/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "base/arena_allocator.h" #include "builder.h" #include "dex_instruction.h" #include "nodes.h" #include "optimizing_unit_test.h" #include "gtest/gtest.h" namespace art { static void TestCode(const uint16_t* data, const int* blocks, size_t blocks_length) { ArenaPool pool; ArenaAllocator allocator(&pool); HGraph* graph = CreateGraph(&allocator); HGraphBuilder builder(graph); const DexFile::CodeItem* item = reinterpret_cast(data); bool graph_built = builder.BuildGraph(*item); ASSERT_TRUE(graph_built); graph->BuildDominatorTree(); ASSERT_EQ(graph->GetBlocks().Size(), blocks_length); for (size_t i = 0, e = blocks_length; i < e; ++i) { if (blocks[i] == -1) { if (graph->GetBlocks().Get(i) == nullptr) { // Dead block. } else { // Only the entry block has no dominator. ASSERT_EQ(nullptr, graph->GetBlocks().Get(i)->GetDominator()); ASSERT_TRUE(graph->GetBlocks().Get(i)->IsEntryBlock()); } } else { ASSERT_NE(nullptr, graph->GetBlocks().Get(i)->GetDominator()); ASSERT_EQ(blocks[i], graph->GetBlocks().Get(i)->GetDominator()->GetBlockId()); } } } TEST(OptimizerTest, ReturnVoid) { const uint16_t data[] = ZERO_REGISTER_CODE_ITEM( Instruction::RETURN_VOID); // Block number 1 const int dominators[] = { -1, 0, 1 }; TestCode(data, dominators, sizeof(dominators) / sizeof(int)); } TEST(OptimizerTest, CFG1) { const uint16_t data[] = ZERO_REGISTER_CODE_ITEM( Instruction::GOTO | 0x100, // Block number 1 Instruction::RETURN_VOID); // Block number 2 const int dominators[] = { -1, 0, 1, 2 }; TestCode(data, dominators, sizeof(dominators) / sizeof(int)); } TEST(OptimizerTest, CFG2) { const uint16_t data[] = ZERO_REGISTER_CODE_ITEM( Instruction::GOTO | 0x100, // Block number 1 Instruction::GOTO | 0x100, // Block number 2 Instruction::RETURN_VOID); // Block number 3 const int dominators[] = { -1, 0, 1, 2, 3 }; TestCode(data, dominators, sizeof(dominators) / sizeof(int)); } TEST(OptimizerTest, CFG3) { const uint16_t data1[] = ZERO_REGISTER_CODE_ITEM( Instruction::GOTO | 0x200, // Block number 1 Instruction::RETURN_VOID, // Block number 2 Instruction::GOTO | 0xFF00); // Block number 3 const int dominators[] = { -1, 0, 3, 1, 2 }; TestCode(data1, dominators, sizeof(dominators) / sizeof(int)); const uint16_t data2[] = ZERO_REGISTER_CODE_ITEM( Instruction::GOTO_16, 3, Instruction::RETURN_VOID, Instruction::GOTO_16, 0xFFFF); TestCode(data2, dominators, sizeof(dominators) / sizeof(int)); const uint16_t data3[] = ZERO_REGISTER_CODE_ITEM( Instruction::GOTO_32, 4, 0, Instruction::RETURN_VOID, Instruction::GOTO_32, 0xFFFF, 0xFFFF); TestCode(data3, dominators, sizeof(dominators) / sizeof(int)); } TEST(OptimizerTest, CFG4) { const uint16_t data1[] = ZERO_REGISTER_CODE_ITEM( Instruction::NOP, Instruction::GOTO | 0xFF00); const int dominators[] = { -1, 0, -1 }; TestCode(data1, dominators, sizeof(dominators) / sizeof(int)); const uint16_t data2[] = ZERO_REGISTER_CODE_ITEM( Instruction::GOTO_32, 0, 0); TestCode(data2, dominators, sizeof(dominators) / sizeof(int)); } TEST(OptimizerTest, CFG5) { const uint16_t data[] = ZERO_REGISTER_CODE_ITEM( Instruction::RETURN_VOID, // Block number 1 Instruction::GOTO | 0x100, // Dead block Instruction::GOTO | 0xFE00); // Block number 2 const int dominators[] = { -1, 0, -1, 1 }; TestCode(data, dominators, sizeof(dominators) / sizeof(int)); } TEST(OptimizerTest, CFG6) { const uint16_t data[] = ONE_REGISTER_CODE_ITEM( Instruction::CONST_4 | 0 | 0, Instruction::IF_EQ, 3, Instruction::GOTO | 0x100, Instruction::RETURN_VOID); const int dominators[] = { -1, 0, 1, 1, 3, 1, // Synthesized block to avoid critical edge. }; TestCode(data, dominators, sizeof(dominators) / sizeof(int)); } TEST(OptimizerTest, CFG7) { const uint16_t data[] = ONE_REGISTER_CODE_ITEM( Instruction::CONST_4 | 0 | 0, Instruction::IF_EQ, 3, // Block number 1 Instruction::GOTO | 0x100, // Block number 2 Instruction::GOTO | 0xFF00); // Block number 3 const int dominators[] = { -1, 0, 1, 1, -1, // exit block is not dominated by any block due to the spin loop. 1, // block to avoid critical edge. 1 // block to avoid critical edge. }; TestCode(data, dominators, sizeof(dominators) / sizeof(int)); } TEST(OptimizerTest, CFG8) { const uint16_t data[] = ONE_REGISTER_CODE_ITEM( Instruction::CONST_4 | 0 | 0, Instruction::IF_EQ, 3, // Block number 1 Instruction::GOTO | 0x200, // Block number 2 Instruction::GOTO | 0x100, // Block number 3 Instruction::GOTO | 0xFF00); // Block number 4 const int dominators[] = { -1, 0, 1, 1, 1, -1, // exit block is not dominated by any block due to the spin loop. 1 // block to avoid critical edge. }; TestCode(data, dominators, sizeof(dominators) / sizeof(int)); } TEST(OptimizerTest, CFG9) { const uint16_t data[] = ONE_REGISTER_CODE_ITEM( Instruction::CONST_4 | 0 | 0, Instruction::IF_EQ, 3, // Block number 1 Instruction::GOTO | 0x200, // Block number 2 Instruction::GOTO | 0x100, // Block number 3 Instruction::GOTO | 0xFE00); // Block number 4 const int dominators[] = { -1, 0, 1, 1, 1, -1, // exit block is not dominated by any block due to the spin loop. 1 // block to avoid critical edge. }; TestCode(data, dominators, sizeof(dominators) / sizeof(int)); } TEST(OptimizerTest, CFG10) { const uint16_t data[] = ONE_REGISTER_CODE_ITEM( Instruction::CONST_4 | 0 | 0, Instruction::IF_EQ, 6, // Block number 1 Instruction::IF_EQ, 3, // Block number 2 Instruction::GOTO | 0x100, // Block number 3 Instruction::GOTO | 0x100, // Block number 4 Instruction::RETURN_VOID); // Block number 5 const int dominators[] = { -1, 0, 1, 2, 2, 1, 5, // Block number 5 dominates exit block 1, // block to avoid critical edge. 2 // block to avoid critical edge. }; TestCode(data, dominators, sizeof(dominators) / sizeof(int)); } } // namespace art