/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "elf_writer_debug.h" #include #include "base/casts.h" #include "compiled_method.h" #include "driver/compiler_driver.h" #include "dex_file-inl.h" #include "dwarf/headers.h" #include "dwarf/register.h" #include "oat_writer.h" #include "utils.h" namespace art { namespace dwarf { static void WriteDebugFrameCIE(InstructionSet isa, ExceptionHeaderValueApplication addr_type, CFIFormat format, std::vector* eh_frame) { // Scratch registers should be marked as undefined. This tells the // debugger that its value in the previous frame is not recoverable. bool is64bit = Is64BitInstructionSet(isa); switch (isa) { case kArm: case kThumb2: { DebugFrameOpCodeWriter<> opcodes; opcodes.DefCFA(Reg::ArmCore(13), 0); // R13(SP). // core registers. for (int reg = 0; reg < 13; reg++) { if (reg < 4 || reg == 12) { opcodes.Undefined(Reg::ArmCore(reg)); } else { opcodes.SameValue(Reg::ArmCore(reg)); } } // fp registers. for (int reg = 0; reg < 32; reg++) { if (reg < 16) { opcodes.Undefined(Reg::ArmFp(reg)); } else { opcodes.SameValue(Reg::ArmFp(reg)); } } auto return_reg = Reg::ArmCore(14); // R14(LR). WriteDebugFrameCIE(is64bit, addr_type, return_reg, opcodes, format, eh_frame); return; } case kArm64: { DebugFrameOpCodeWriter<> opcodes; opcodes.DefCFA(Reg::Arm64Core(31), 0); // R31(SP). // core registers. for (int reg = 0; reg < 30; reg++) { if (reg < 8 || reg == 16 || reg == 17) { opcodes.Undefined(Reg::Arm64Core(reg)); } else { opcodes.SameValue(Reg::Arm64Core(reg)); } } // fp registers. for (int reg = 0; reg < 32; reg++) { if (reg < 8 || reg >= 16) { opcodes.Undefined(Reg::Arm64Fp(reg)); } else { opcodes.SameValue(Reg::Arm64Fp(reg)); } } auto return_reg = Reg::Arm64Core(30); // R30(LR). WriteDebugFrameCIE(is64bit, addr_type, return_reg, opcodes, format, eh_frame); return; } case kMips: case kMips64: { DebugFrameOpCodeWriter<> opcodes; opcodes.DefCFA(Reg::MipsCore(29), 0); // R29(SP). // core registers. for (int reg = 1; reg < 26; reg++) { if (reg < 16 || reg == 24 || reg == 25) { // AT, V*, A*, T*. opcodes.Undefined(Reg::MipsCore(reg)); } else { opcodes.SameValue(Reg::MipsCore(reg)); } } auto return_reg = Reg::MipsCore(31); // R31(RA). WriteDebugFrameCIE(is64bit, addr_type, return_reg, opcodes, format, eh_frame); return; } case kX86: { // FIXME: Add fp registers once libunwind adds support for them. Bug: 20491296 constexpr bool generate_opcodes_for_x86_fp = false; DebugFrameOpCodeWriter<> opcodes; opcodes.DefCFA(Reg::X86Core(4), 4); // R4(ESP). opcodes.Offset(Reg::X86Core(8), -4); // R8(EIP). // core registers. for (int reg = 0; reg < 8; reg++) { if (reg <= 3) { opcodes.Undefined(Reg::X86Core(reg)); } else if (reg == 4) { // Stack pointer. } else { opcodes.SameValue(Reg::X86Core(reg)); } } // fp registers. if (generate_opcodes_for_x86_fp) { for (int reg = 0; reg < 8; reg++) { opcodes.Undefined(Reg::X86Fp(reg)); } } auto return_reg = Reg::X86Core(8); // R8(EIP). WriteDebugFrameCIE(is64bit, addr_type, return_reg, opcodes, format, eh_frame); return; } case kX86_64: { DebugFrameOpCodeWriter<> opcodes; opcodes.DefCFA(Reg::X86_64Core(4), 8); // R4(RSP). opcodes.Offset(Reg::X86_64Core(16), -8); // R16(RIP). // core registers. for (int reg = 0; reg < 16; reg++) { if (reg == 4) { // Stack pointer. } else if (reg < 12 && reg != 3 && reg != 5) { // except EBX and EBP. opcodes.Undefined(Reg::X86_64Core(reg)); } else { opcodes.SameValue(Reg::X86_64Core(reg)); } } // fp registers. for (int reg = 0; reg < 16; reg++) { if (reg < 12) { opcodes.Undefined(Reg::X86_64Fp(reg)); } else { opcodes.SameValue(Reg::X86_64Fp(reg)); } } auto return_reg = Reg::X86_64Core(16); // R16(RIP). WriteDebugFrameCIE(is64bit, addr_type, return_reg, opcodes, format, eh_frame); return; } case kNone: break; } LOG(FATAL) << "Can not write CIE frame for ISA " << isa; UNREACHABLE(); } void WriteCFISection(const CompilerDriver* compiler, const OatWriter* oat_writer, ExceptionHeaderValueApplication address_type, CFIFormat format, std::vector* debug_frame, std::vector* debug_frame_patches, std::vector* eh_frame_hdr, std::vector* eh_frame_hdr_patches) { const auto& method_infos = oat_writer->GetMethodDebugInfo(); const InstructionSet isa = compiler->GetInstructionSet(); // Write .eh_frame/.debug_frame section. std::map address_to_fde_offset_map; size_t cie_offset = debug_frame->size(); WriteDebugFrameCIE(isa, address_type, format, debug_frame); for (const OatWriter::DebugInfo& mi : method_infos) { if (!mi.deduped_) { // Only one FDE per unique address. const SwapVector* opcodes = mi.compiled_method_->GetCFIInfo(); if (opcodes != nullptr) { address_to_fde_offset_map.emplace(mi.low_pc_, debug_frame->size()); WriteDebugFrameFDE(Is64BitInstructionSet(isa), cie_offset, mi.low_pc_, mi.high_pc_ - mi.low_pc_, opcodes, format, debug_frame, debug_frame_patches); } } } if (format == DW_EH_FRAME_FORMAT) { // Write .eh_frame_hdr section. Writer<> header(eh_frame_hdr); header.PushUint8(1); // Version. // Encoding of .eh_frame pointer - libunwind does not honor datarel here, // so we have to use pcrel which means relative to the pointer's location. header.PushUint8(DW_EH_PE_pcrel | DW_EH_PE_sdata4); // Encoding of binary search table size. header.PushUint8(DW_EH_PE_udata4); // Encoding of binary search table addresses - libunwind supports only this // specific combination, which means relative to the start of .eh_frame_hdr. header.PushUint8(DW_EH_PE_datarel | DW_EH_PE_sdata4); // .eh_frame pointer - .eh_frame_hdr section is after .eh_frame section const int32_t relative_eh_frame_begin = -static_cast(debug_frame->size()); header.PushInt32(relative_eh_frame_begin - 4U); // Binary search table size (number of entries). header.PushUint32(dchecked_integral_cast(address_to_fde_offset_map.size())); // Binary search table. for (const auto& address_to_fde_offset : address_to_fde_offset_map) { u_int32_t code_address = address_to_fde_offset.first; int32_t fde_address = dchecked_integral_cast(address_to_fde_offset.second); eh_frame_hdr_patches->push_back(header.data()->size()); header.PushUint32(code_address); // We know the exact layout (eh_frame is immediately before eh_frame_hdr) // and the data is relative to the start of the eh_frame_hdr, // so patching isn't necessary (in contrast to the code address above). header.PushInt32(relative_eh_frame_begin + fde_address); } } } /* * @brief Generate the DWARF sections. * @param oat_writer The Oat file Writer. * @param eh_frame Call Frame Information. * @param debug_info Compilation unit information. * @param debug_info_patches Address locations to be patched. * @param debug_abbrev Abbreviations used to generate dbg_info. * @param debug_str Debug strings. * @param debug_line Line number table. * @param debug_line_patches Address locations to be patched. */ void WriteDebugSections(const CompilerDriver* compiler, const OatWriter* oat_writer, std::vector* debug_info, std::vector* debug_info_patches, std::vector* debug_abbrev, std::vector* debug_str, std::vector* debug_line, std::vector* debug_line_patches) { const std::vector& method_infos = oat_writer->GetMethodDebugInfo(); const InstructionSet isa = compiler->GetInstructionSet(); const bool is64bit = Is64BitInstructionSet(isa); // Find all addresses (low_pc) which contain deduped methods. // The first instance of method is not marked deduped_, but the rest is. std::unordered_set deduped_addresses; for (auto it = method_infos.begin(); it != method_infos.end(); ++it) { if (it->deduped_) { deduped_addresses.insert(it->low_pc_); } } // Group the methods into compilation units based on source file. std::vector> compilation_units; const char* last_source_file = nullptr; for (const auto& mi : method_infos) { // Attribute given instruction range only to single method. // Otherwise the debugger might get really confused. if (!mi.deduped_) { auto& dex_class_def = mi.dex_file_->GetClassDef(mi.class_def_index_); const char* source_file = mi.dex_file_->GetSourceFile(dex_class_def); if (compilation_units.empty() || source_file != last_source_file) { compilation_units.push_back(std::vector()); } compilation_units.back().push_back(&mi); last_source_file = source_file; } } // Write .debug_info section. for (const auto& compilation_unit : compilation_units) { uint32_t cunit_low_pc = 0xFFFFFFFFU; uint32_t cunit_high_pc = 0; for (auto method_info : compilation_unit) { cunit_low_pc = std::min(cunit_low_pc, method_info->low_pc_); cunit_high_pc = std::max(cunit_high_pc, method_info->high_pc_); } size_t debug_abbrev_offset = debug_abbrev->size(); DebugInfoEntryWriter<> info(is64bit, debug_abbrev); info.StartTag(DW_TAG_compile_unit, DW_CHILDREN_yes); info.WriteStrp(DW_AT_producer, "Android dex2oat", debug_str); info.WriteData1(DW_AT_language, DW_LANG_Java); info.WriteAddr(DW_AT_low_pc, cunit_low_pc); info.WriteAddr(DW_AT_high_pc, cunit_high_pc); info.WriteData4(DW_AT_stmt_list, debug_line->size()); for (auto method_info : compilation_unit) { std::string method_name = PrettyMethod(method_info->dex_method_index_, *method_info->dex_file_, true); if (deduped_addresses.find(method_info->low_pc_) != deduped_addresses.end()) { method_name += " [DEDUPED]"; } info.StartTag(DW_TAG_subprogram, DW_CHILDREN_no); info.WriteStrp(DW_AT_name, method_name.data(), debug_str); info.WriteAddr(DW_AT_low_pc, method_info->low_pc_); info.WriteAddr(DW_AT_high_pc, method_info->high_pc_); info.EndTag(); // DW_TAG_subprogram } info.EndTag(); // DW_TAG_compile_unit WriteDebugInfoCU(debug_abbrev_offset, info, debug_info, debug_info_patches); // Write .debug_line section. std::vector files; std::unordered_map files_map; std::vector directories; std::unordered_map directories_map; int code_factor_bits_ = 0; int dwarf_isa = -1; switch (isa) { case kArm: // arm actually means thumb2. case kThumb2: code_factor_bits_ = 1; // 16-bit instuctions dwarf_isa = 1; // DW_ISA_ARM_thumb. break; case kArm64: case kMips: case kMips64: code_factor_bits_ = 2; // 32-bit instructions break; case kNone: case kX86: case kX86_64: break; } DebugLineOpCodeWriter<> opcodes(is64bit, code_factor_bits_); opcodes.SetAddress(cunit_low_pc); if (dwarf_isa != -1) { opcodes.SetISA(dwarf_isa); } for (const OatWriter::DebugInfo* mi : compilation_unit) { struct DebugInfoCallbacks { static bool NewPosition(void* ctx, uint32_t address, uint32_t line) { auto* context = reinterpret_cast(ctx); context->dex2line_.push_back({address, static_cast(line)}); return false; } DefaultSrcMap dex2line_; } debug_info_callbacks; const DexFile* dex = mi->dex_file_; if (mi->code_item_ != nullptr) { dex->DecodeDebugInfo(mi->code_item_, (mi->access_flags_ & kAccStatic) != 0, mi->dex_method_index_, DebugInfoCallbacks::NewPosition, nullptr, &debug_info_callbacks); } // Get and deduplicate directory and filename. int file_index = 0; // 0 - primary source file of the compilation. auto& dex_class_def = dex->GetClassDef(mi->class_def_index_); const char* source_file = dex->GetSourceFile(dex_class_def); if (source_file != nullptr) { std::string file_name(source_file); size_t file_name_slash = file_name.find_last_of('/'); std::string class_name(dex->GetClassDescriptor(dex_class_def)); size_t class_name_slash = class_name.find_last_of('/'); std::string full_path(file_name); // Guess directory from package name. int directory_index = 0; // 0 - current directory of the compilation. if (file_name_slash == std::string::npos && // Just filename. class_name.front() == 'L' && // Type descriptor for a class. class_name_slash != std::string::npos) { // Has package name. std::string package_name = class_name.substr(1, class_name_slash - 1); auto it = directories_map.find(package_name); if (it == directories_map.end()) { directory_index = 1 + directories.size(); directories_map.emplace(package_name, directory_index); directories.push_back(package_name); } else { directory_index = it->second; } full_path = package_name + "/" + file_name; } // Add file entry. auto it2 = files_map.find(full_path); if (it2 == files_map.end()) { file_index = 1 + files.size(); files_map.emplace(full_path, file_index); files.push_back(FileEntry { file_name, directory_index, 0, // Modification time - NA. 0, // File size - NA. }); } else { file_index = it2->second; } } opcodes.SetFile(file_index); // Generate mapping opcodes from PC to Java lines. const DefaultSrcMap& dex2line_map = debug_info_callbacks.dex2line_; if (file_index != 0 && !dex2line_map.empty()) { bool first = true; for (SrcMapElem pc2dex : mi->compiled_method_->GetSrcMappingTable()) { uint32_t pc = pc2dex.from_; int dex_pc = pc2dex.to_; auto dex2line = dex2line_map.Find(static_cast(dex_pc)); if (dex2line.first) { int line = dex2line.second; if (first) { first = false; if (pc > 0) { // Assume that any preceding code is prologue. int first_line = dex2line_map.front().to_; // Prologue is not a sensible place for a breakpoint. opcodes.NegateStmt(); opcodes.AddRow(mi->low_pc_, first_line); opcodes.NegateStmt(); opcodes.SetPrologueEnd(); } opcodes.AddRow(mi->low_pc_ + pc, line); } else if (line != opcodes.CurrentLine()) { opcodes.AddRow(mi->low_pc_ + pc, line); } } } } else { // line 0 - instruction cannot be attributed to any source line. opcodes.AddRow(mi->low_pc_, 0); } } opcodes.AdvancePC(cunit_high_pc); opcodes.EndSequence(); WriteDebugLineTable(directories, files, opcodes, debug_line, debug_line_patches); } } } // namespace dwarf } // namespace art