/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "nodes.h" #include "ssa_builder.h" #include "utils/growable_array.h" #include "scoped_thread_state_change.h" namespace art { void HGraph::AddBlock(HBasicBlock* block) { block->SetBlockId(blocks_.Size()); blocks_.Add(block); } void HGraph::FindBackEdges(ArenaBitVector* visited) { ArenaBitVector visiting(arena_, blocks_.Size(), false); VisitBlockForBackEdges(entry_block_, visited, &visiting); } static void RemoveAsUser(HInstruction* instruction) { for (size_t i = 0; i < instruction->InputCount(); i++) { instruction->RemoveAsUserOfInput(i); } HEnvironment* environment = instruction->GetEnvironment(); if (environment != nullptr) { for (size_t i = 0, e = environment->Size(); i < e; ++i) { if (environment->GetInstructionAt(i) != nullptr) { environment->RemoveAsUserOfInput(i); } } } } void HGraph::RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector& visited) const { for (size_t i = 0; i < blocks_.Size(); ++i) { if (!visited.IsBitSet(i)) { HBasicBlock* block = blocks_.Get(i); for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) { RemoveAsUser(it.Current()); } for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) { RemoveAsUser(it.Current()); } } } } void HGraph::RemoveDeadBlocks(const ArenaBitVector& visited) const { for (size_t i = 0; i < blocks_.Size(); ++i) { if (!visited.IsBitSet(i)) { HBasicBlock* block = blocks_.Get(i); for (size_t j = 0; j < block->GetSuccessors().Size(); ++j) { block->GetSuccessors().Get(j)->RemovePredecessor(block); } for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) { block->RemovePhi(it.Current()->AsPhi(), /*ensure_safety=*/ false); } for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) { block->RemoveInstruction(it.Current(), /*ensure_safety=*/ false); } } } } void HGraph::VisitBlockForBackEdges(HBasicBlock* block, ArenaBitVector* visited, ArenaBitVector* visiting) { int id = block->GetBlockId(); if (visited->IsBitSet(id)) return; visited->SetBit(id); visiting->SetBit(id); for (size_t i = 0; i < block->GetSuccessors().Size(); i++) { HBasicBlock* successor = block->GetSuccessors().Get(i); if (visiting->IsBitSet(successor->GetBlockId())) { successor->AddBackEdge(block); } else { VisitBlockForBackEdges(successor, visited, visiting); } } visiting->ClearBit(id); } void HGraph::BuildDominatorTree() { ArenaBitVector visited(arena_, blocks_.Size(), false); // (1) Find the back edges in the graph doing a DFS traversal. FindBackEdges(&visited); // (2) Remove instructions and phis from blocks not visited during // the initial DFS as users from other instructions, so that // users can be safely removed before uses later. RemoveInstructionsAsUsersFromDeadBlocks(visited); // (3) Remove blocks not visited during the initial DFS. // Step (4) requires dead blocks to be removed from the // predecessors list of live blocks. RemoveDeadBlocks(visited); // (4) Simplify the CFG now, so that we don't need to recompute // dominators and the reverse post order. SimplifyCFG(); // (5) Compute the immediate dominator of each block. We visit // the successors of a block only when all its forward branches // have been processed. GrowableArray visits(arena_, blocks_.Size()); visits.SetSize(blocks_.Size()); reverse_post_order_.Add(entry_block_); for (size_t i = 0; i < entry_block_->GetSuccessors().Size(); i++) { VisitBlockForDominatorTree(entry_block_->GetSuccessors().Get(i), entry_block_, &visits); } } HBasicBlock* HGraph::FindCommonDominator(HBasicBlock* first, HBasicBlock* second) const { ArenaBitVector visited(arena_, blocks_.Size(), false); // Walk the dominator tree of the first block and mark the visited blocks. while (first != nullptr) { visited.SetBit(first->GetBlockId()); first = first->GetDominator(); } // Walk the dominator tree of the second block until a marked block is found. while (second != nullptr) { if (visited.IsBitSet(second->GetBlockId())) { return second; } second = second->GetDominator(); } LOG(ERROR) << "Could not find common dominator"; return nullptr; } void HGraph::VisitBlockForDominatorTree(HBasicBlock* block, HBasicBlock* predecessor, GrowableArray* visits) { if (block->GetDominator() == nullptr) { block->SetDominator(predecessor); } else { block->SetDominator(FindCommonDominator(block->GetDominator(), predecessor)); } visits->Increment(block->GetBlockId()); // Once all the forward edges have been visited, we know the immediate // dominator of the block. We can then start visiting its successors. if (visits->Get(block->GetBlockId()) == block->GetPredecessors().Size() - block->NumberOfBackEdges()) { block->GetDominator()->AddDominatedBlock(block); reverse_post_order_.Add(block); for (size_t i = 0; i < block->GetSuccessors().Size(); i++) { VisitBlockForDominatorTree(block->GetSuccessors().Get(i), block, visits); } } } void HGraph::TransformToSsa() { DCHECK(!reverse_post_order_.IsEmpty()); SsaBuilder ssa_builder(this); ssa_builder.BuildSsa(); } void HGraph::SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor) { // Insert a new node between `block` and `successor` to split the // critical edge. HBasicBlock* new_block = new (arena_) HBasicBlock(this, successor->GetDexPc()); AddBlock(new_block); new_block->AddInstruction(new (arena_) HGoto()); block->ReplaceSuccessor(successor, new_block); new_block->AddSuccessor(successor); if (successor->IsLoopHeader()) { // If we split at a back edge boundary, make the new block the back edge. HLoopInformation* info = successor->GetLoopInformation(); if (info->IsBackEdge(block)) { info->RemoveBackEdge(block); info->AddBackEdge(new_block); } } } void HGraph::SimplifyLoop(HBasicBlock* header) { HLoopInformation* info = header->GetLoopInformation(); // If there are more than one back edge, make them branch to the same block that // will become the only back edge. This simplifies finding natural loops in the // graph. // Also, if the loop is a do/while (that is the back edge is an if), change the // back edge to be a goto. This simplifies code generation of suspend cheks. if (info->NumberOfBackEdges() > 1 || info->GetBackEdges().Get(0)->GetLastInstruction()->IsIf()) { HBasicBlock* new_back_edge = new (arena_) HBasicBlock(this, header->GetDexPc()); AddBlock(new_back_edge); new_back_edge->AddInstruction(new (arena_) HGoto()); for (size_t pred = 0, e = info->GetBackEdges().Size(); pred < e; ++pred) { HBasicBlock* back_edge = info->GetBackEdges().Get(pred); back_edge->ReplaceSuccessor(header, new_back_edge); } info->ClearBackEdges(); info->AddBackEdge(new_back_edge); new_back_edge->AddSuccessor(header); } // Make sure the loop has only one pre header. This simplifies SSA building by having // to just look at the pre header to know which locals are initialized at entry of the // loop. size_t number_of_incomings = header->GetPredecessors().Size() - info->NumberOfBackEdges(); if (number_of_incomings != 1) { HBasicBlock* pre_header = new (arena_) HBasicBlock(this, header->GetDexPc()); AddBlock(pre_header); pre_header->AddInstruction(new (arena_) HGoto()); ArenaBitVector back_edges(arena_, GetBlocks().Size(), false); HBasicBlock* back_edge = info->GetBackEdges().Get(0); for (size_t pred = 0; pred < header->GetPredecessors().Size(); ++pred) { HBasicBlock* predecessor = header->GetPredecessors().Get(pred); if (predecessor != back_edge) { predecessor->ReplaceSuccessor(header, pre_header); pred--; } } pre_header->AddSuccessor(header); } // Make sure the second predecessor of a loop header is the back edge. if (header->GetPredecessors().Get(1) != info->GetBackEdges().Get(0)) { header->SwapPredecessors(); } // Place the suspend check at the beginning of the header, so that live registers // will be known when allocating registers. Note that code generation can still // generate the suspend check at the back edge, but needs to be careful with // loop phi spill slots (which are not written to at back edge). HInstruction* first_instruction = header->GetFirstInstruction(); if (!first_instruction->IsSuspendCheck()) { HSuspendCheck* check = new (arena_) HSuspendCheck(header->GetDexPc()); header->InsertInstructionBefore(check, first_instruction); first_instruction = check; } info->SetSuspendCheck(first_instruction->AsSuspendCheck()); } void HGraph::SimplifyCFG() { // Simplify the CFG for future analysis, and code generation: // (1): Split critical edges. // (2): Simplify loops by having only one back edge, and one preheader. for (size_t i = 0; i < blocks_.Size(); ++i) { HBasicBlock* block = blocks_.Get(i); if (block->GetSuccessors().Size() > 1) { for (size_t j = 0; j < block->GetSuccessors().Size(); ++j) { HBasicBlock* successor = block->GetSuccessors().Get(j); if (successor->GetPredecessors().Size() > 1) { SplitCriticalEdge(block, successor); --j; } } } if (block->IsLoopHeader()) { SimplifyLoop(block); } } } bool HGraph::AnalyzeNaturalLoops() const { for (size_t i = 0; i < blocks_.Size(); ++i) { HBasicBlock* block = blocks_.Get(i); if (block->IsLoopHeader()) { HLoopInformation* info = block->GetLoopInformation(); if (!info->Populate()) { // Abort if the loop is non natural. We currently bailout in such cases. return false; } } } return true; } HNullConstant* HGraph::GetNullConstant() { if (cached_null_constant_ == nullptr) { cached_null_constant_ = new (arena_) HNullConstant(); entry_block_->InsertInstructionBefore(cached_null_constant_, entry_block_->GetLastInstruction()); } return cached_null_constant_; } void HLoopInformation::Add(HBasicBlock* block) { blocks_.SetBit(block->GetBlockId()); } void HLoopInformation::PopulateRecursive(HBasicBlock* block) { if (blocks_.IsBitSet(block->GetBlockId())) { return; } blocks_.SetBit(block->GetBlockId()); block->SetInLoop(this); for (size_t i = 0, e = block->GetPredecessors().Size(); i < e; ++i) { PopulateRecursive(block->GetPredecessors().Get(i)); } } bool HLoopInformation::Populate() { DCHECK_EQ(GetBackEdges().Size(), 1u); HBasicBlock* back_edge = GetBackEdges().Get(0); DCHECK(back_edge->GetDominator() != nullptr); if (!header_->Dominates(back_edge)) { // This loop is not natural. Do not bother going further. return false; } // Populate this loop: starting with the back edge, recursively add predecessors // that are not already part of that loop. Set the header as part of the loop // to end the recursion. // This is a recursive implementation of the algorithm described in // "Advanced Compiler Design & Implementation" (Muchnick) p192. blocks_.SetBit(header_->GetBlockId()); PopulateRecursive(back_edge); return true; } HBasicBlock* HLoopInformation::GetPreHeader() const { DCHECK_EQ(header_->GetPredecessors().Size(), 2u); return header_->GetDominator(); } bool HLoopInformation::Contains(const HBasicBlock& block) const { return blocks_.IsBitSet(block.GetBlockId()); } bool HLoopInformation::IsIn(const HLoopInformation& other) const { return other.blocks_.IsBitSet(header_->GetBlockId()); } bool HBasicBlock::Dominates(HBasicBlock* other) const { // Walk up the dominator tree from `other`, to find out if `this` // is an ancestor. HBasicBlock* current = other; while (current != nullptr) { if (current == this) { return true; } current = current->GetDominator(); } return false; } static void UpdateInputsUsers(HInstruction* instruction) { for (size_t i = 0, e = instruction->InputCount(); i < e; ++i) { instruction->InputAt(i)->AddUseAt(instruction, i); } // Environment should be created later. DCHECK(!instruction->HasEnvironment()); } void HBasicBlock::InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor) { DCHECK(!cursor->IsPhi()); DCHECK(!instruction->IsPhi()); DCHECK_EQ(instruction->GetId(), -1); DCHECK_NE(cursor->GetId(), -1); DCHECK_EQ(cursor->GetBlock(), this); DCHECK(!instruction->IsControlFlow()); instruction->next_ = cursor; instruction->previous_ = cursor->previous_; cursor->previous_ = instruction; if (GetFirstInstruction() == cursor) { instructions_.first_instruction_ = instruction; } else { instruction->previous_->next_ = instruction; } instruction->SetBlock(this); instruction->SetId(GetGraph()->GetNextInstructionId()); UpdateInputsUsers(instruction); } void HBasicBlock::ReplaceAndRemoveInstructionWith(HInstruction* initial, HInstruction* replacement) { DCHECK(initial->GetBlock() == this); InsertInstructionBefore(replacement, initial); initial->ReplaceWith(replacement); RemoveInstruction(initial); } static void Add(HInstructionList* instruction_list, HBasicBlock* block, HInstruction* instruction) { DCHECK(instruction->GetBlock() == nullptr); DCHECK_EQ(instruction->GetId(), -1); instruction->SetBlock(block); instruction->SetId(block->GetGraph()->GetNextInstructionId()); UpdateInputsUsers(instruction); instruction_list->AddInstruction(instruction); } void HBasicBlock::AddInstruction(HInstruction* instruction) { Add(&instructions_, this, instruction); } void HBasicBlock::AddPhi(HPhi* phi) { Add(&phis_, this, phi); } void HBasicBlock::InsertPhiAfter(HPhi* phi, HPhi* cursor) { DCHECK_EQ(phi->GetId(), -1); DCHECK_NE(cursor->GetId(), -1); DCHECK_EQ(cursor->GetBlock(), this); if (cursor->next_ == nullptr) { cursor->next_ = phi; phi->previous_ = cursor; DCHECK(phi->next_ == nullptr); } else { phi->next_ = cursor->next_; phi->previous_ = cursor; cursor->next_ = phi; phi->next_->previous_ = phi; } phi->SetBlock(this); phi->SetId(GetGraph()->GetNextInstructionId()); UpdateInputsUsers(phi); } static void Remove(HInstructionList* instruction_list, HBasicBlock* block, HInstruction* instruction, bool ensure_safety) { DCHECK_EQ(block, instruction->GetBlock()); instruction->SetBlock(nullptr); instruction_list->RemoveInstruction(instruction); if (ensure_safety) { DCHECK(instruction->GetUses().IsEmpty()); DCHECK(instruction->GetEnvUses().IsEmpty()); RemoveAsUser(instruction); } } void HBasicBlock::RemoveInstruction(HInstruction* instruction, bool ensure_safety) { Remove(&instructions_, this, instruction, ensure_safety); } void HBasicBlock::RemovePhi(HPhi* phi, bool ensure_safety) { Remove(&phis_, this, phi, ensure_safety); } void HEnvironment::CopyFrom(HEnvironment* env) { for (size_t i = 0; i < env->Size(); i++) { HInstruction* instruction = env->GetInstructionAt(i); SetRawEnvAt(i, instruction); if (instruction != nullptr) { instruction->AddEnvUseAt(this, i); } } } void HEnvironment::RemoveAsUserOfInput(size_t index) const { const HUserRecord user_record = vregs_.Get(index); user_record.GetInstruction()->RemoveEnvironmentUser(user_record.GetUseNode()); } HInstruction* HInstruction::GetNextDisregardingMoves() const { HInstruction* next = GetNext(); while (next != nullptr && next->IsParallelMove()) { next = next->GetNext(); } return next; } HInstruction* HInstruction::GetPreviousDisregardingMoves() const { HInstruction* previous = GetPrevious(); while (previous != nullptr && previous->IsParallelMove()) { previous = previous->GetPrevious(); } return previous; } void HInstructionList::AddInstruction(HInstruction* instruction) { if (first_instruction_ == nullptr) { DCHECK(last_instruction_ == nullptr); first_instruction_ = last_instruction_ = instruction; } else { last_instruction_->next_ = instruction; instruction->previous_ = last_instruction_; last_instruction_ = instruction; } } void HInstructionList::RemoveInstruction(HInstruction* instruction) { if (instruction->previous_ != nullptr) { instruction->previous_->next_ = instruction->next_; } if (instruction->next_ != nullptr) { instruction->next_->previous_ = instruction->previous_; } if (instruction == first_instruction_) { first_instruction_ = instruction->next_; } if (instruction == last_instruction_) { last_instruction_ = instruction->previous_; } } bool HInstructionList::Contains(HInstruction* instruction) const { for (HInstructionIterator it(*this); !it.Done(); it.Advance()) { if (it.Current() == instruction) { return true; } } return false; } bool HInstructionList::FoundBefore(const HInstruction* instruction1, const HInstruction* instruction2) const { DCHECK_EQ(instruction1->GetBlock(), instruction2->GetBlock()); for (HInstructionIterator it(*this); !it.Done(); it.Advance()) { if (it.Current() == instruction1) { return true; } if (it.Current() == instruction2) { return false; } } LOG(FATAL) << "Did not find an order between two instructions of the same block."; return true; } bool HInstruction::StrictlyDominates(HInstruction* other_instruction) const { if (other_instruction == this) { // An instruction does not strictly dominate itself. return false; } HBasicBlock* block = GetBlock(); HBasicBlock* other_block = other_instruction->GetBlock(); if (block != other_block) { return GetBlock()->Dominates(other_instruction->GetBlock()); } else { // If both instructions are in the same block, ensure this // instruction comes before `other_instruction`. if (IsPhi()) { if (!other_instruction->IsPhi()) { // Phis appear before non phi-instructions so this instruction // dominates `other_instruction`. return true; } else { // There is no order among phis. LOG(FATAL) << "There is no dominance between phis of a same block."; return false; } } else { // `this` is not a phi. if (other_instruction->IsPhi()) { // Phis appear before non phi-instructions so this instruction // does not dominate `other_instruction`. return false; } else { // Check whether this instruction comes before // `other_instruction` in the instruction list. return block->GetInstructions().FoundBefore(this, other_instruction); } } } } void HInstruction::ReplaceWith(HInstruction* other) { DCHECK(other != nullptr); for (HUseIterator it(GetUses()); !it.Done(); it.Advance()) { HUseListNode* current = it.Current(); HInstruction* user = current->GetUser(); size_t input_index = current->GetIndex(); user->SetRawInputAt(input_index, other); other->AddUseAt(user, input_index); } for (HUseIterator it(GetEnvUses()); !it.Done(); it.Advance()) { HUseListNode* current = it.Current(); HEnvironment* user = current->GetUser(); size_t input_index = current->GetIndex(); user->SetRawEnvAt(input_index, other); other->AddEnvUseAt(user, input_index); } uses_.Clear(); env_uses_.Clear(); } void HInstruction::ReplaceInput(HInstruction* replacement, size_t index) { RemoveAsUserOfInput(index); SetRawInputAt(index, replacement); replacement->AddUseAt(this, index); } size_t HInstruction::EnvironmentSize() const { return HasEnvironment() ? environment_->Size() : 0; } void HPhi::AddInput(HInstruction* input) { DCHECK(input->GetBlock() != nullptr); inputs_.Add(HUserRecord(input)); input->AddUseAt(this, inputs_.Size() - 1); } #define DEFINE_ACCEPT(name, super) \ void H##name::Accept(HGraphVisitor* visitor) { \ visitor->Visit##name(this); \ } FOR_EACH_INSTRUCTION(DEFINE_ACCEPT) #undef DEFINE_ACCEPT void HGraphVisitor::VisitInsertionOrder() { const GrowableArray& blocks = graph_->GetBlocks(); for (size_t i = 0 ; i < blocks.Size(); i++) { VisitBasicBlock(blocks.Get(i)); } } void HGraphVisitor::VisitReversePostOrder() { for (HReversePostOrderIterator it(*graph_); !it.Done(); it.Advance()) { VisitBasicBlock(it.Current()); } } void HGraphVisitor::VisitBasicBlock(HBasicBlock* block) { for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) { it.Current()->Accept(this); } for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) { it.Current()->Accept(this); } } HConstant* HUnaryOperation::TryStaticEvaluation() const { if (GetInput()->IsIntConstant()) { int32_t value = Evaluate(GetInput()->AsIntConstant()->GetValue()); return new(GetBlock()->GetGraph()->GetArena()) HIntConstant(value); } else if (GetInput()->IsLongConstant()) { // TODO: Implement static evaluation of long unary operations. // // Do not exit with a fatal condition here. Instead, simply // return `nullptr' to notify the caller that this instruction // cannot (yet) be statically evaluated. return nullptr; } return nullptr; } HConstant* HBinaryOperation::TryStaticEvaluation() const { if (GetLeft()->IsIntConstant() && GetRight()->IsIntConstant()) { int32_t value = Evaluate(GetLeft()->AsIntConstant()->GetValue(), GetRight()->AsIntConstant()->GetValue()); return new(GetBlock()->GetGraph()->GetArena()) HIntConstant(value); } else if (GetLeft()->IsLongConstant() && GetRight()->IsLongConstant()) { int64_t value = Evaluate(GetLeft()->AsLongConstant()->GetValue(), GetRight()->AsLongConstant()->GetValue()); if (GetResultType() == Primitive::kPrimLong) { return new(GetBlock()->GetGraph()->GetArena()) HLongConstant(value); } else { DCHECK_EQ(GetResultType(), Primitive::kPrimInt); return new(GetBlock()->GetGraph()->GetArena()) HIntConstant(value); } } return nullptr; } bool HCondition::IsBeforeWhenDisregardMoves(HIf* if_) const { return this == if_->GetPreviousDisregardingMoves(); } bool HInstruction::Equals(HInstruction* other) const { if (!InstructionTypeEquals(other)) return false; DCHECK_EQ(GetKind(), other->GetKind()); if (!InstructionDataEquals(other)) return false; if (GetType() != other->GetType()) return false; if (InputCount() != other->InputCount()) return false; for (size_t i = 0, e = InputCount(); i < e; ++i) { if (InputAt(i) != other->InputAt(i)) return false; } DCHECK_EQ(ComputeHashCode(), other->ComputeHashCode()); return true; } std::ostream& operator<<(std::ostream& os, const HInstruction::InstructionKind& rhs) { #define DECLARE_CASE(type, super) case HInstruction::k##type: os << #type; break; switch (rhs) { FOR_EACH_INSTRUCTION(DECLARE_CASE) default: os << "Unknown instruction kind " << static_cast(rhs); break; } #undef DECLARE_CASE return os; } void HInstruction::MoveBefore(HInstruction* cursor) { next_->previous_ = previous_; if (previous_ != nullptr) { previous_->next_ = next_; } if (block_->instructions_.first_instruction_ == this) { block_->instructions_.first_instruction_ = next_; } DCHECK_NE(block_->instructions_.last_instruction_, this); previous_ = cursor->previous_; if (previous_ != nullptr) { previous_->next_ = this; } next_ = cursor; cursor->previous_ = this; block_ = cursor->block_; if (block_->instructions_.first_instruction_ == cursor) { block_->instructions_.first_instruction_ = this; } } HBasicBlock* HBasicBlock::SplitAfter(HInstruction* cursor) { DCHECK(!cursor->IsControlFlow()); DCHECK_NE(instructions_.last_instruction_, cursor); DCHECK_EQ(cursor->GetBlock(), this); HBasicBlock* new_block = new (GetGraph()->GetArena()) HBasicBlock(GetGraph(), GetDexPc()); new_block->instructions_.first_instruction_ = cursor->GetNext(); new_block->instructions_.last_instruction_ = instructions_.last_instruction_; cursor->next_->previous_ = nullptr; cursor->next_ = nullptr; instructions_.last_instruction_ = cursor; new_block->instructions_.SetBlockOfInstructions(new_block); for (size_t i = 0, e = GetSuccessors().Size(); i < e; ++i) { HBasicBlock* successor = GetSuccessors().Get(i); new_block->successors_.Add(successor); successor->predecessors_.Put(successor->GetPredecessorIndexOf(this), new_block); } successors_.Reset(); for (size_t i = 0, e = GetDominatedBlocks().Size(); i < e; ++i) { HBasicBlock* dominated = GetDominatedBlocks().Get(i); dominated->dominator_ = new_block; new_block->dominated_blocks_.Add(dominated); } dominated_blocks_.Reset(); return new_block; } void HInstructionList::SetBlockOfInstructions(HBasicBlock* block) const { for (HInstruction* current = first_instruction_; current != nullptr; current = current->GetNext()) { current->SetBlock(block); } } void HInstructionList::AddAfter(HInstruction* cursor, const HInstructionList& instruction_list) { DCHECK(Contains(cursor)); if (!instruction_list.IsEmpty()) { if (cursor == last_instruction_) { last_instruction_ = instruction_list.last_instruction_; } else { cursor->next_->previous_ = instruction_list.last_instruction_; } instruction_list.last_instruction_->next_ = cursor->next_; cursor->next_ = instruction_list.first_instruction_; instruction_list.first_instruction_->previous_ = cursor; } } void HInstructionList::Add(const HInstructionList& instruction_list) { DCHECK(!IsEmpty()); AddAfter(last_instruction_, instruction_list); } void HBasicBlock::MergeWith(HBasicBlock* other) { DCHECK(successors_.IsEmpty()) << "Unimplemented block merge scenario"; DCHECK(dominated_blocks_.IsEmpty()) << "Unimplemented block merge scenario"; DCHECK(other->GetDominator()->IsEntryBlock() && other->GetGraph() != graph_) << "Unimplemented block merge scenario"; DCHECK(other->GetPhis().IsEmpty()); successors_.Reset(); dominated_blocks_.Reset(); instructions_.Add(other->GetInstructions()); other->GetInstructions().SetBlockOfInstructions(this); while (!other->GetSuccessors().IsEmpty()) { HBasicBlock* successor = other->GetSuccessors().Get(0); successor->ReplacePredecessor(other, this); } for (size_t i = 0, e = other->GetDominatedBlocks().Size(); i < e; ++i) { HBasicBlock* dominated = other->GetDominatedBlocks().Get(i); dominated_blocks_.Add(dominated); dominated->SetDominator(this); } other->dominated_blocks_.Reset(); other->dominator_ = nullptr; other->graph_ = nullptr; } void HBasicBlock::ReplaceWith(HBasicBlock* other) { while (!GetPredecessors().IsEmpty()) { HBasicBlock* predecessor = GetPredecessors().Get(0); predecessor->ReplaceSuccessor(this, other); } while (!GetSuccessors().IsEmpty()) { HBasicBlock* successor = GetSuccessors().Get(0); successor->ReplacePredecessor(this, other); } for (size_t i = 0; i < dominated_blocks_.Size(); ++i) { other->AddDominatedBlock(dominated_blocks_.Get(i)); } GetDominator()->ReplaceDominatedBlock(this, other); other->SetDominator(GetDominator()); dominator_ = nullptr; graph_ = nullptr; } // Create space in `blocks` for adding `number_of_new_blocks` entries // starting at location `at`. Blocks after `at` are moved accordingly. static void MakeRoomFor(GrowableArray* blocks, size_t number_of_new_blocks, size_t at) { size_t old_size = blocks->Size(); size_t new_size = old_size + number_of_new_blocks; blocks->SetSize(new_size); for (size_t i = old_size - 1, j = new_size - 1; i > at; --i, --j) { blocks->Put(j, blocks->Get(i)); } } void HGraph::InlineInto(HGraph* outer_graph, HInvoke* invoke) { // Walk over the entry block and: // - Move constants from the entry block to the outer_graph's entry block, // - Replace HParameterValue instructions with their real value. // - Remove suspend checks, that hold an environment. int parameter_index = 0; for (HInstructionIterator it(entry_block_->GetInstructions()); !it.Done(); it.Advance()) { HInstruction* current = it.Current(); if (current->IsConstant()) { current->MoveBefore(outer_graph->GetEntryBlock()->GetLastInstruction()); } else if (current->IsParameterValue()) { current->ReplaceWith(invoke->InputAt(parameter_index++)); } else { DCHECK(current->IsGoto() || current->IsSuspendCheck()); entry_block_->RemoveInstruction(current); } } if (GetBlocks().Size() == 3) { // Simple case of an entry block, a body block, and an exit block. // Put the body block's instruction into `invoke`'s block. HBasicBlock* body = GetBlocks().Get(1); DCHECK(GetBlocks().Get(0)->IsEntryBlock()); DCHECK(GetBlocks().Get(2)->IsExitBlock()); DCHECK(!body->IsExitBlock()); HInstruction* last = body->GetLastInstruction(); invoke->GetBlock()->instructions_.AddAfter(invoke, body->GetInstructions()); body->GetInstructions().SetBlockOfInstructions(invoke->GetBlock()); // Replace the invoke with the return value of the inlined graph. if (last->IsReturn()) { invoke->ReplaceWith(last->InputAt(0)); } else { DCHECK(last->IsReturnVoid()); } invoke->GetBlock()->RemoveInstruction(last); } else { // Need to inline multiple blocks. We split `invoke`'s block // into two blocks, merge the first block of the inlined graph into // the first half, and replace the exit block of the inlined graph // with the second half. ArenaAllocator* allocator = outer_graph->GetArena(); HBasicBlock* at = invoke->GetBlock(); HBasicBlock* to = at->SplitAfter(invoke); HBasicBlock* first = entry_block_->GetSuccessors().Get(0); DCHECK(!first->IsInLoop()); at->MergeWith(first); exit_block_->ReplaceWith(to); // Update all predecessors of the exit block (now the `to` block) // to not `HReturn` but `HGoto` instead. HInstruction* return_value = nullptr; bool returns_void = to->GetPredecessors().Get(0)->GetLastInstruction()->IsReturnVoid(); if (to->GetPredecessors().Size() == 1) { HBasicBlock* predecessor = to->GetPredecessors().Get(0); HInstruction* last = predecessor->GetLastInstruction(); if (!returns_void) { return_value = last->InputAt(0); } predecessor->AddInstruction(new (allocator) HGoto()); predecessor->RemoveInstruction(last); } else { if (!returns_void) { // There will be multiple returns. return_value = new (allocator) HPhi(allocator, kNoRegNumber, 0, invoke->GetType()); to->AddPhi(return_value->AsPhi()); } for (size_t i = 0, e = to->GetPredecessors().Size(); i < e; ++i) { HBasicBlock* predecessor = to->GetPredecessors().Get(i); HInstruction* last = predecessor->GetLastInstruction(); if (!returns_void) { return_value->AsPhi()->AddInput(last->InputAt(0)); } predecessor->AddInstruction(new (allocator) HGoto()); predecessor->RemoveInstruction(last); } } if (return_value != nullptr) { invoke->ReplaceWith(return_value); } // Update the meta information surrounding blocks: // (1) the graph they are now in, // (2) the reverse post order of that graph, // (3) the potential loop information they are now in. // We don't add the entry block, the exit block, and the first block, which // has been merged with `at`. static constexpr int kNumberOfSkippedBlocksInCallee = 3; // We add the `to` block. static constexpr int kNumberOfNewBlocksInCaller = 1; size_t blocks_added = (reverse_post_order_.Size() - kNumberOfSkippedBlocksInCallee) + kNumberOfNewBlocksInCaller; // Find the location of `at` in the outer graph's reverse post order. The new // blocks will be added after it. size_t index_of_at = 0; while (outer_graph->reverse_post_order_.Get(index_of_at) != at) { index_of_at++; } MakeRoomFor(&outer_graph->reverse_post_order_, blocks_added, index_of_at); // Do a reverse post order of the blocks in the callee and do (1), (2), // and (3) to the blocks that apply. HLoopInformation* info = at->GetLoopInformation(); for (HReversePostOrderIterator it(*this); !it.Done(); it.Advance()) { HBasicBlock* current = it.Current(); if (current != exit_block_ && current != entry_block_ && current != first) { DCHECK(!current->IsInLoop()); DCHECK(current->GetGraph() == this); current->SetGraph(outer_graph); outer_graph->AddBlock(current); outer_graph->reverse_post_order_.Put(++index_of_at, current); if (info != nullptr) { info->Add(current); current->SetLoopInformation(info); } } } // Do (1), (2), and (3) to `to`. to->SetGraph(outer_graph); outer_graph->AddBlock(to); outer_graph->reverse_post_order_.Put(++index_of_at, to); if (info != nullptr) { info->Add(to); to->SetLoopInformation(info); if (info->IsBackEdge(at)) { // Only `at` can become a back edge, as the inlined blocks // are predecessors of `at`. DCHECK_EQ(1u, info->NumberOfBackEdges()); info->ClearBackEdges(); info->AddBackEdge(to); } } } // Finally remove the invoke from the caller. invoke->GetBlock()->RemoveInstruction(invoke); } std::ostream& operator<<(std::ostream& os, const ReferenceTypeInfo& rhs) { ScopedObjectAccess soa(Thread::Current()); os << "[" << " is_top=" << rhs.IsTop() << " type=" << (rhs.IsTop() ? "?" : PrettyClass(rhs.GetTypeHandle().Get())) << " is_exact=" << rhs.IsExact() << " ]"; return os; } } // namespace art