/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "ssa_builder.h" #include "nodes.h" #include "primitive_type_propagation.h" #include "ssa_phi_elimination.h" namespace art { void SsaBuilder::BuildSsa() { // 1) Visit in reverse post order. We need to have all predecessors of a block visited // (with the exception of loops) in order to create the right environment for that // block. For loops, we create phis whose inputs will be set in 2). for (HReversePostOrderIterator it(*GetGraph()); !it.Done(); it.Advance()) { VisitBasicBlock(it.Current()); } // 2) Set inputs of loop phis. for (size_t i = 0; i < loop_headers_.Size(); i++) { HBasicBlock* block = loop_headers_.Get(i); for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) { HPhi* phi = it.Current()->AsPhi(); for (size_t pred = 0; pred < block->GetPredecessors().Size(); pred++) { HInstruction* input = ValueOfLocal(block->GetPredecessors().Get(pred), phi->GetRegNumber()); phi->AddInput(input); } } } // 3) Mark dead phis. This will mark phis that are only used by environments: // at the DEX level, the type of these phis does not need to be consistent, but // our code generator will complain if the inputs of a phi do not have the same // type. The marking allows the type propagation to know which phis it needs // to handle. We mark but do not eliminate: the elimination will be done in // step 5). { SsaDeadPhiElimination dead_phis(GetGraph()); dead_phis.MarkDeadPhis(); } // 4) Propagate types of phis. At this point, phis are typed void in the general // case, or float/double/reference when we created an equivalent phi. So we // need to propagate the types across phis to give them a correct type. PrimitiveTypePropagation type_propagation(GetGraph()); type_propagation.Run(); // 5) Step 4) changes inputs of phis which may lead to dead phis again. We re-run // the algorithm and this time elimimates them. // TODO: Make this work with debug info and reference liveness. We currently // eagerly remove phis used in environments. { SsaDeadPhiElimination dead_phis(GetGraph()); dead_phis.Run(); } // 6) Clear locals. // TODO: Move this to a dead code eliminator phase. for (HInstructionIterator it(GetGraph()->GetEntryBlock()->GetInstructions()); !it.Done(); it.Advance()) { HInstruction* current = it.Current(); if (current->IsLocal()) { current->GetBlock()->RemoveInstruction(current); } } } HInstruction* SsaBuilder::ValueOfLocal(HBasicBlock* block, size_t local) { return GetLocalsFor(block)->GetInstructionAt(local); } void SsaBuilder::VisitBasicBlock(HBasicBlock* block) { current_locals_ = GetLocalsFor(block); if (block->IsLoopHeader()) { // If the block is a loop header, we know we only have visited the pre header // because we are visiting in reverse post order. We create phis for all initialized // locals from the pre header. Their inputs will be populated at the end of // the analysis. for (size_t local = 0; local < current_locals_->Size(); local++) { HInstruction* incoming = ValueOfLocal(block->GetLoopInformation()->GetPreHeader(), local); if (incoming != nullptr) { HPhi* phi = new (GetGraph()->GetArena()) HPhi( GetGraph()->GetArena(), local, 0, Primitive::kPrimVoid); block->AddPhi(phi); current_locals_->SetRawEnvAt(local, phi); } } // Save the loop header so that the last phase of the analysis knows which // blocks need to be updated. loop_headers_.Add(block); } else if (block->GetPredecessors().Size() > 0) { // All predecessors have already been visited because we are visiting in reverse post order. // We merge the values of all locals, creating phis if those values differ. for (size_t local = 0; local < current_locals_->Size(); local++) { bool one_predecessor_has_no_value = false; bool is_different = false; HInstruction* value = ValueOfLocal(block->GetPredecessors().Get(0), local); for (size_t i = 0, e = block->GetPredecessors().Size(); i < e; ++i) { HInstruction* current = ValueOfLocal(block->GetPredecessors().Get(i), local); if (current == nullptr) { one_predecessor_has_no_value = true; break; } else if (current != value) { is_different = true; } } if (one_predecessor_has_no_value) { // If one predecessor has no value for this local, we trust the verifier has // successfully checked that there is a store dominating any read after this block. continue; } if (is_different) { HPhi* phi = new (GetGraph()->GetArena()) HPhi( GetGraph()->GetArena(), local, block->GetPredecessors().Size(), Primitive::kPrimVoid); for (size_t i = 0; i < block->GetPredecessors().Size(); i++) { HInstruction* pred_value = ValueOfLocal(block->GetPredecessors().Get(i), local); phi->SetRawInputAt(i, pred_value); } block->AddPhi(phi); value = phi; } current_locals_->SetRawEnvAt(local, value); } } // Visit all instructions. The instructions of interest are: // - HLoadLocal: replace them with the current value of the local. // - HStoreLocal: update current value of the local and remove the instruction. // - Instructions that require an environment: populate their environment // with the current values of the locals. for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) { it.Current()->Accept(this); } } /** * Constants in the Dex format are not typed. So the builder types them as * integers, but when doing the SSA form, we might realize the constant * is used for floating point operations. We create a floating-point equivalent * constant to make the operations correctly typed. */ static HFloatConstant* GetFloatEquivalent(HIntConstant* constant) { // We place the floating point constant next to this constant. HFloatConstant* result = constant->GetNext()->AsFloatConstant(); if (result == nullptr) { HGraph* graph = constant->GetBlock()->GetGraph(); ArenaAllocator* allocator = graph->GetArena(); result = new (allocator) HFloatConstant(bit_cast(constant->GetValue())); constant->GetBlock()->InsertInstructionBefore(result, constant->GetNext()); } else { // If there is already a constant with the expected type, we know it is // the floating point equivalent of this constant. DCHECK_EQ((bit_cast(result->GetValue())), constant->GetValue()); } return result; } /** * Wide constants in the Dex format are not typed. So the builder types them as * longs, but when doing the SSA form, we might realize the constant * is used for floating point operations. We create a floating-point equivalent * constant to make the operations correctly typed. */ static HDoubleConstant* GetDoubleEquivalent(HLongConstant* constant) { // We place the floating point constant next to this constant. HDoubleConstant* result = constant->GetNext()->AsDoubleConstant(); if (result == nullptr) { HGraph* graph = constant->GetBlock()->GetGraph(); ArenaAllocator* allocator = graph->GetArena(); result = new (allocator) HDoubleConstant(bit_cast(constant->GetValue())); constant->GetBlock()->InsertInstructionBefore(result, constant->GetNext()); } else { // If there is already a constant with the expected type, we know it is // the floating point equivalent of this constant. DCHECK_EQ((bit_cast(result->GetValue())), constant->GetValue()); } return result; } /** * Because of Dex format, we might end up having the same phi being * used for non floating point operations and floating point / reference operations. * Because we want the graph to be correctly typed (and thereafter avoid moves between * floating point registers and core registers), we need to create a copy of the * phi with a floating point / reference type. */ static HPhi* GetFloatDoubleOrReferenceEquivalentOfPhi(HPhi* phi, Primitive::Type type) { // We place the floating point /reference phi next to this phi. HInstruction* next = phi->GetNext(); if (next != nullptr && next->AsPhi()->GetRegNumber() == phi->GetRegNumber() && next->GetType() != type) { // Move to the next phi to see if it is the one we are looking for. next = next->GetNext(); } if (next == nullptr || (next->AsPhi()->GetRegNumber() != phi->GetRegNumber()) || (next->GetType() != type)) { ArenaAllocator* allocator = phi->GetBlock()->GetGraph()->GetArena(); HPhi* new_phi = new (allocator) HPhi(allocator, phi->GetRegNumber(), phi->InputCount(), type); for (size_t i = 0, e = phi->InputCount(); i < e; ++i) { // Copy the inputs. Note that the graph may not be correctly typed by doing this copy, // but the type propagation phase will fix it. new_phi->SetRawInputAt(i, phi->InputAt(i)); } phi->GetBlock()->InsertPhiAfter(new_phi, phi); return new_phi; } else { DCHECK_EQ(next->GetType(), type); return next->AsPhi(); } } HInstruction* SsaBuilder::GetFloatOrDoubleEquivalent(HInstruction* user, HInstruction* value, Primitive::Type type) { if (value->IsArrayGet()) { // The verifier has checked that values in arrays cannot be used for both // floating point and non-floating point operations. It is therefore safe to just // change the type of the operation. value->AsArrayGet()->SetType(type); return value; } else if (value->IsLongConstant()) { return GetDoubleEquivalent(value->AsLongConstant()); } else if (value->IsIntConstant()) { return GetFloatEquivalent(value->AsIntConstant()); } else if (value->IsPhi()) { return GetFloatDoubleOrReferenceEquivalentOfPhi(value->AsPhi(), type); } else { // For other instructions, we assume the verifier has checked that the dex format is correctly // typed and the value in a dex register will not be used for both floating point and // non-floating point operations. So the only reason an instruction would want a floating // point equivalent is for an unused phi that will be removed by the dead phi elimination phase. DCHECK(user->IsPhi()); return value; } } HInstruction* SsaBuilder::GetReferenceTypeEquivalent(HInstruction* value) { if (value->IsIntConstant()) { DCHECK_EQ(value->AsIntConstant()->GetValue(), 0); return value->GetBlock()->GetGraph()->GetNullConstant(); } else { DCHECK(value->IsPhi()); return GetFloatDoubleOrReferenceEquivalentOfPhi(value->AsPhi(), Primitive::kPrimNot); } } void SsaBuilder::VisitLoadLocal(HLoadLocal* load) { HInstruction* value = current_locals_->GetInstructionAt(load->GetLocal()->GetRegNumber()); // If the operation requests a specific type, we make sure its input is of that type. if (load->GetType() != value->GetType()) { if (load->GetType() == Primitive::kPrimFloat || load->GetType() == Primitive::kPrimDouble) { value = GetFloatOrDoubleEquivalent(load, value, load->GetType()); } else if (load->GetType() == Primitive::kPrimNot) { value = GetReferenceTypeEquivalent(value); } } load->ReplaceWith(value); load->GetBlock()->RemoveInstruction(load); } void SsaBuilder::VisitStoreLocal(HStoreLocal* store) { current_locals_->SetRawEnvAt(store->GetLocal()->GetRegNumber(), store->InputAt(1)); store->GetBlock()->RemoveInstruction(store); } void SsaBuilder::VisitInstruction(HInstruction* instruction) { if (!instruction->NeedsEnvironment()) { return; } HEnvironment* environment = new (GetGraph()->GetArena()) HEnvironment( GetGraph()->GetArena(), current_locals_->Size()); environment->CopyFrom(current_locals_); instruction->SetEnvironment(environment); } void SsaBuilder::VisitTemporary(HTemporary* temp) { // Temporaries are only used by the baseline register allocator. temp->GetBlock()->RemoveInstruction(temp); } } // namespace art