/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "nodes.h" #include "ssa_builder.h" #include "utils/growable_array.h" namespace art { void HGraph::AddBlock(HBasicBlock* block) { block->SetBlockId(blocks_.Size()); blocks_.Add(block); } void HGraph::FindBackEdges(ArenaBitVector* visited) { ArenaBitVector visiting(arena_, blocks_.Size(), false); VisitBlockForBackEdges(entry_block_, visited, &visiting); } void HGraph::RemoveDeadBlocks(const ArenaBitVector& visited) const { for (size_t i = 0; i < blocks_.Size(); ++i) { if (!visited.IsBitSet(i)) { HBasicBlock* block = blocks_.Get(i); for (size_t j = 0; j < block->GetSuccessors().Size(); ++j) { block->GetSuccessors().Get(j)->RemovePredecessor(block); } for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) { block->RemovePhi(it.Current()->AsPhi()); } for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) { block->RemoveInstruction(it.Current()); } } } } void HGraph::VisitBlockForBackEdges(HBasicBlock* block, ArenaBitVector* visited, ArenaBitVector* visiting) { int id = block->GetBlockId(); if (visited->IsBitSet(id)) return; visited->SetBit(id); visiting->SetBit(id); for (size_t i = 0; i < block->GetSuccessors().Size(); i++) { HBasicBlock* successor = block->GetSuccessors().Get(i); if (visiting->IsBitSet(successor->GetBlockId())) { successor->AddBackEdge(block); } else { VisitBlockForBackEdges(successor, visited, visiting); } } visiting->ClearBit(id); } void HGraph::BuildDominatorTree() { ArenaBitVector visited(arena_, blocks_.Size(), false); // (1) Find the back edges in the graph doing a DFS traversal. FindBackEdges(&visited); // (2) Remove blocks not visited during the initial DFS. // Step (3) requires dead blocks to be removed from the // predecessors list of live blocks. RemoveDeadBlocks(visited); // (3) Simplify the CFG now, so that we don't need to recompute // dominators and the reverse post order. SimplifyCFG(); // (4) Compute the immediate dominator of each block. We visit // the successors of a block only when all its forward branches // have been processed. GrowableArray visits(arena_, blocks_.Size()); visits.SetSize(blocks_.Size()); reverse_post_order_.Add(entry_block_); for (size_t i = 0; i < entry_block_->GetSuccessors().Size(); i++) { VisitBlockForDominatorTree(entry_block_->GetSuccessors().Get(i), entry_block_, &visits); } } HBasicBlock* HGraph::FindCommonDominator(HBasicBlock* first, HBasicBlock* second) const { ArenaBitVector visited(arena_, blocks_.Size(), false); // Walk the dominator tree of the first block and mark the visited blocks. while (first != nullptr) { visited.SetBit(first->GetBlockId()); first = first->GetDominator(); } // Walk the dominator tree of the second block until a marked block is found. while (second != nullptr) { if (visited.IsBitSet(second->GetBlockId())) { return second; } second = second->GetDominator(); } LOG(ERROR) << "Could not find common dominator"; return nullptr; } void HGraph::VisitBlockForDominatorTree(HBasicBlock* block, HBasicBlock* predecessor, GrowableArray* visits) { if (block->GetDominator() == nullptr) { block->SetDominator(predecessor); } else { block->SetDominator(FindCommonDominator(block->GetDominator(), predecessor)); } visits->Increment(block->GetBlockId()); // Once all the forward edges have been visited, we know the immediate // dominator of the block. We can then start visiting its successors. if (visits->Get(block->GetBlockId()) == block->GetPredecessors().Size() - block->NumberOfBackEdges()) { reverse_post_order_.Add(block); for (size_t i = 0; i < block->GetSuccessors().Size(); i++) { VisitBlockForDominatorTree(block->GetSuccessors().Get(i), block, visits); } } } void HGraph::TransformToSSA() { DCHECK(!reverse_post_order_.IsEmpty()); SsaBuilder ssa_builder(this); ssa_builder.BuildSsa(); } void HGraph::SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor) { // Insert a new node between `block` and `successor` to split the // critical edge. HBasicBlock* new_block = new (arena_) HBasicBlock(this); AddBlock(new_block); new_block->AddInstruction(new (arena_) HGoto()); block->ReplaceSuccessor(successor, new_block); new_block->AddSuccessor(successor); if (successor->IsLoopHeader()) { // If we split at a back edge boundary, make the new block the back edge. HLoopInformation* info = successor->GetLoopInformation(); if (info->IsBackEdge(block)) { info->RemoveBackEdge(block); info->AddBackEdge(new_block); } } } void HGraph::SimplifyLoop(HBasicBlock* header) { HLoopInformation* info = header->GetLoopInformation(); // If there are more than one back edge, make them branch to the same block that // will become the only back edge. This simplifies finding natural loops in the // graph. if (info->NumberOfBackEdges() > 1) { HBasicBlock* new_back_edge = new (arena_) HBasicBlock(this); AddBlock(new_back_edge); new_back_edge->AddInstruction(new (arena_) HGoto()); for (size_t pred = 0, e = info->GetBackEdges().Size(); pred < e; ++pred) { HBasicBlock* back_edge = info->GetBackEdges().Get(pred); back_edge->ReplaceSuccessor(header, new_back_edge); } info->ClearBackEdges(); info->AddBackEdge(new_back_edge); new_back_edge->AddSuccessor(header); } // Make sure the loop has only one pre header. This simplifies SSA building by having // to just look at the pre header to know which locals are initialized at entry of the // loop. size_t number_of_incomings = header->GetPredecessors().Size() - info->NumberOfBackEdges(); if (number_of_incomings != 1) { HBasicBlock* pre_header = new (arena_) HBasicBlock(this); AddBlock(pre_header); pre_header->AddInstruction(new (arena_) HGoto()); ArenaBitVector back_edges(arena_, GetBlocks().Size(), false); HBasicBlock* back_edge = info->GetBackEdges().Get(0); for (size_t pred = 0; pred < header->GetPredecessors().Size(); ++pred) { HBasicBlock* predecessor = header->GetPredecessors().Get(pred); if (predecessor != back_edge) { predecessor->ReplaceSuccessor(header, pre_header); pred--; } } pre_header->AddSuccessor(header); } } void HGraph::SimplifyCFG() { // Simplify the CFG for future analysis, and code generation: // (1): Split critical edges. // (2): Simplify loops by having only one back edge, and one preheader. for (size_t i = 0; i < blocks_.Size(); ++i) { HBasicBlock* block = blocks_.Get(i); if (block->GetSuccessors().Size() > 1) { for (size_t j = 0; j < block->GetSuccessors().Size(); ++j) { HBasicBlock* successor = block->GetSuccessors().Get(j); if (successor->GetPredecessors().Size() > 1) { SplitCriticalEdge(block, successor); --j; } } } if (block->IsLoopHeader()) { SimplifyLoop(block); } } } bool HGraph::FindNaturalLoops() const { for (size_t i = 0; i < blocks_.Size(); ++i) { HBasicBlock* block = blocks_.Get(i); if (block->IsLoopHeader()) { HLoopInformation* info = block->GetLoopInformation(); if (!info->Populate()) { // Abort if the loop is non natural. We currently bailout in such cases. return false; } } } return true; } void HLoopInformation::PopulateRecursive(HBasicBlock* block) { if (blocks_.IsBitSet(block->GetBlockId())) { return; } blocks_.SetBit(block->GetBlockId()); block->SetInLoop(this); for (size_t i = 0, e = block->GetPredecessors().Size(); i < e; ++i) { PopulateRecursive(block->GetPredecessors().Get(i)); } } bool HLoopInformation::Populate() { DCHECK_EQ(GetBackEdges().Size(), 1u); HBasicBlock* back_edge = GetBackEdges().Get(0); DCHECK(back_edge->GetDominator() != nullptr); if (!header_->Dominates(back_edge)) { // This loop is not natural. Do not bother going further. return false; } // Populate this loop: starting with the back edge, recursively add predecessors // that are not already part of that loop. Set the header as part of the loop // to end the recursion. // This is a recursive implementation of the algorithm described in // "Advanced Compiler Design & Implementation" (Muchnick) p192. blocks_.SetBit(header_->GetBlockId()); PopulateRecursive(back_edge); return true; } HBasicBlock* HLoopInformation::GetPreHeader() const { DCHECK_EQ(header_->GetPredecessors().Size(), 2u); return header_->GetDominator(); } bool HLoopInformation::Contains(const HBasicBlock& block) const { return blocks_.IsBitSet(block.GetBlockId()); } bool HLoopInformation::IsIn(const HLoopInformation& other) const { return other.blocks_.IsBitSet(header_->GetBlockId()); } bool HBasicBlock::Dominates(HBasicBlock* other) const { // Walk up the dominator tree from `other`, to find out if `this` // is an ancestor. HBasicBlock* current = other; while (current != nullptr) { if (current == this) { return true; } current = current->GetDominator(); } return false; } void HBasicBlock::InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor) { DCHECK(cursor->AsPhi() == nullptr); DCHECK(instruction->AsPhi() == nullptr); DCHECK_EQ(instruction->GetId(), -1); DCHECK_NE(cursor->GetId(), -1); DCHECK_EQ(cursor->GetBlock(), this); DCHECK(!instruction->IsControlFlow()); instruction->next_ = cursor; instruction->previous_ = cursor->previous_; cursor->previous_ = instruction; if (GetFirstInstruction() == cursor) { instructions_.first_instruction_ = instruction; } else { instruction->previous_->next_ = instruction; } instruction->SetBlock(this); instruction->SetId(GetGraph()->GetNextInstructionId()); } static void Add(HInstructionList* instruction_list, HBasicBlock* block, HInstruction* instruction) { DCHECK(instruction->GetBlock() == nullptr); DCHECK_EQ(instruction->GetId(), -1); instruction->SetBlock(block); instruction->SetId(block->GetGraph()->GetNextInstructionId()); instruction_list->AddInstruction(instruction); } void HBasicBlock::AddInstruction(HInstruction* instruction) { Add(&instructions_, this, instruction); } void HBasicBlock::AddPhi(HPhi* phi) { Add(&phis_, this, phi); } static void Remove(HInstructionList* instruction_list, HBasicBlock* block, HInstruction* instruction) { DCHECK_EQ(block, instruction->GetBlock()); DCHECK(instruction->GetUses() == nullptr); DCHECK(instruction->GetEnvUses() == nullptr); instruction->SetBlock(nullptr); instruction_list->RemoveInstruction(instruction); for (size_t i = 0; i < instruction->InputCount(); i++) { instruction->InputAt(i)->RemoveUser(instruction, i); } } void HBasicBlock::RemoveInstruction(HInstruction* instruction) { Remove(&instructions_, this, instruction); } void HBasicBlock::RemovePhi(HPhi* phi) { Remove(&phis_, this, phi); } void HInstruction::RemoveUser(HInstruction* user, size_t input_index) { HUseListNode* previous = nullptr; HUseListNode* current = uses_; while (current != nullptr) { if (current->GetUser() == user && current->GetIndex() == input_index) { if (previous == NULL) { uses_ = current->GetTail(); } else { previous->SetTail(current->GetTail()); } } previous = current; current = current->GetTail(); } } void HInstructionList::AddInstruction(HInstruction* instruction) { if (first_instruction_ == nullptr) { DCHECK(last_instruction_ == nullptr); first_instruction_ = last_instruction_ = instruction; } else { last_instruction_->next_ = instruction; instruction->previous_ = last_instruction_; last_instruction_ = instruction; } for (size_t i = 0; i < instruction->InputCount(); i++) { instruction->InputAt(i)->AddUseAt(instruction, i); } } void HInstructionList::RemoveInstruction(HInstruction* instruction) { if (instruction->previous_ != nullptr) { instruction->previous_->next_ = instruction->next_; } if (instruction->next_ != nullptr) { instruction->next_->previous_ = instruction->previous_; } if (instruction == first_instruction_) { first_instruction_ = instruction->next_; } if (instruction == last_instruction_) { last_instruction_ = instruction->previous_; } } void HInstruction::ReplaceWith(HInstruction* other) { DCHECK(other != nullptr); for (HUseIterator it(GetUses()); !it.Done(); it.Advance()) { HUseListNode* current = it.Current(); HInstruction* user = current->GetUser(); size_t input_index = current->GetIndex(); user->SetRawInputAt(input_index, other); other->AddUseAt(user, input_index); } for (HUseIterator it(GetEnvUses()); !it.Done(); it.Advance()) { HUseListNode* current = it.Current(); HEnvironment* user = current->GetUser(); size_t input_index = current->GetIndex(); user->SetRawEnvAt(input_index, other); other->AddEnvUseAt(user, input_index); } uses_ = nullptr; env_uses_ = nullptr; } void HPhi::AddInput(HInstruction* input) { DCHECK(input->GetBlock() != nullptr); inputs_.Add(input); input->AddUseAt(this, inputs_.Size() - 1); } #define DEFINE_ACCEPT(name) \ void H##name::Accept(HGraphVisitor* visitor) { \ visitor->Visit##name(this); \ } FOR_EACH_INSTRUCTION(DEFINE_ACCEPT) #undef DEFINE_ACCEPT void HGraphVisitor::VisitInsertionOrder() { const GrowableArray& blocks = graph_->GetBlocks(); for (size_t i = 0 ; i < blocks.Size(); i++) { VisitBasicBlock(blocks.Get(i)); } } void HGraphVisitor::VisitBasicBlock(HBasicBlock* block) { for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) { it.Current()->Accept(this); } for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) { it.Current()->Accept(this); } } } // namespace art