& class_def = dex_file.GetClassDef(class_def_index); if (!SkipClass(class_linker, jclass_loader, dex_file, class_def)) { ScopedObjectAccess soa(self); SirtRef class_loader(soa.Self(), soa.Decode(jclass_loader)); SirtRef dex_cache(soa.Self(), class_linker->FindDexCache(dex_file)); // Resolve the class. mirror::Class* klass = class_linker->ResolveType(dex_file, class_def.class_idx_, dex_cache, class_loader); bool resolve_fields_and_methods; if (klass == NULL) { // Class couldn't be resolved, for example, super-class is in a different dex file. Don't // attempt to resolve methods and fields when there is no declaring class. CHECK(soa.Self()->IsExceptionPending()); soa.Self()->ClearException(); resolve_fields_and_methods = false; } else { resolve_fields_and_methods = manager->GetCompiler()->IsImage(); } // Note the class_data pointer advances through the headers, // static fields, instance fields, direct methods, and virtual // methods. const byte* class_data = dex_file.GetClassData(class_def); if (class_data == NULL) { // Empty class such as a marker interface. requires_constructor_barrier = false; } else { ClassDataItemIterator it(dex_file, class_data); while (it.HasNextStaticField()) { if (resolve_fields_and_methods) { mirror::ArtField* field = class_linker->ResolveField(dex_file, it.GetMemberIndex(), dex_cache, class_loader, true); if (field == NULL) { CHECK(soa.Self()->IsExceptionPending()); soa.Self()->ClearException(); } } it.Next(); } // We require a constructor barrier if there are final instance fields. requires_constructor_barrier = false; while (it.HasNextInstanceField()) { if ((it.GetMemberAccessFlags() & kAccFinal) != 0) { requires_constructor_barrier = true; } if (resolve_fields_and_methods) { mirror::ArtField* field = class_linker->ResolveField(dex_file, it.GetMemberIndex(), dex_cache, class_loader, false); if (field == NULL) { CHECK(soa.Self()->IsExceptionPending()); soa.Self()->ClearException(); } } it.Next(); } if (resolve_fields_and_methods) { while (it.HasNextDirectMethod()) { mirror::ArtMethod* method = class_linker->ResolveMethod(dex_file, it.GetMemberIndex(), dex_cache, class_loader, NULL, it.GetMethodInvokeType(class_def)); if (method == NULL) { CHECK(soa.Self()->IsExceptionPending()); soa.Self()->ClearException(); } it.Next(); } while (it.HasNextVirtualMethod()) { mirror::ArtMethod* method = class_linker->ResolveMethod(dex_file, it.GetMemberIndex(), dex_cache, class_loader, NULL, it.GetMethodInvokeType(class_def)); if (method == NULL) { CHECK(soa.Self()->IsExceptionPending()); soa.Self()->ClearException(); } it.Next(); } DCHECK(!it.HasNext()); } } } if (requires_constructor_barrier) { manager->GetCompiler()->AddRequiresConstructorBarrier(self, &dex_file, class_def_index); } } static void ResolveType(const ParallelCompilationManager* manager, size_t type_idx) LOCKS_EXCLUDED(Locks::mutator_lock_) { // Class derived values are more complicated, they require the linker and loader. ScopedObjectAccess soa(Thread::Current()); ClassLinker* class_linker = manager->GetClassLinker(); const DexFile& dex_file = *manager->GetDexFile(); SirtRef dex_cache(soa.Self(), class_linker->FindDexCache(dex_file)); SirtRef class_loader( soa.Self(), soa.Decode(manager->GetClassLoader())); mirror::Class* klass = class_linker->ResolveType(dex_file, type_idx, dex_cache, class_loader); if (klass == NULL) { CHECK(soa.Self()->IsExceptionPending()); mirror::Throwable* exception = soa.Self()->GetException(NULL); VLOG(compiler) << "Exception during type resolution: " << exception->Dump(); if (strcmp("Ljava/lang/OutOfMemoryError;", ClassHelper(exception->GetClass()).GetDescriptor()) == 0) { // There's little point continuing compilation if the heap is exhausted. LOG(FATAL) << "Out of memory during type resolution for compilation"; } soa.Self()->ClearException(); } } void CompilerDriver::ResolveDexFile(jobject class_loader, const DexFile& dex_file, ThreadPool* thread_pool, TimingLogger* timings) { ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); // TODO: we could resolve strings here, although the string table is largely filled with class // and method names. ParallelCompilationManager context(class_linker, class_loader, this, &dex_file, thread_pool); if (IsImage()) { // For images we resolve all types, such as array, whereas for applications just those with // classdefs are resolved by ResolveClassFieldsAndMethods. timings->NewSplit("Resolve Types"); context.ForAll(0, dex_file.NumTypeIds(), ResolveType, thread_count_); } timings->NewSplit("Resolve MethodsAndFields"); context.ForAll(0, dex_file.NumClassDefs(), ResolveClassFieldsAndMethods, thread_count_); } void CompilerDriver::Verify(jobject class_loader, const std::vector& dex_files, ThreadPool* thread_pool, TimingLogger* timings) { for (size_t i = 0; i != dex_files.size(); ++i) { const DexFile* dex_file = dex_files[i]; CHECK(dex_file != NULL); VerifyDexFile(class_loader, *dex_file, thread_pool, timings); } } static void VerifyClass(const ParallelCompilationManager* manager, size_t class_def_index) LOCKS_EXCLUDED(Locks::mutator_lock_) { ATRACE_CALL(); ScopedObjectAccess soa(Thread::Current()); const DexFile& dex_file = *manager->GetDexFile(); const DexFile::ClassDef& class_def = dex_file.GetClassDef(class_def_index); const char* descriptor = dex_file.GetClassDescriptor(class_def); ClassLinker* class_linker = manager->GetClassLinker(); jobject jclass_loader = manager->GetClassLoader(); SirtRef class_loader( soa.Self(), soa.Decode(jclass_loader)); SirtRef klass(soa.Self(), class_linker->FindClass(soa.Self(), descriptor, class_loader)); if (klass.get() == nullptr) { CHECK(soa.Self()->IsExceptionPending()); soa.Self()->ClearException(); /* * At compile time, we can still structurally verify the class even if FindClass fails. * This is to ensure the class is structurally sound for compilation. An unsound class * will be rejected by the verifier and later skipped during compilation in the compiler. */ SirtRef dex_cache(soa.Self(), class_linker->FindDexCache(dex_file)); std::string error_msg; if (verifier::MethodVerifier::VerifyClass(&dex_file, dex_cache, class_loader, &class_def, true, &error_msg) == verifier::MethodVerifier::kHardFailure) { LOG(ERROR) << "Verification failed on class " << PrettyDescriptor(descriptor) << " because: " << error_msg; } } else if (!SkipClass(jclass_loader, dex_file, klass.get())) { CHECK(klass->IsResolved()) << PrettyClass(klass.get()); class_linker->VerifyClass(klass); if (klass->IsErroneous()) { // ClassLinker::VerifyClass throws, which isn't useful in the compiler. CHECK(soa.Self()->IsExceptionPending()); soa.Self()->ClearException(); } CHECK(klass->IsCompileTimeVerified() || klass->IsErroneous()) << PrettyDescriptor(klass.get()) << ": state=" << klass->GetStatus(); } soa.Self()->AssertNoPendingException(); } void CompilerDriver::VerifyDexFile(jobject class_loader, const DexFile& dex_file, ThreadPool* thread_pool, TimingLogger* timings) { timings->NewSplit("Verify Dex File"); ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); ParallelCompilationManager context(class_linker, class_loader, this, &dex_file, thread_pool); context.ForAll(0, dex_file.NumClassDefs(), VerifyClass, thread_count_); } static void InitializeClass(const ParallelCompilationManager* manager, size_t class_def_index) LOCKS_EXCLUDED(Locks::mutator_lock_) { ATRACE_CALL(); jobject jclass_loader = manager->GetClassLoader(); const DexFile& dex_file = *manager->GetDexFile(); const DexFile::ClassDef& class_def = dex_file.GetClassDef(class_def_index); const DexFile::TypeId& class_type_id = dex_file.GetTypeId(class_def.class_idx_); const char* descriptor = dex_file.StringDataByIdx(class_type_id.descriptor_idx_); ScopedObjectAccess soa(Thread::Current()); SirtRef class_loader(soa.Self(), soa.Decode(jclass_loader)); SirtRef klass(soa.Self(), manager->GetClassLinker()->FindClass(soa.Self(), descriptor, class_loader)); if (klass.get() != nullptr && !SkipClass(jclass_loader, dex_file, klass.get())) { // Only try to initialize classes that were successfully verified. if (klass->IsVerified()) { // Attempt to initialize the class but bail if we either need to initialize the super-class // or static fields. manager->GetClassLinker()->EnsureInitialized(klass, false, false); if (!klass->IsInitialized()) { // We don't want non-trivial class initialization occurring on multiple threads due to // deadlock problems. For example, a parent class is initialized (holding its lock) that // refers to a sub-class in its static/class initializer causing it to try to acquire the // sub-class' lock. While on a second thread the sub-class is initialized (holding its lock) // after first initializing its parents, whose locks are acquired. This leads to a // parent-to-child and a child-to-parent lock ordering and consequent potential deadlock. // We need to use an ObjectLock due to potential suspension in the interpreting code. Rather // than use a special Object for the purpose we use the Class of java.lang.Class. SirtRef sirt_klass(soa.Self(), klass->GetClass()); ObjectLock lock(soa.Self(), &sirt_klass); // Attempt to initialize allowing initialization of parent classes but still not static // fields. manager->GetClassLinker()->EnsureInitialized(klass, false, true); if (!klass->IsInitialized()) { // We need to initialize static fields, we only do this for image classes that aren't // marked with the $NoPreloadHolder (which implies this should not be initialized early). bool can_init_static_fields = manager->GetCompiler()->IsImage() && manager->GetCompiler()->IsImageClass(descriptor) && !StringPiece(descriptor).ends_with("$NoPreloadHolder;"); if (can_init_static_fields) { VLOG(compiler) << "Initializing: " << descriptor; if (strcmp("Ljava/lang/Void;", descriptor) == 0) { // Hand initialize j.l.Void to avoid Dex file operations in un-started runtime. ObjectLock lock(soa.Self(), &klass); mirror::ObjectArray* fields = klass->GetSFields(); CHECK_EQ(fields->GetLength(), 1); fields->Get(0)->SetObj(klass.get(), manager->GetClassLinker()->FindPrimitiveClass('V')); klass->SetStatus(mirror::Class::kStatusInitialized, soa.Self()); } else { // TODO multithreading support. We should ensure the current compilation thread has // exclusive access to the runtime and the transaction. To achieve this, we could use // a ReaderWriterMutex but we're holding the mutator lock so we fail mutex sanity // checks in Thread::AssertThreadSuspensionIsAllowable. Runtime* const runtime = Runtime::Current(); Transaction transaction; // Run the class initializer in transaction mode. runtime->EnterTransactionMode(&transaction); const mirror::Class::Status old_status = klass->GetStatus(); bool success = manager->GetClassLinker()->EnsureInitialized(klass, true, true); // TODO we detach transaction from runtime to indicate we quit the transactional // mode which prevents the GC from visiting objects modified during the transaction. // Ensure GC is not run so don't access freed objects when aborting transaction. const char* old_casue = soa.Self()->StartAssertNoThreadSuspension("Transaction end"); runtime->ExitTransactionMode(); if (!success) { CHECK(soa.Self()->IsExceptionPending()); ThrowLocation throw_location; mirror::Throwable* exception = soa.Self()->GetException(&throw_location); VLOG(compiler) << "Initialization of " << descriptor << " aborted because of " << exception->Dump(); soa.Self()->ClearException(); transaction.Abort(); CHECK_EQ(old_status, klass->GetStatus()) << "Previous class status not restored"; } soa.Self()->EndAssertNoThreadSuspension(old_casue); } } } soa.Self()->AssertNoPendingException(); } } // Record the final class status if necessary. ClassReference ref(manager->GetDexFile(), class_def_index); manager->GetCompiler()->RecordClassStatus(ref, klass->GetStatus()); } // Clear any class not found or verification exceptions. soa.Self()->ClearException(); } void CompilerDriver::InitializeClasses(jobject jni_class_loader, const DexFile& dex_file, ThreadPool* thread_pool, TimingLogger* timings) { timings->NewSplit("InitializeNoClinit"); ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); ParallelCompilationManager context(class_linker, jni_class_loader, this, &dex_file, thread_pool); size_t thread_count; if (IsImage()) { // TODO: remove this when transactional mode supports multithreading. thread_count = 1U; } else { thread_count = thread_count_; } context.ForAll(0, dex_file.NumClassDefs(), InitializeClass, thread_count); if (IsImage()) { // Prune garbage objects created during aborted transactions. Runtime::Current()->GetHeap()->CollectGarbage(true); } } void CompilerDriver::InitializeClasses(jobject class_loader, const std::vector& dex_files, ThreadPool* thread_pool, TimingLogger* timings) { for (size_t i = 0; i != dex_files.size(); ++i) { const DexFile* dex_file = dex_files[i]; CHECK(dex_file != NULL); InitializeClasses(class_loader, *dex_file, thread_pool, timings); } } void CompilerDriver::Compile(jobject class_loader, const std::vector& dex_files, ThreadPool* thread_pool, TimingLogger* timings) { for (size_t i = 0; i != dex_files.size(); ++i) { const DexFile* dex_file = dex_files[i]; CHECK(dex_file != NULL); CompileDexFile(class_loader, *dex_file, thread_pool, timings); } } void CompilerDriver::CompileClass(const ParallelCompilationManager* manager, size_t class_def_index) { ATRACE_CALL(); jobject jclass_loader = manager->GetClassLoader(); const DexFile& dex_file = *manager->GetDexFile(); const DexFile::ClassDef& class_def = dex_file.GetClassDef(class_def_index); ClassLinker* class_linker = manager->GetClassLinker(); if (SkipClass(class_linker, jclass_loader, dex_file, class_def)) { return; } ClassReference ref(&dex_file, class_def_index); // Skip compiling classes with generic verifier failures since they will still fail at runtime if (manager->GetCompiler()->verification_results_->IsClassRejected(ref)) { return; } const byte* class_data = dex_file.GetClassData(class_def); if (class_data == NULL) { // empty class, probably a marker interface return; } // Can we run DEX-to-DEX compiler on this class ? DexToDexCompilationLevel dex_to_dex_compilation_level = kDontDexToDexCompile; { ScopedObjectAccess soa(Thread::Current()); SirtRef class_loader(soa.Self(), soa.Decode(jclass_loader)); dex_to_dex_compilation_level = GetDexToDexCompilationlevel(soa.Self(), class_loader, dex_file, class_def); } ClassDataItemIterator it(dex_file, class_data); // Skip fields while (it.HasNextStaticField()) { it.Next(); } while (it.HasNextInstanceField()) { it.Next(); } CompilerDriver* driver = manager->GetCompiler(); // Compile direct methods int64_t previous_direct_method_idx = -1; while (it.HasNextDirectMethod()) { uint32_t method_idx = it.GetMemberIndex(); if (method_idx == previous_direct_method_idx) { // smali can create dex files with two encoded_methods sharing the same method_idx // http://code.google.com/p/smali/issues/detail?id=119 it.Next(); continue; } previous_direct_method_idx = method_idx; driver->CompileMethod(it.GetMethodCodeItem(), it.GetMemberAccessFlags(), it.GetMethodInvokeType(class_def), class_def_index, method_idx, jclass_loader, dex_file, dex_to_dex_compilation_level); it.Next(); } // Compile virtual methods int64_t previous_virtual_method_idx = -1; while (it.HasNextVirtualMethod()) { uint32_t method_idx = it.GetMemberIndex(); if (method_idx == previous_virtual_method_idx) { // smali can create dex files with two encoded_methods sharing the same method_idx // http://code.google.com/p/smali/issues/detail?id=119 it.Next(); continue; } previous_virtual_method_idx = method_idx; driver->CompileMethod(it.GetMethodCodeItem(), it.GetMemberAccessFlags(), it.GetMethodInvokeType(class_def), class_def_index, method_idx, jclass_loader, dex_file, dex_to_dex_compilation_level); it.Next(); } DCHECK(!it.HasNext()); } void CompilerDriver::CompileDexFile(jobject class_loader, const DexFile& dex_file, ThreadPool* thread_pool, TimingLogger* timings) { timings->NewSplit("Compile Dex File"); ParallelCompilationManager context(Runtime::Current()->GetClassLinker(), class_loader, this, &dex_file, thread_pool); context.ForAll(0, dex_file.NumClassDefs(), CompilerDriver::CompileClass, thread_count_); } void CompilerDriver::CompileMethod(const DexFile::CodeItem* code_item, uint32_t access_flags, InvokeType invoke_type, uint16_t class_def_idx, uint32_t method_idx, jobject class_loader, const DexFile& dex_file, DexToDexCompilationLevel dex_to_dex_compilation_level) { CompiledMethod* compiled_method = NULL; uint64_t start_ns = NanoTime(); if ((access_flags & kAccNative) != 0) { // Are we interpreting only and have support for generic JNI down calls? if (!compiler_options_->IsCompilationEnabled() && (instruction_set_ == kX86_64 || instruction_set_ == kArm64)) { // Leaving this empty will trigger the generic JNI version } else { compiled_method = compiler_->JniCompile(*this, access_flags, method_idx, dex_file); CHECK(compiled_method != NULL); } } else if ((access_flags & kAccAbstract) != 0) { } else { MethodReference method_ref(&dex_file, method_idx); bool compile = verification_results_->IsCandidateForCompilation(method_ref, access_flags); if (compile) { // NOTE: if compiler declines to compile this method, it will return NULL. compiled_method = compiler_->Compile( *this, code_item, access_flags, invoke_type, class_def_idx, method_idx, class_loader, dex_file); } else if (dex_to_dex_compilation_level != kDontDexToDexCompile) { // TODO: add a mode to disable DEX-to-DEX compilation ? (*dex_to_dex_compiler_)(*this, code_item, access_flags, invoke_type, class_def_idx, method_idx, class_loader, dex_file, dex_to_dex_compilation_level); } } uint64_t duration_ns = NanoTime() - start_ns; if (duration_ns > MsToNs(compiler_->GetMaximumCompilationTimeBeforeWarning())) { LOG(WARNING) << "Compilation of " << PrettyMethod(method_idx, dex_file) << " took " << PrettyDuration(duration_ns); } Thread* self = Thread::Current(); if (compiled_method != NULL) { MethodReference ref(&dex_file, method_idx); DCHECK(GetCompiledMethod(ref) == NULL) << PrettyMethod(method_idx, dex_file); { MutexLock mu(self, compiled_methods_lock_); compiled_methods_.Put(ref, compiled_method); } DCHECK(GetCompiledMethod(ref) != NULL) << PrettyMethod(method_idx, dex_file); } if (self->IsExceptionPending()) { ScopedObjectAccess soa(self); LOG(FATAL) << "Unexpected exception compiling: " << PrettyMethod(method_idx, dex_file) << "\n" << self->GetException(NULL)->Dump(); } } CompiledClass* CompilerDriver::GetCompiledClass(ClassReference ref) const { MutexLock mu(Thread::Current(), compiled_classes_lock_); ClassTable::const_iterator it = compiled_classes_.find(ref); if (it == compiled_classes_.end()) { return NULL; } CHECK(it->second != NULL); return it->second; } void CompilerDriver::RecordClassStatus(ClassReference ref, mirror::Class::Status status) { MutexLock mu(Thread::Current(), compiled_classes_lock_); auto it = compiled_classes_.find(ref); if (it == compiled_classes_.end() || it->second->GetStatus() != status) { // An entry doesn't exist or the status is lower than the new status. if (it != compiled_classes_.end()) { CHECK_GT(status, it->second->GetStatus()); delete it->second; } switch (status) { case mirror::Class::kStatusNotReady: case mirror::Class::kStatusError: case mirror::Class::kStatusRetryVerificationAtRuntime: case mirror::Class::kStatusVerified: case mirror::Class::kStatusInitialized: break; // Expected states. default: LOG(FATAL) << "Unexpected class status for class " << PrettyDescriptor(ref.first->GetClassDescriptor(ref.first->GetClassDef(ref.second))) << " of " << status; } CompiledClass* compiled_class = new CompiledClass(status); compiled_classes_.Overwrite(ref, compiled_class); } } CompiledMethod* CompilerDriver::GetCompiledMethod(MethodReference ref) const { MutexLock mu(Thread::Current(), compiled_methods_lock_); MethodTable::const_iterator it = compiled_methods_.find(ref); if (it == compiled_methods_.end()) { return NULL; } CHECK(it->second != NULL); return it->second; } void CompilerDriver::AddRequiresConstructorBarrier(Thread* self, const DexFile* dex_file, uint16_t class_def_index) { WriterMutexLock mu(self, freezing_constructor_lock_); freezing_constructor_classes_.insert(ClassReference(dex_file, class_def_index)); } bool CompilerDriver::RequiresConstructorBarrier(Thread* self, const DexFile* dex_file, uint16_t class_def_index) { ReaderMutexLock mu(self, freezing_constructor_lock_); return freezing_constructor_classes_.count(ClassReference(dex_file, class_def_index)) != 0; } bool CompilerDriver::WriteElf(const std::string& android_root, bool is_host, const std::vector& dex_files, OatWriter* oat_writer, art::File* file) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return compiler_->WriteElf(file, oat_writer, dex_files, android_root, is_host, *this); } void CompilerDriver::InstructionSetToLLVMTarget(InstructionSet instruction_set, std::string* target_triple, std::string* target_cpu, std::string* target_attr) { switch (instruction_set) { case kThumb2: *target_triple = "thumb-none-linux-gnueabi"; *target_cpu = "cortex-a9"; *target_attr = "+thumb2,+neon,+neonfp,+vfp3,+db"; break; case kArm: *target_triple = "armv7-none-linux-gnueabi"; // TODO: Fix for Nexus S. *target_cpu = "cortex-a9"; // TODO: Fix for Xoom. *target_attr = "+v7,+neon,+neonfp,+vfp3,+db"; break; case kX86: *target_triple = "i386-pc-linux-gnu"; *target_attr = ""; break; case kMips: *target_triple = "mipsel-unknown-linux"; *target_attr = "mips32r2"; break; default: LOG(FATAL) << "Unknown instruction set: " << instruction_set; } } bool CompilerDriver::ReadProfile(const std::string& filename) { VLOG(compiler) << "reading profile file " << filename; struct stat st; int err = stat(filename.c_str(), &st); if (err == -1) { VLOG(compiler) << "not found"; return false; } std::ifstream in(filename.c_str()); if (!in) { VLOG(compiler) << "profile file " << filename << " exists but can't be opened"; VLOG(compiler) << "file owner: " << st.st_uid << ":" << st.st_gid; VLOG(compiler) << "me: " << getuid() << ":" << getgid(); VLOG(compiler) << "file permissions: " << std::oct << st.st_mode; VLOG(compiler) << "errno: " << errno; return false; } // The first line contains summary information. std::string line; std::getline(in, line); if (in.eof()) { return false; } std::vector summary_info; Split(line, '/', summary_info); if (summary_info.size() != 3) { // Bad summary info. It should be count/total/bootpath. return false; } // This is the number of hits in all methods. uint32_t total_count = 0; for (int i = 0 ; i < 3; ++i) { total_count += atoi(summary_info[i].c_str()); } // Now read each line until the end of file. Each line consists of 3 fields separated by '/'. // Store the info in descending order given by the most used methods. typedef std::set>> ProfileSet; ProfileSet countSet; while (!in.eof()) { std::getline(in, line); if (in.eof()) { break; } std::vector info; Split(line, '/', info); if (info.size() != 3) { // Malformed. break; } int count = atoi(info[1].c_str()); countSet.insert(std::make_pair(-count, info)); } uint32_t curTotalCount = 0; ProfileSet::iterator end = countSet.end(); const ProfileData* prevData = nullptr; for (ProfileSet::iterator it = countSet.begin(); it != end ; it++) { const std::string& methodname = it->second[0]; uint32_t count = -it->first; uint32_t size = atoi(it->second[2].c_str()); double usedPercent = (count * 100.0) / total_count; curTotalCount += count; // Methods with the same count should be part of the same top K percentage bucket. double topKPercentage = (prevData != nullptr) && (prevData->GetCount() == count) ? prevData->GetTopKUsedPercentage() : 100 * static_cast(curTotalCount) / static_cast(total_count); // Add it to the profile map. ProfileData curData = ProfileData(methodname, count, size, usedPercent, topKPercentage); profile_map_[methodname] = curData; prevData = &curData; } return true; } bool CompilerDriver::SkipCompilation(const std::string& method_name) { if (!profile_ok_) { return true; } // Methods that comprise topKPercentThreshold % of the total samples will be compiled. double topKPercentThreshold = 90.0; #ifdef HAVE_ANDROID_OS char buf[PROP_VALUE_MAX]; property_get("dalvik.vm.profile.compile_thr", buf, "90.0"); topKPercentThreshold = strtod(buf, nullptr); #endif // Test for reasonable thresholds. if (topKPercentThreshold < 10.0 || topKPercentThreshold > 90.0) { topKPercentThreshold = 90.0; } // First find the method in the profile map. ProfileMap::iterator i = profile_map_.find(method_name); if (i == profile_map_.end()) { // Not in profile, no information can be determined. VLOG(compiler) << "not compiling " << method_name << " because it's not in the profile"; return true; } const ProfileData& data = i->second; // Compare against the start of the topK percentage bucket just in case the threshold // falls inside a bucket. bool compile = data.GetTopKUsedPercentage() - data.GetUsedPercent() <= topKPercentThreshold; if (compile) { LOG(INFO) << "compiling method " << method_name << " because its usage is part of top " << data.GetTopKUsedPercentage() << "% with a percent of " << data.GetUsedPercent() << "%"; } else { VLOG(compiler) << "not compiling method " << method_name << " because it's not part of leading " << topKPercentThreshold << "% samples)"; } return !compile; } } // namespace art