/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "optimizing_compiler.h" #include #include #include "art_method-inl.h" #include "base/arena_allocator.h" #include "base/dumpable.h" #include "base/timing_logger.h" #include "boolean_simplifier.h" #include "bounds_check_elimination.h" #include "builder.h" #include "code_generator.h" #include "compiled_method.h" #include "compiler.h" #include "constant_folding.h" #include "dead_code_elimination.h" #include "dex/quick/dex_file_to_method_inliner_map.h" #include "dex/verified_method.h" #include "dex/verification_results.h" #include "driver/compiler_driver.h" #include "driver/compiler_options.h" #include "driver/dex_compilation_unit.h" #include "elf_writer_quick.h" #include "graph_visualizer.h" #include "gvn.h" #include "inliner.h" #include "instruction_simplifier.h" #include "intrinsics.h" #include "licm.h" #include "jni/quick/jni_compiler.h" #include "nodes.h" #include "prepare_for_register_allocation.h" #include "reference_type_propagation.h" #include "register_allocator.h" #include "side_effects_analysis.h" #include "ssa_builder.h" #include "ssa_phi_elimination.h" #include "ssa_liveness_analysis.h" #include "utils/assembler.h" namespace art { /** * Used by the code generator, to allocate the code in a vector. */ class CodeVectorAllocator FINAL : public CodeAllocator { public: CodeVectorAllocator() : size_(0) {} virtual uint8_t* Allocate(size_t size) { size_ = size; memory_.resize(size); return &memory_[0]; } size_t GetSize() const { return size_; } const std::vector& GetMemory() const { return memory_; } private: std::vector memory_; size_t size_; DISALLOW_COPY_AND_ASSIGN(CodeVectorAllocator); }; /** * Filter to apply to the visualizer. Methods whose name contain that filter will * be dumped. */ static const char* kStringFilter = ""; class PassInfo; class PassInfoPrinter : public ValueObject { public: PassInfoPrinter(HGraph* graph, const char* method_name, const CodeGenerator& codegen, std::ostream* visualizer_output, CompilerDriver* compiler_driver) : method_name_(method_name), timing_logger_enabled_(compiler_driver->GetDumpPasses()), timing_logger_(method_name, true, true), visualizer_enabled_(!compiler_driver->GetDumpCfgFileName().empty()), visualizer_(visualizer_output, graph, codegen) { if (strstr(method_name, kStringFilter) == nullptr) { timing_logger_enabled_ = visualizer_enabled_ = false; } if (visualizer_enabled_) { visualizer_.PrintHeader(method_name_); } } ~PassInfoPrinter() { if (timing_logger_enabled_) { LOG(INFO) << "TIMINGS " << method_name_; LOG(INFO) << Dumpable(timing_logger_); } } private: void StartPass(const char* pass_name) { // Dump graph first, then start timer. if (visualizer_enabled_) { visualizer_.DumpGraph(pass_name, /* is_after_pass */ false); } if (timing_logger_enabled_) { timing_logger_.StartTiming(pass_name); } } void EndPass(const char* pass_name) { // Pause timer first, then dump graph. if (timing_logger_enabled_) { timing_logger_.EndTiming(); } if (visualizer_enabled_) { visualizer_.DumpGraph(pass_name, /* is_after_pass */ true); } } const char* method_name_; bool timing_logger_enabled_; TimingLogger timing_logger_; bool visualizer_enabled_; HGraphVisualizer visualizer_; friend PassInfo; DISALLOW_COPY_AND_ASSIGN(PassInfoPrinter); }; class PassInfo : public ValueObject { public: PassInfo(const char *pass_name, PassInfoPrinter* pass_info_printer) : pass_name_(pass_name), pass_info_printer_(pass_info_printer) { pass_info_printer_->StartPass(pass_name_); } ~PassInfo() { pass_info_printer_->EndPass(pass_name_); } private: const char* const pass_name_; PassInfoPrinter* const pass_info_printer_; }; class OptimizingCompiler FINAL : public Compiler { public: explicit OptimizingCompiler(CompilerDriver* driver); ~OptimizingCompiler(); bool CanCompileMethod(uint32_t method_idx, const DexFile& dex_file, CompilationUnit* cu) const OVERRIDE; CompiledMethod* Compile(const DexFile::CodeItem* code_item, uint32_t access_flags, InvokeType invoke_type, uint16_t class_def_idx, uint32_t method_idx, jobject class_loader, const DexFile& dex_file) const OVERRIDE; CompiledMethod* TryCompile(const DexFile::CodeItem* code_item, uint32_t access_flags, InvokeType invoke_type, uint16_t class_def_idx, uint32_t method_idx, jobject class_loader, const DexFile& dex_file) const; CompiledMethod* JniCompile(uint32_t access_flags, uint32_t method_idx, const DexFile& dex_file) const OVERRIDE { return ArtQuickJniCompileMethod(GetCompilerDriver(), access_flags, method_idx, dex_file); } uintptr_t GetEntryPointOf(ArtMethod* method) const OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return reinterpret_cast(method->GetEntryPointFromQuickCompiledCodePtrSize( InstructionSetPointerSize(GetCompilerDriver()->GetInstructionSet()))); } void InitCompilationUnit(CompilationUnit& cu) const OVERRIDE; void Init() OVERRIDE; void UnInit() const OVERRIDE; void MaybeRecordStat(MethodCompilationStat compilation_stat) const { if (compilation_stats_.get() != nullptr) { compilation_stats_->RecordStat(compilation_stat); } } private: // Whether we should run any optimization or register allocation. If false, will // just run the code generation after the graph was built. const bool run_optimizations_; // Optimize and compile `graph`. CompiledMethod* CompileOptimized(HGraph* graph, CodeGenerator* codegen, CompilerDriver* driver, const DexFile& dex_file, const DexCompilationUnit& dex_compilation_unit, PassInfoPrinter* pass_info) const; // Just compile without doing optimizations. CompiledMethod* CompileBaseline(CodeGenerator* codegen, CompilerDriver* driver, const DexCompilationUnit& dex_compilation_unit) const; std::unique_ptr compilation_stats_; std::unique_ptr visualizer_output_; // Delegate to Quick in case the optimizing compiler cannot compile a method. std::unique_ptr delegate_; DISALLOW_COPY_AND_ASSIGN(OptimizingCompiler); }; static const int kMaximumCompilationTimeBeforeWarning = 100; /* ms */ OptimizingCompiler::OptimizingCompiler(CompilerDriver* driver) : Compiler(driver, kMaximumCompilationTimeBeforeWarning), run_optimizations_( (driver->GetCompilerOptions().GetCompilerFilter() != CompilerOptions::kTime) && !driver->GetCompilerOptions().GetDebuggable()), delegate_(Create(driver, Compiler::Kind::kQuick)) {} void OptimizingCompiler::Init() { delegate_->Init(); // Enable C1visualizer output. Must be done in Init() because the compiler // driver is not fully initialized when passed to the compiler's constructor. CompilerDriver* driver = GetCompilerDriver(); const std::string cfg_file_name = driver->GetDumpCfgFileName(); if (!cfg_file_name.empty()) { CHECK_EQ(driver->GetThreadCount(), 1U) << "Graph visualizer requires the compiler to run single-threaded. " << "Invoke the compiler with '-j1'."; visualizer_output_.reset(new std::ofstream(cfg_file_name)); } if (driver->GetDumpStats()) { compilation_stats_.reset(new OptimizingCompilerStats()); } } void OptimizingCompiler::UnInit() const { delegate_->UnInit(); } OptimizingCompiler::~OptimizingCompiler() { if (compilation_stats_.get() != nullptr) { compilation_stats_->Log(); } } void OptimizingCompiler::InitCompilationUnit(CompilationUnit& cu) const { delegate_->InitCompilationUnit(cu); } bool OptimizingCompiler::CanCompileMethod(uint32_t method_idx ATTRIBUTE_UNUSED, const DexFile& dex_file ATTRIBUTE_UNUSED, CompilationUnit* cu ATTRIBUTE_UNUSED) const { return true; } static bool IsInstructionSetSupported(InstructionSet instruction_set) { return instruction_set == kArm64 || (instruction_set == kThumb2 && !kArm32QuickCodeUseSoftFloat) || instruction_set == kMips64 || instruction_set == kX86 || instruction_set == kX86_64; } static bool CanOptimize(const DexFile::CodeItem& code_item) { // TODO: We currently cannot optimize methods with try/catch. return code_item.tries_size_ == 0; } static void RunOptimizations(HOptimization* optimizations[], size_t length, PassInfoPrinter* pass_info_printer) { for (size_t i = 0; i < length; ++i) { HOptimization* optimization = optimizations[i]; { PassInfo pass_info(optimization->GetPassName(), pass_info_printer); optimization->Run(); } optimization->Check(); } } static void RunOptimizations(HGraph* graph, CompilerDriver* driver, OptimizingCompilerStats* stats, const DexFile& dex_file, const DexCompilationUnit& dex_compilation_unit, PassInfoPrinter* pass_info_printer, StackHandleScopeCollection* handles) { HDeadCodeElimination dce1(graph, stats, HDeadCodeElimination::kInitialDeadCodeEliminationPassName); HDeadCodeElimination dce2(graph, stats, HDeadCodeElimination::kFinalDeadCodeEliminationPassName); HConstantFolding fold1(graph); InstructionSimplifier simplify1(graph, stats); HBooleanSimplifier boolean_simplify(graph); HInliner inliner(graph, dex_compilation_unit, dex_compilation_unit, driver, stats); HConstantFolding fold2(graph, "constant_folding_after_inlining"); SideEffectsAnalysis side_effects(graph); GVNOptimization gvn(graph, side_effects); LICM licm(graph, side_effects); BoundsCheckElimination bce(graph); ReferenceTypePropagation type_propagation(graph, dex_file, dex_compilation_unit, handles); InstructionSimplifier simplify2(graph, stats, "instruction_simplifier_after_types"); InstructionSimplifier simplify3(graph, stats, "instruction_simplifier_before_codegen"); IntrinsicsRecognizer intrinsics(graph, dex_compilation_unit.GetDexFile(), driver); HOptimization* optimizations[] = { &intrinsics, &fold1, &simplify1, &dce1, &inliner, // BooleanSimplifier depends on the InstructionSimplifier removing redundant // suspend checks to recognize empty blocks. &boolean_simplify, &fold2, &side_effects, &gvn, &licm, &bce, &type_propagation, &simplify2, &dce2, // The codegen has a few assumptions that only the instruction simplifier can // satisfy. For example, the code generator does not expect to see a // HTypeConversion from a type to the same type. &simplify3, }; RunOptimizations(optimizations, arraysize(optimizations), pass_info_printer); } // The stack map we generate must be 4-byte aligned on ARM. Since existing // maps are generated alongside these stack maps, we must also align them. static ArrayRef AlignVectorSize(std::vector& vector) { size_t size = vector.size(); size_t aligned_size = RoundUp(size, 4); for (; size < aligned_size; ++size) { vector.push_back(0); } return ArrayRef(vector); } static void AllocateRegisters(HGraph* graph, CodeGenerator* codegen, PassInfoPrinter* pass_info_printer) { PrepareForRegisterAllocation(graph).Run(); SsaLivenessAnalysis liveness(graph, codegen); { PassInfo pass_info(SsaLivenessAnalysis::kLivenessPassName, pass_info_printer); liveness.Analyze(); } { PassInfo pass_info(RegisterAllocator::kRegisterAllocatorPassName, pass_info_printer); RegisterAllocator(graph->GetArena(), codegen, liveness).AllocateRegisters(); } } CompiledMethod* OptimizingCompiler::CompileOptimized(HGraph* graph, CodeGenerator* codegen, CompilerDriver* compiler_driver, const DexFile& dex_file, const DexCompilationUnit& dex_compilation_unit, PassInfoPrinter* pass_info_printer) const { StackHandleScopeCollection handles(Thread::Current()); RunOptimizations(graph, compiler_driver, compilation_stats_.get(), dex_file, dex_compilation_unit, pass_info_printer, &handles); AllocateRegisters(graph, codegen, pass_info_printer); CodeVectorAllocator allocator; codegen->CompileOptimized(&allocator); DefaultSrcMap src_mapping_table; if (compiler_driver->GetCompilerOptions().GetGenerateDebugInfo()) { codegen->BuildSourceMap(&src_mapping_table); } std::vector stack_map; codegen->BuildStackMaps(&stack_map); MaybeRecordStat(MethodCompilationStat::kCompiledOptimized); return CompiledMethod::SwapAllocCompiledMethod( compiler_driver, codegen->GetInstructionSet(), ArrayRef(allocator.GetMemory()), // Follow Quick's behavior and set the frame size to zero if it is // considered "empty" (see the definition of // art::CodeGenerator::HasEmptyFrame). codegen->HasEmptyFrame() ? 0 : codegen->GetFrameSize(), codegen->GetCoreSpillMask(), codegen->GetFpuSpillMask(), &src_mapping_table, ArrayRef(), // mapping_table. ArrayRef(stack_map), ArrayRef(), // native_gc_map. ArrayRef(*codegen->GetAssembler()->cfi().data()), ArrayRef()); } CompiledMethod* OptimizingCompiler::CompileBaseline( CodeGenerator* codegen, CompilerDriver* compiler_driver, const DexCompilationUnit& dex_compilation_unit) const { CodeVectorAllocator allocator; codegen->CompileBaseline(&allocator); std::vector mapping_table; codegen->BuildMappingTable(&mapping_table); DefaultSrcMap src_mapping_table; if (compiler_driver->GetCompilerOptions().GetGenerateDebugInfo()) { codegen->BuildSourceMap(&src_mapping_table); } std::vector vmap_table; codegen->BuildVMapTable(&vmap_table); std::vector gc_map; codegen->BuildNativeGCMap(&gc_map, dex_compilation_unit); MaybeRecordStat(MethodCompilationStat::kCompiledBaseline); return CompiledMethod::SwapAllocCompiledMethod( compiler_driver, codegen->GetInstructionSet(), ArrayRef(allocator.GetMemory()), // Follow Quick's behavior and set the frame size to zero if it is // considered "empty" (see the definition of // art::CodeGenerator::HasEmptyFrame). codegen->HasEmptyFrame() ? 0 : codegen->GetFrameSize(), codegen->GetCoreSpillMask(), codegen->GetFpuSpillMask(), &src_mapping_table, AlignVectorSize(mapping_table), AlignVectorSize(vmap_table), AlignVectorSize(gc_map), ArrayRef(*codegen->GetAssembler()->cfi().data()), ArrayRef()); } CompiledMethod* OptimizingCompiler::TryCompile(const DexFile::CodeItem* code_item, uint32_t access_flags, InvokeType invoke_type, uint16_t class_def_idx, uint32_t method_idx, jobject class_loader, const DexFile& dex_file) const { UNUSED(invoke_type); std::string method_name = PrettyMethod(method_idx, dex_file); MaybeRecordStat(MethodCompilationStat::kAttemptCompilation); CompilerDriver* compiler_driver = GetCompilerDriver(); InstructionSet instruction_set = compiler_driver->GetInstructionSet(); // Always use the thumb2 assembler: some runtime functionality (like implicit stack // overflow checks) assume thumb2. if (instruction_set == kArm) { instruction_set = kThumb2; } // `run_optimizations_` is set explicitly (either through a compiler filter // or the debuggable flag). If it is set, we can run baseline. Otherwise, we // fall back to Quick. bool should_use_baseline = !run_optimizations_; bool can_optimize = CanOptimize(*code_item); if (!can_optimize && !should_use_baseline) { // We know we will not compile this method. Bail out before doing any work. return nullptr; } // Do not attempt to compile on architectures we do not support. if (!IsInstructionSetSupported(instruction_set)) { MaybeRecordStat(MethodCompilationStat::kNotCompiledUnsupportedIsa); return nullptr; } if (Compiler::IsPathologicalCase(*code_item, method_idx, dex_file)) { MaybeRecordStat(MethodCompilationStat::kNotCompiledPathological); return nullptr; } // Implementation of the space filter: do not compile a code item whose size in // code units is bigger than 256. static constexpr size_t kSpaceFilterOptimizingThreshold = 256; const CompilerOptions& compiler_options = compiler_driver->GetCompilerOptions(); if ((compiler_options.GetCompilerFilter() == CompilerOptions::kSpace) && (code_item->insns_size_in_code_units_ > kSpaceFilterOptimizingThreshold)) { MaybeRecordStat(MethodCompilationStat::kNotCompiledSpaceFilter); return nullptr; } DexCompilationUnit dex_compilation_unit( nullptr, class_loader, art::Runtime::Current()->GetClassLinker(), dex_file, code_item, class_def_idx, method_idx, access_flags, compiler_driver->GetVerifiedMethod(&dex_file, method_idx)); ArenaAllocator arena(Runtime::Current()->GetArenaPool()); HGraph* graph = new (&arena) HGraph( &arena, dex_file, method_idx, compiler_driver->GetInstructionSet(), compiler_driver->GetCompilerOptions().GetDebuggable()); // For testing purposes, we put a special marker on method names that should be compiled // with this compiler. This makes sure we're not regressing. bool shouldCompile = method_name.find("$opt$") != std::string::npos; bool shouldOptimize = method_name.find("$opt$reg$") != std::string::npos && run_optimizations_; std::unique_ptr codegen( CodeGenerator::Create(graph, instruction_set, *compiler_driver->GetInstructionSetFeatures(), compiler_driver->GetCompilerOptions())); if (codegen.get() == nullptr) { CHECK(!shouldCompile) << "Could not find code generator for optimizing compiler"; MaybeRecordStat(MethodCompilationStat::kNotCompiledNoCodegen); return nullptr; } codegen->GetAssembler()->cfi().SetEnabled( compiler_driver->GetCompilerOptions().GetGenerateDebugInfo()); PassInfoPrinter pass_info_printer(graph, method_name.c_str(), *codegen.get(), visualizer_output_.get(), compiler_driver); HGraphBuilder builder(graph, &dex_compilation_unit, &dex_compilation_unit, &dex_file, compiler_driver, compilation_stats_.get()); VLOG(compiler) << "Building " << method_name; { PassInfo pass_info(HGraphBuilder::kBuilderPassName, &pass_info_printer); if (!builder.BuildGraph(*code_item)) { DCHECK(!(IsCompilingWithCoreImage() && shouldCompile)) << "Could not build graph in optimizing compiler"; return nullptr; } } bool can_allocate_registers = RegisterAllocator::CanAllocateRegistersFor(*graph, instruction_set); if (run_optimizations_ && can_optimize && can_allocate_registers) { VLOG(compiler) << "Optimizing " << method_name; { PassInfo pass_info(SsaBuilder::kSsaBuilderPassName, &pass_info_printer); if (!graph->TryBuildingSsa()) { // We could not transform the graph to SSA, bailout. LOG(INFO) << "Skipping compilation of " << method_name << ": it contains a non natural loop"; MaybeRecordStat(MethodCompilationStat::kNotCompiledCannotBuildSSA); return nullptr; } } return CompileOptimized(graph, codegen.get(), compiler_driver, dex_file, dex_compilation_unit, &pass_info_printer); } else if (shouldOptimize && can_allocate_registers) { LOG(FATAL) << "Could not allocate registers in optimizing compiler"; UNREACHABLE(); } else if (should_use_baseline) { VLOG(compiler) << "Compile baseline " << method_name; if (!run_optimizations_) { MaybeRecordStat(MethodCompilationStat::kNotOptimizedDisabled); } else if (!can_optimize) { MaybeRecordStat(MethodCompilationStat::kNotOptimizedTryCatch); } else if (!can_allocate_registers) { MaybeRecordStat(MethodCompilationStat::kNotOptimizedRegisterAllocator); } return CompileBaseline(codegen.get(), compiler_driver, dex_compilation_unit); } else { return nullptr; } } CompiledMethod* OptimizingCompiler::Compile(const DexFile::CodeItem* code_item, uint32_t access_flags, InvokeType invoke_type, uint16_t class_def_idx, uint32_t method_idx, jobject jclass_loader, const DexFile& dex_file) const { CompilerDriver* compiler_driver = GetCompilerDriver(); CompiledMethod* method = nullptr; if (compiler_driver->IsMethodVerifiedWithoutFailures(method_idx, class_def_idx, dex_file) && !compiler_driver->GetVerifiedMethod(&dex_file, method_idx)->HasRuntimeThrow()) { method = TryCompile(code_item, access_flags, invoke_type, class_def_idx, method_idx, jclass_loader, dex_file); } else { if (compiler_driver->GetCompilerOptions().VerifyAtRuntime()) { MaybeRecordStat(MethodCompilationStat::kNotCompiledVerifyAtRuntime); } else { MaybeRecordStat(MethodCompilationStat::kNotCompiledClassNotVerified); } } if (method != nullptr) { return method; } method = delegate_->Compile(code_item, access_flags, invoke_type, class_def_idx, method_idx, jclass_loader, dex_file); if (method != nullptr) { MaybeRecordStat(MethodCompilationStat::kCompiledQuick); } return method; } Compiler* CreateOptimizingCompiler(CompilerDriver* driver) { return new OptimizingCompiler(driver); } bool IsCompilingWithCoreImage() { const std::string& image = Runtime::Current()->GetImageLocation(); return EndsWith(image, "core.art") || EndsWith(image, "core-optimizing.art"); } } // namespace art