/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "image_writer.h" #include #include #include #include "base/logging.h" #include "base/unix_file/fd_file.h" #include "class_linker.h" #include "compiled_method.h" #include "dex_file-inl.h" #include "driver/compiler_driver.h" #include "elf_file.h" #include "elf_utils.h" #include "elf_writer.h" #include "gc/accounting/card_table-inl.h" #include "gc/accounting/heap_bitmap.h" #include "gc/accounting/space_bitmap-inl.h" #include "gc/heap.h" #include "gc/space/large_object_space.h" #include "gc/space/space-inl.h" #include "globals.h" #include "image.h" #include "intern_table.h" #include "lock_word.h" #include "mirror/art_field-inl.h" #include "mirror/art_method-inl.h" #include "mirror/array-inl.h" #include "mirror/class-inl.h" #include "mirror/class_loader.h" #include "mirror/dex_cache-inl.h" #include "mirror/object-inl.h" #include "mirror/object_array-inl.h" #include "mirror/string-inl.h" #include "oat.h" #include "oat_file.h" #include "runtime.h" #include "scoped_thread_state_change.h" #include "handle_scope-inl.h" #include "utils.h" using ::art::mirror::ArtField; using ::art::mirror::ArtMethod; using ::art::mirror::Class; using ::art::mirror::DexCache; using ::art::mirror::EntryPointFromInterpreter; using ::art::mirror::Object; using ::art::mirror::ObjectArray; using ::art::mirror::String; namespace art { bool ImageWriter::PrepareImageAddressSpace() { { Thread::Current()->TransitionFromSuspendedToRunnable(); PruneNonImageClasses(); // Remove junk ComputeLazyFieldsForImageClasses(); // Add useful information ComputeEagerResolvedStrings(); Thread::Current()->TransitionFromRunnableToSuspended(kNative); } gc::Heap* heap = Runtime::Current()->GetHeap(); heap->CollectGarbage(false); // Remove garbage. if (!AllocMemory()) { return false; } if (kIsDebugBuild) { ScopedObjectAccess soa(Thread::Current()); CheckNonImageClassesRemoved(); } Thread::Current()->TransitionFromSuspendedToRunnable(); CalculateNewObjectOffsets(); Thread::Current()->TransitionFromRunnableToSuspended(kNative); return true; } bool ImageWriter::Write(const std::string& image_filename, const std::string& oat_filename, const std::string& oat_location) { CHECK(!image_filename.empty()); ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); std::unique_ptr oat_file(OS::OpenFileReadWrite(oat_filename.c_str())); if (oat_file.get() == NULL) { LOG(ERROR) << "Failed to open oat file " << oat_filename << " for " << oat_location; return false; } std::string error_msg; oat_file_ = OatFile::OpenReadable(oat_file.get(), oat_location, &error_msg); if (oat_file_ == nullptr) { LOG(ERROR) << "Failed to open writable oat file " << oat_filename << " for " << oat_location << ": " << error_msg; return false; } CHECK_EQ(class_linker->RegisterOatFile(oat_file_), oat_file_); interpreter_to_interpreter_bridge_offset_ = oat_file_->GetOatHeader().GetInterpreterToInterpreterBridgeOffset(); interpreter_to_compiled_code_bridge_offset_ = oat_file_->GetOatHeader().GetInterpreterToCompiledCodeBridgeOffset(); jni_dlsym_lookup_offset_ = oat_file_->GetOatHeader().GetJniDlsymLookupOffset(); portable_imt_conflict_trampoline_offset_ = oat_file_->GetOatHeader().GetPortableImtConflictTrampolineOffset(); portable_resolution_trampoline_offset_ = oat_file_->GetOatHeader().GetPortableResolutionTrampolineOffset(); portable_to_interpreter_bridge_offset_ = oat_file_->GetOatHeader().GetPortableToInterpreterBridgeOffset(); quick_generic_jni_trampoline_offset_ = oat_file_->GetOatHeader().GetQuickGenericJniTrampolineOffset(); quick_imt_conflict_trampoline_offset_ = oat_file_->GetOatHeader().GetQuickImtConflictTrampolineOffset(); quick_resolution_trampoline_offset_ = oat_file_->GetOatHeader().GetQuickResolutionTrampolineOffset(); quick_to_interpreter_bridge_offset_ = oat_file_->GetOatHeader().GetQuickToInterpreterBridgeOffset(); size_t oat_loaded_size = 0; size_t oat_data_offset = 0; ElfWriter::GetOatElfInformation(oat_file.get(), oat_loaded_size, oat_data_offset); Thread::Current()->TransitionFromSuspendedToRunnable(); CreateHeader(oat_loaded_size, oat_data_offset); CopyAndFixupObjects(); Thread::Current()->TransitionFromRunnableToSuspended(kNative); SetOatChecksumFromElfFile(oat_file.get()); std::unique_ptr image_file(OS::CreateEmptyFile(image_filename.c_str())); ImageHeader* image_header = reinterpret_cast(image_->Begin()); if (image_file.get() == NULL) { LOG(ERROR) << "Failed to open image file " << image_filename; return false; } if (fchmod(image_file->Fd(), 0644) != 0) { PLOG(ERROR) << "Failed to make image file world readable: " << image_filename; return EXIT_FAILURE; } // Write out the image. CHECK_EQ(image_end_, image_header->GetImageSize()); if (!image_file->WriteFully(image_->Begin(), image_end_)) { PLOG(ERROR) << "Failed to write image file " << image_filename; return false; } // Write out the image bitmap at the page aligned start of the image end. CHECK_ALIGNED(image_header->GetImageBitmapOffset(), kPageSize); if (!image_file->Write(reinterpret_cast(image_bitmap_->Begin()), image_header->GetImageBitmapSize(), image_header->GetImageBitmapOffset())) { PLOG(ERROR) << "Failed to write image file " << image_filename; return false; } return true; } void ImageWriter::SetImageOffset(mirror::Object* object, size_t offset) { DCHECK(object != nullptr); DCHECK_NE(offset, 0U); DCHECK(!IsImageOffsetAssigned(object)); mirror::Object* obj = reinterpret_cast(image_->Begin() + offset); DCHECK_ALIGNED(obj, kObjectAlignment); image_bitmap_->Set(obj); // Before we stomp over the lock word, save the hash code for later. Monitor::Deflate(Thread::Current(), object);; LockWord lw(object->GetLockWord(false)); switch (lw.GetState()) { case LockWord::kFatLocked: { LOG(FATAL) << "Fat locked object " << obj << " found during object copy"; break; } case LockWord::kThinLocked: { LOG(FATAL) << "Thin locked object " << obj << " found during object copy"; break; } case LockWord::kUnlocked: // No hash, don't need to save it. break; case LockWord::kHashCode: saved_hashes_.push_back(std::make_pair(obj, lw.GetHashCode())); break; default: LOG(FATAL) << "Unreachable."; UNREACHABLE(); } object->SetLockWord(LockWord::FromForwardingAddress(offset), false); DCHECK(IsImageOffsetAssigned(object)); } void ImageWriter::AssignImageOffset(mirror::Object* object) { DCHECK(object != nullptr); SetImageOffset(object, image_end_); image_end_ += RoundUp(object->SizeOf(), 8); // 64-bit alignment DCHECK_LT(image_end_, image_->Size()); } bool ImageWriter::IsImageOffsetAssigned(mirror::Object* object) const { DCHECK(object != nullptr); return object->GetLockWord(false).GetState() == LockWord::kForwardingAddress; } size_t ImageWriter::GetImageOffset(mirror::Object* object) const { DCHECK(object != nullptr); DCHECK(IsImageOffsetAssigned(object)); LockWord lock_word = object->GetLockWord(false); size_t offset = lock_word.ForwardingAddress(); DCHECK_LT(offset, image_end_); return offset; } bool ImageWriter::AllocMemory() { size_t length = RoundUp(Runtime::Current()->GetHeap()->GetTotalMemory(), kPageSize); std::string error_msg; image_.reset(MemMap::MapAnonymous("image writer image", NULL, length, PROT_READ | PROT_WRITE, false, &error_msg)); if (UNLIKELY(image_.get() == nullptr)) { LOG(ERROR) << "Failed to allocate memory for image file generation: " << error_msg; return false; } // Create the image bitmap. image_bitmap_.reset(gc::accounting::ContinuousSpaceBitmap::Create("image bitmap", image_->Begin(), length)); if (image_bitmap_.get() == nullptr) { LOG(ERROR) << "Failed to allocate memory for image bitmap"; return false; } return true; } void ImageWriter::ComputeLazyFieldsForImageClasses() { ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); class_linker->VisitClassesWithoutClassesLock(ComputeLazyFieldsForClassesVisitor, NULL); } bool ImageWriter::ComputeLazyFieldsForClassesVisitor(Class* c, void* /*arg*/) { Thread* self = Thread::Current(); StackHandleScope<1> hs(self); mirror::Class::ComputeName(hs.NewHandle(c)); return true; } void ImageWriter::ComputeEagerResolvedStringsCallback(Object* obj, void* arg ATTRIBUTE_UNUSED) { if (!obj->GetClass()->IsStringClass()) { return; } mirror::String* string = obj->AsString(); const uint16_t* utf16_string = string->GetCharArray()->GetData() + string->GetOffset(); ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); ReaderMutexLock mu(Thread::Current(), *class_linker->DexLock()); size_t dex_cache_count = class_linker->GetDexCacheCount(); for (size_t i = 0; i < dex_cache_count; ++i) { DexCache* dex_cache = class_linker->GetDexCache(i); const DexFile& dex_file = *dex_cache->GetDexFile(); const DexFile::StringId* string_id; if (UNLIKELY(string->GetLength() == 0)) { string_id = dex_file.FindStringId(""); } else { string_id = dex_file.FindStringId(utf16_string); } if (string_id != nullptr) { // This string occurs in this dex file, assign the dex cache entry. uint32_t string_idx = dex_file.GetIndexForStringId(*string_id); if (dex_cache->GetResolvedString(string_idx) == NULL) { dex_cache->SetResolvedString(string_idx, string); } } } } void ImageWriter::ComputeEagerResolvedStrings() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); Runtime::Current()->GetHeap()->VisitObjects(ComputeEagerResolvedStringsCallback, this); } bool ImageWriter::IsImageClass(Class* klass) { std::string temp; return compiler_driver_.IsImageClass(klass->GetDescriptor(&temp)); } struct NonImageClasses { ImageWriter* image_writer; std::set* non_image_classes; }; void ImageWriter::PruneNonImageClasses() { if (compiler_driver_.GetImageClasses() == NULL) { return; } Runtime* runtime = Runtime::Current(); ClassLinker* class_linker = runtime->GetClassLinker(); // Make a list of classes we would like to prune. std::set non_image_classes; NonImageClasses context; context.image_writer = this; context.non_image_classes = &non_image_classes; class_linker->VisitClasses(NonImageClassesVisitor, &context); // Remove the undesired classes from the class roots. for (const std::string& it : non_image_classes) { class_linker->RemoveClass(it.c_str(), NULL); } // Clear references to removed classes from the DexCaches. ArtMethod* resolution_method = runtime->GetResolutionMethod(); ReaderMutexLock mu(Thread::Current(), *class_linker->DexLock()); size_t dex_cache_count = class_linker->GetDexCacheCount(); for (size_t idx = 0; idx < dex_cache_count; ++idx) { DexCache* dex_cache = class_linker->GetDexCache(idx); for (size_t i = 0; i < dex_cache->NumResolvedTypes(); i++) { Class* klass = dex_cache->GetResolvedType(i); if (klass != NULL && !IsImageClass(klass)) { dex_cache->SetResolvedType(i, NULL); } } for (size_t i = 0; i < dex_cache->NumResolvedMethods(); i++) { ArtMethod* method = dex_cache->GetResolvedMethod(i); if (method != NULL && !IsImageClass(method->GetDeclaringClass())) { dex_cache->SetResolvedMethod(i, resolution_method); } } for (size_t i = 0; i < dex_cache->NumResolvedFields(); i++) { ArtField* field = dex_cache->GetResolvedField(i); if (field != NULL && !IsImageClass(field->GetDeclaringClass())) { dex_cache->SetResolvedField(i, NULL); } } } } bool ImageWriter::NonImageClassesVisitor(Class* klass, void* arg) { NonImageClasses* context = reinterpret_cast(arg); if (!context->image_writer->IsImageClass(klass)) { std::string temp; context->non_image_classes->insert(klass->GetDescriptor(&temp)); } return true; } void ImageWriter::CheckNonImageClassesRemoved() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { if (compiler_driver_.GetImageClasses() != nullptr) { gc::Heap* heap = Runtime::Current()->GetHeap(); ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); heap->VisitObjects(CheckNonImageClassesRemovedCallback, this); } } void ImageWriter::CheckNonImageClassesRemovedCallback(Object* obj, void* arg) { ImageWriter* image_writer = reinterpret_cast(arg); if (obj->IsClass()) { Class* klass = obj->AsClass(); if (!image_writer->IsImageClass(klass)) { image_writer->DumpImageClasses(); std::string temp; CHECK(image_writer->IsImageClass(klass)) << klass->GetDescriptor(&temp) << " " << PrettyDescriptor(klass); } } } void ImageWriter::DumpImageClasses() { const std::set* image_classes = compiler_driver_.GetImageClasses(); CHECK(image_classes != NULL); for (const std::string& image_class : *image_classes) { LOG(INFO) << " " << image_class; } } void ImageWriter::CalculateObjectOffsets(Object* obj) { DCHECK(obj != NULL); // if it is a string, we want to intern it if its not interned. if (obj->GetClass()->IsStringClass()) { // we must be an interned string that was forward referenced and already assigned if (IsImageOffsetAssigned(obj)) { DCHECK_EQ(obj, obj->AsString()->Intern()); return; } mirror::String* const interned = obj->AsString()->Intern(); if (obj != interned) { if (!IsImageOffsetAssigned(interned)) { // interned obj is after us, allocate its location early AssignImageOffset(interned); } // point those looking for this object to the interned version. SetImageOffset(obj, GetImageOffset(interned)); return; } // else (obj == interned), nothing to do but fall through to the normal case } AssignImageOffset(obj); } ObjectArray* ImageWriter::CreateImageRoots() const { Runtime* runtime = Runtime::Current(); ClassLinker* class_linker = runtime->GetClassLinker(); Thread* self = Thread::Current(); StackHandleScope<3> hs(self); Handle object_array_class(hs.NewHandle( class_linker->FindSystemClass(self, "[Ljava/lang/Object;"))); // build an Object[] of all the DexCaches used in the source_space_. // Since we can't hold the dex lock when allocating the dex_caches // ObjectArray, we lock the dex lock twice, first to get the number // of dex caches first and then lock it again to copy the dex // caches. We check that the number of dex caches does not change. size_t dex_cache_count; { ReaderMutexLock mu(Thread::Current(), *class_linker->DexLock()); dex_cache_count = class_linker->GetDexCacheCount(); } Handle> dex_caches( hs.NewHandle(ObjectArray::Alloc(self, object_array_class.Get(), dex_cache_count))); CHECK(dex_caches.Get() != nullptr) << "Failed to allocate a dex cache array."; { ReaderMutexLock mu(Thread::Current(), *class_linker->DexLock()); CHECK_EQ(dex_cache_count, class_linker->GetDexCacheCount()) << "The number of dex caches changed."; for (size_t i = 0; i < dex_cache_count; ++i) { dex_caches->Set(i, class_linker->GetDexCache(i)); } } // build an Object[] of the roots needed to restore the runtime Handle> image_roots(hs.NewHandle( ObjectArray::Alloc(self, object_array_class.Get(), ImageHeader::kImageRootsMax))); image_roots->Set(ImageHeader::kResolutionMethod, runtime->GetResolutionMethod()); image_roots->Set(ImageHeader::kImtConflictMethod, runtime->GetImtConflictMethod()); image_roots->Set(ImageHeader::kImtUnimplementedMethod, runtime->GetImtUnimplementedMethod()); image_roots->Set(ImageHeader::kDefaultImt, runtime->GetDefaultImt()); image_roots->Set(ImageHeader::kCalleeSaveMethod, runtime->GetCalleeSaveMethod(Runtime::kSaveAll)); image_roots->Set(ImageHeader::kRefsOnlySaveMethod, runtime->GetCalleeSaveMethod(Runtime::kRefsOnly)); image_roots->Set(ImageHeader::kRefsAndArgsSaveMethod, runtime->GetCalleeSaveMethod(Runtime::kRefsAndArgs)); image_roots->Set(ImageHeader::kDexCaches, dex_caches.Get()); image_roots->Set(ImageHeader::kClassRoots, class_linker->GetClassRoots()); for (int i = 0; i < ImageHeader::kImageRootsMax; i++) { CHECK(image_roots->Get(i) != NULL); } return image_roots.Get(); } // Walk instance fields of the given Class. Separate function to allow recursion on the super // class. void ImageWriter::WalkInstanceFields(mirror::Object* obj, mirror::Class* klass) { // Visit fields of parent classes first. StackHandleScope<1> hs(Thread::Current()); Handle h_class(hs.NewHandle(klass)); mirror::Class* super = h_class->GetSuperClass(); if (super != nullptr) { WalkInstanceFields(obj, super); } // size_t num_reference_fields = h_class->NumReferenceInstanceFields(); for (size_t i = 0; i < num_reference_fields; ++i) { mirror::ArtField* field = h_class->GetInstanceField(i); MemberOffset field_offset = field->GetOffset(); mirror::Object* value = obj->GetFieldObject(field_offset); if (value != nullptr) { WalkFieldsInOrder(value); } } } // For an unvisited object, visit it then all its children found via fields. void ImageWriter::WalkFieldsInOrder(mirror::Object* obj) { if (!IsImageOffsetAssigned(obj)) { // Walk instance fields of all objects StackHandleScope<2> hs(Thread::Current()); Handle h_obj(hs.NewHandle(obj)); Handle klass(hs.NewHandle(obj->GetClass())); // visit the object itself. CalculateObjectOffsets(h_obj.Get()); WalkInstanceFields(h_obj.Get(), klass.Get()); // Walk static fields of a Class. if (h_obj->IsClass()) { size_t num_static_fields = klass->NumReferenceStaticFields(); for (size_t i = 0; i < num_static_fields; ++i) { mirror::ArtField* field = klass->GetStaticField(i); MemberOffset field_offset = field->GetOffset(); mirror::Object* value = h_obj->GetFieldObject(field_offset); if (value != nullptr) { WalkFieldsInOrder(value); } } } else if (h_obj->IsObjectArray()) { // Walk elements of an object array. int32_t length = h_obj->AsObjectArray()->GetLength(); for (int32_t i = 0; i < length; i++) { mirror::ObjectArray* obj_array = h_obj->AsObjectArray(); mirror::Object* value = obj_array->Get(i); if (value != nullptr) { WalkFieldsInOrder(value); } } } } } void ImageWriter::WalkFieldsCallback(mirror::Object* obj, void* arg) { ImageWriter* writer = reinterpret_cast(arg); DCHECK(writer != nullptr); writer->WalkFieldsInOrder(obj); } void ImageWriter::CalculateNewObjectOffsets() { Thread* self = Thread::Current(); StackHandleScope<1> hs(self); Handle> image_roots(hs.NewHandle(CreateImageRoots())); gc::Heap* heap = Runtime::Current()->GetHeap(); DCHECK_EQ(0U, image_end_); // Leave space for the header, but do not write it yet, we need to // know where image_roots is going to end up image_end_ += RoundUp(sizeof(ImageHeader), 8); // 64-bit-alignment { WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); // TODO: Image spaces only? DCHECK_LT(image_end_, image_->Size()); // Clear any pre-existing monitors which may have been in the monitor words. heap->VisitObjects(WalkFieldsCallback, this); } image_roots_address_ = PointerToLowMemUInt32(GetImageAddress(image_roots.Get())); // Note that image_end_ is left at end of used space } void ImageWriter::CreateHeader(size_t oat_loaded_size, size_t oat_data_offset) { CHECK_NE(0U, oat_loaded_size); const uint8_t* oat_file_begin = GetOatFileBegin(); const uint8_t* oat_file_end = oat_file_begin + oat_loaded_size; oat_data_begin_ = oat_file_begin + oat_data_offset; const uint8_t* oat_data_end = oat_data_begin_ + oat_file_->Size(); // Return to write header at start of image with future location of image_roots. At this point, // image_end_ is the size of the image (excluding bitmaps). const size_t heap_bytes_per_bitmap_byte = kBitsPerByte * kObjectAlignment; const size_t bitmap_bytes = RoundUp(image_end_, heap_bytes_per_bitmap_byte) / heap_bytes_per_bitmap_byte; new (image_->Begin()) ImageHeader(PointerToLowMemUInt32(image_begin_), static_cast(image_end_), RoundUp(image_end_, kPageSize), RoundUp(bitmap_bytes, kPageSize), image_roots_address_, oat_file_->GetOatHeader().GetChecksum(), PointerToLowMemUInt32(oat_file_begin), PointerToLowMemUInt32(oat_data_begin_), PointerToLowMemUInt32(oat_data_end), PointerToLowMemUInt32(oat_file_end), compile_pic_); } void ImageWriter::CopyAndFixupObjects() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { ScopedAssertNoThreadSuspension ants(Thread::Current(), "ImageWriter"); gc::Heap* heap = Runtime::Current()->GetHeap(); // TODO: heap validation can't handle this fix up pass heap->DisableObjectValidation(); // TODO: Image spaces only? WriterMutexLock mu(ants.Self(), *Locks::heap_bitmap_lock_); heap->VisitObjects(CopyAndFixupObjectsCallback, this); // Fix up the object previously had hash codes. for (const std::pair& hash_pair : saved_hashes_) { hash_pair.first->SetLockWord(LockWord::FromHashCode(hash_pair.second), false); } saved_hashes_.clear(); } void ImageWriter::CopyAndFixupObjectsCallback(Object* obj, void* arg) { DCHECK(obj != nullptr); DCHECK(arg != nullptr); ImageWriter* image_writer = reinterpret_cast(arg); // see GetLocalAddress for similar computation size_t offset = image_writer->GetImageOffset(obj); uint8_t* dst = image_writer->image_->Begin() + offset; const uint8_t* src = reinterpret_cast(obj); size_t n = obj->SizeOf(); DCHECK_LT(offset + n, image_writer->image_->Size()); memcpy(dst, src, n); Object* copy = reinterpret_cast(dst); // Write in a hash code of objects which have inflated monitors or a hash code in their monitor // word. copy->SetLockWord(LockWord(), false); image_writer->FixupObject(obj, copy); } class FixupVisitor { public: FixupVisitor(ImageWriter* image_writer, Object* copy) : image_writer_(image_writer), copy_(copy) { } void operator()(Object* obj, MemberOffset offset, bool /*is_static*/) const EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) { Object* ref = obj->GetFieldObject(offset); // Use SetFieldObjectWithoutWriteBarrier to avoid card marking since we are writing to the // image. copy_->SetFieldObjectWithoutWriteBarrier( offset, image_writer_->GetImageAddress(ref)); } // java.lang.ref.Reference visitor. void operator()(mirror::Class* /*klass*/, mirror::Reference* ref) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) { copy_->SetFieldObjectWithoutWriteBarrier( mirror::Reference::ReferentOffset(), image_writer_->GetImageAddress(ref->GetReferent())); } protected: ImageWriter* const image_writer_; mirror::Object* const copy_; }; class FixupClassVisitor FINAL : public FixupVisitor { public: FixupClassVisitor(ImageWriter* image_writer, Object* copy) : FixupVisitor(image_writer, copy) { } void operator()(Object* obj, MemberOffset offset, bool /*is_static*/) const EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) { DCHECK(obj->IsClass()); FixupVisitor::operator()(obj, offset, false); if (offset.Uint32Value() < mirror::Class::EmbeddedVTableOffset().Uint32Value()) { return; } } void operator()(mirror::Class* klass ATTRIBUTE_UNUSED, mirror::Reference* ref ATTRIBUTE_UNUSED) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) { LOG(FATAL) << "Reference not expected here."; } }; void ImageWriter::FixupObject(Object* orig, Object* copy) { DCHECK(orig != nullptr); DCHECK(copy != nullptr); if (kUseBakerOrBrooksReadBarrier) { orig->AssertReadBarrierPointer(); if (kUseBrooksReadBarrier) { // Note the address 'copy' isn't the same as the image address of 'orig'. copy->SetReadBarrierPointer(GetImageAddress(orig)); DCHECK_EQ(copy->GetReadBarrierPointer(), GetImageAddress(orig)); } } if (orig->IsClass() && orig->AsClass()->ShouldHaveEmbeddedImtAndVTable()) { FixupClassVisitor visitor(this, copy); orig->VisitReferences(visitor, visitor); } else { FixupVisitor visitor(this, copy); orig->VisitReferences(visitor, visitor); } if (orig->IsArtMethod()) { FixupMethod(orig->AsArtMethod(), down_cast(copy)); } } const uint8_t* ImageWriter::GetQuickCode(mirror::ArtMethod* method, bool* quick_is_interpreted) { DCHECK(!method->IsResolutionMethod() && !method->IsImtConflictMethod() && !method->IsImtUnimplementedMethod() && !method->IsAbstract()) << PrettyMethod(method); // Use original code if it exists. Otherwise, set the code pointer to the resolution // trampoline. // Quick entrypoint: const uint8_t* quick_code = GetOatAddress(method->GetQuickOatCodeOffset()); *quick_is_interpreted = false; if (quick_code != nullptr && (!method->IsStatic() || method->IsConstructor() || method->GetDeclaringClass()->IsInitialized())) { // We have code for a non-static or initialized method, just use the code. } else if (quick_code == nullptr && method->IsNative() && (!method->IsStatic() || method->GetDeclaringClass()->IsInitialized())) { // Non-static or initialized native method missing compiled code, use generic JNI version. quick_code = GetOatAddress(quick_generic_jni_trampoline_offset_); } else if (quick_code == nullptr && !method->IsNative()) { // We don't have code at all for a non-native method, use the interpreter. quick_code = GetOatAddress(quick_to_interpreter_bridge_offset_); *quick_is_interpreted = true; } else { CHECK(!method->GetDeclaringClass()->IsInitialized()); // We have code for a static method, but need to go through the resolution stub for class // initialization. quick_code = GetOatAddress(quick_resolution_trampoline_offset_); } return quick_code; } const uint8_t* ImageWriter::GetQuickEntryPoint(mirror::ArtMethod* method) { // Calculate the quick entry point following the same logic as FixupMethod() below. // The resolution method has a special trampoline to call. Runtime* runtime = Runtime::Current(); if (UNLIKELY(method == runtime->GetResolutionMethod())) { return GetOatAddress(quick_resolution_trampoline_offset_); } else if (UNLIKELY(method == runtime->GetImtConflictMethod() || method == runtime->GetImtUnimplementedMethod())) { return GetOatAddress(quick_imt_conflict_trampoline_offset_); } else { // We assume all methods have code. If they don't currently then we set them to the use the // resolution trampoline. Abstract methods never have code and so we need to make sure their // use results in an AbstractMethodError. We use the interpreter to achieve this. if (UNLIKELY(method->IsAbstract())) { return GetOatAddress(quick_to_interpreter_bridge_offset_); } else { bool quick_is_interpreted; return GetQuickCode(method, &quick_is_interpreted); } } } void ImageWriter::FixupMethod(ArtMethod* orig, ArtMethod* copy) { // OatWriter replaces the code_ with an offset value. Here we re-adjust to a pointer relative to // oat_begin_ // The resolution method has a special trampoline to call. Runtime* runtime = Runtime::Current(); if (UNLIKELY(orig == runtime->GetResolutionMethod())) { copy->SetEntryPointFromPortableCompiledCode(GetOatAddress(portable_resolution_trampoline_offset_)); copy->SetEntryPointFromQuickCompiledCode(GetOatAddress(quick_resolution_trampoline_offset_)); } else if (UNLIKELY(orig == runtime->GetImtConflictMethod() || orig == runtime->GetImtUnimplementedMethod())) { copy->SetEntryPointFromPortableCompiledCode(GetOatAddress(portable_imt_conflict_trampoline_offset_)); copy->SetEntryPointFromQuickCompiledCode(GetOatAddress(quick_imt_conflict_trampoline_offset_)); } else { // We assume all methods have code. If they don't currently then we set them to the use the // resolution trampoline. Abstract methods never have code and so we need to make sure their // use results in an AbstractMethodError. We use the interpreter to achieve this. if (UNLIKELY(orig->IsAbstract())) { copy->SetEntryPointFromPortableCompiledCode(GetOatAddress(portable_to_interpreter_bridge_offset_)); copy->SetEntryPointFromQuickCompiledCode(GetOatAddress(quick_to_interpreter_bridge_offset_)); copy->SetEntryPointFromInterpreter(reinterpret_cast (const_cast(GetOatAddress(interpreter_to_interpreter_bridge_offset_)))); } else { bool quick_is_interpreted; const uint8_t* quick_code = GetQuickCode(orig, &quick_is_interpreted); copy->SetEntryPointFromQuickCompiledCode(quick_code); // Portable entrypoint: const uint8_t* portable_code = GetOatAddress(orig->GetPortableOatCodeOffset()); bool portable_is_interpreted = false; if (portable_code != nullptr && (!orig->IsStatic() || orig->IsConstructor() || orig->GetDeclaringClass()->IsInitialized())) { // We have code for a non-static or initialized method, just use the code. } else if (portable_code == nullptr && orig->IsNative() && (!orig->IsStatic() || orig->GetDeclaringClass()->IsInitialized())) { // Non-static or initialized native method missing compiled code, use generic JNI version. // TODO: generic JNI support for LLVM. portable_code = GetOatAddress(portable_resolution_trampoline_offset_); } else if (portable_code == nullptr && !orig->IsNative()) { // We don't have code at all for a non-native method, use the interpreter. portable_code = GetOatAddress(portable_to_interpreter_bridge_offset_); portable_is_interpreted = true; } else { CHECK(!orig->GetDeclaringClass()->IsInitialized()); // We have code for a static method, but need to go through the resolution stub for class // initialization. portable_code = GetOatAddress(portable_resolution_trampoline_offset_); } copy->SetEntryPointFromPortableCompiledCode(portable_code); // JNI entrypoint: if (orig->IsNative()) { // The native method's pointer is set to a stub to lookup via dlsym. // Note this is not the code_ pointer, that is handled above. copy->SetNativeMethod(GetOatAddress(jni_dlsym_lookup_offset_)); } else { // Normal (non-abstract non-native) methods have various tables to relocate. uint32_t native_gc_map_offset = orig->GetOatNativeGcMapOffset(); const uint8_t* native_gc_map = GetOatAddress(native_gc_map_offset); copy->SetNativeGcMap(reinterpret_cast(native_gc_map)); } // Interpreter entrypoint: // Set the interpreter entrypoint depending on whether there is compiled code or not. uint32_t interpreter_code = (quick_is_interpreted && portable_is_interpreted) ? interpreter_to_interpreter_bridge_offset_ : interpreter_to_compiled_code_bridge_offset_; copy->SetEntryPointFromInterpreter( reinterpret_cast( const_cast(GetOatAddress(interpreter_code)))); } } } static OatHeader* GetOatHeaderFromElf(ElfFile* elf) { uint64_t data_sec_offset; bool has_data_sec = elf->GetSectionOffsetAndSize(".rodata", &data_sec_offset, nullptr); if (!has_data_sec) { return nullptr; } return reinterpret_cast(elf->Begin() + data_sec_offset); } void ImageWriter::SetOatChecksumFromElfFile(File* elf_file) { std::string error_msg; std::unique_ptr elf(ElfFile::Open(elf_file, PROT_READ|PROT_WRITE, MAP_SHARED, &error_msg)); if (elf.get() == nullptr) { LOG(FATAL) << "Unable open oat file: " << error_msg; return; } OatHeader* oat_header = GetOatHeaderFromElf(elf.get()); CHECK(oat_header != nullptr); CHECK(oat_header->IsValid()); ImageHeader* image_header = reinterpret_cast(image_->Begin()); image_header->SetOatChecksum(oat_header->GetChecksum()); } } // namespace art