/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "assembler_arm.h" #include "base/logging.h" #include "entrypoints/quick/quick_entrypoints.h" #include "offsets.h" #include "thread.h" #include "utils.h" namespace art { namespace arm { const char* kRegisterNames[] = { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "fp", "ip", "sp", "lr", "pc" }; const char* kConditionNames[] = { "EQ", "NE", "CS", "CC", "MI", "PL", "VS", "VC", "HI", "LS", "GE", "LT", "GT", "LE", "AL", }; std::ostream& operator<<(std::ostream& os, const Register& rhs) { if (rhs >= R0 && rhs <= PC) { os << kRegisterNames[rhs]; } else { os << "Register[" << static_cast(rhs) << "]"; } return os; } std::ostream& operator<<(std::ostream& os, const SRegister& rhs) { if (rhs >= S0 && rhs < kNumberOfSRegisters) { os << "s" << static_cast(rhs); } else { os << "SRegister[" << static_cast(rhs) << "]"; } return os; } std::ostream& operator<<(std::ostream& os, const DRegister& rhs) { if (rhs >= D0 && rhs < kNumberOfDRegisters) { os << "d" << static_cast(rhs); } else { os << "DRegister[" << static_cast(rhs) << "]"; } return os; } std::ostream& operator<<(std::ostream& os, const Condition& rhs) { if (rhs >= EQ && rhs <= AL) { os << kConditionNames[rhs]; } else { os << "Condition[" << static_cast(rhs) << "]"; } return os; } ShifterOperand::ShifterOperand(uint32_t immed) : type_(kImmediate), rm_(kNoRegister), rs_(kNoRegister), is_rotate_(false), is_shift_(false), shift_(kNoShift), rotate_(0), immed_(immed) { CHECK(immed < (1u << 12) || ArmAssembler::ModifiedImmediate(immed) != kInvalidModifiedImmediate); } uint32_t ShifterOperand::encodingArm() const { CHECK(is_valid()); switch (type_) { case kImmediate: if (is_rotate_) { return (rotate_ << kRotateShift) | (immed_ << kImmed8Shift); } else { return immed_; } break; case kRegister: if (is_shift_) { // Shifted immediate or register. if (rs_ == kNoRegister) { // Immediate shift. return immed_ << kShiftImmShift | static_cast(shift_) << kShiftShift | static_cast(rm_); } else { // Register shift. return static_cast(rs_) << kShiftRegisterShift | static_cast(shift_) << kShiftShift | (1 << 4) | static_cast(rm_); } } else { // Simple register return static_cast(rm_); } break; default: // Can't get here. LOG(FATAL) << "Invalid shifter operand for ARM"; return 0; } } uint32_t ShifterOperand::encodingThumb() const { switch (type_) { case kImmediate: return immed_; case kRegister: if (is_shift_) { // Shifted immediate or register. if (rs_ == kNoRegister) { // Immediate shift. if (shift_ == RRX) { // RRX is encoded as an ROR with imm 0. return ROR << 4 | static_cast(rm_); } else { uint32_t imm3 = immed_ >> 2; uint32_t imm2 = immed_ & 3U /* 0b11 */; return imm3 << 12 | imm2 << 6 | shift_ << 4 | static_cast(rm_); } } else { LOG(FATAL) << "No register-shifted register instruction available in thumb"; return 0; } } else { // Simple register return static_cast(rm_); } break; default: // Can't get here. LOG(FATAL) << "Invalid shifter operand for thumb"; return 0; } return 0; } bool ShifterOperand::CanHoldThumb(Register rd, Register rn, Opcode opcode, uint32_t immediate, ShifterOperand* shifter_op) { shifter_op->type_ = kImmediate; shifter_op->immed_ = immediate; shifter_op->is_shift_ = false; shifter_op->is_rotate_ = false; switch (opcode) { case ADD: case SUB: if (rn == SP) { if (rd == SP) { return immediate < (1 << 9); // 9 bits allowed. } else { return immediate < (1 << 12); // 12 bits. } } if (immediate < (1 << 12)) { // Less than (or equal to) 12 bits can always be done. return true; } return ArmAssembler::ModifiedImmediate(immediate) != kInvalidModifiedImmediate; case MOV: // TODO: Support less than or equal to 12bits. return ArmAssembler::ModifiedImmediate(immediate) != kInvalidModifiedImmediate; case MVN: default: return ArmAssembler::ModifiedImmediate(immediate) != kInvalidModifiedImmediate; } } uint32_t Address::encodingArm() const { CHECK(IsAbsoluteUint(12, offset_)); uint32_t encoding; if (is_immed_offset_) { if (offset_ < 0) { encoding = (am_ ^ (1 << kUShift)) | -offset_; // Flip U to adjust sign. } else { encoding = am_ | offset_; } } else { uint32_t imm5 = offset_; uint32_t shift = shift_; if (shift == RRX) { imm5 = 0; shift = ROR; } encoding = am_ | static_cast(rm_) | shift << 5 | offset_ << 7 | B25; } encoding |= static_cast(rn_) << kRnShift; return encoding; } uint32_t Address::encodingThumb(bool is_32bit) const { uint32_t encoding = 0; if (is_immed_offset_) { encoding = static_cast(rn_) << 16; // Check for the T3/T4 encoding. // PUW must Offset for T3 // Convert ARM PU0W to PUW // The Mode is in ARM encoding format which is: // |P|U|0|W| // we need this in thumb2 mode: // |P|U|W| uint32_t am = am_; int32_t offset = offset_; if (offset < 0) { am ^= 1 << kUShift; offset = -offset; } if (offset_ < 0 || (offset >= 0 && offset < 256 && am_ != Mode::Offset)) { // T4 encoding. uint32_t PUW = am >> 21; // Move down to bottom of word. PUW = (PUW >> 1) | (PUW & 1); // Bits 3, 2 and 0. // If P is 0 then W must be 1 (Different from ARM). if ((PUW & 4U /* 0b100 */) == 0) { PUW |= 1U /* 0b1 */; } encoding |= B11 | PUW << 8 | offset; } else { // T3 encoding (also sets op1 to 0b01). encoding |= B23 | offset_; } } else { // Register offset, possibly shifted. // Need to choose between encoding T1 (16 bit) or T2. // Only Offset mode is supported. Shift must be LSL and the count // is only 2 bits. CHECK_EQ(shift_, LSL); CHECK_LE(offset_, 4); CHECK_EQ(am_, Offset); bool is_t2 = is_32bit; if (ArmAssembler::IsHighRegister(rn_) || ArmAssembler::IsHighRegister(rm_)) { is_t2 = true; } else if (offset_ != 0) { is_t2 = true; } if (is_t2) { encoding = static_cast(rn_) << 16 | static_cast(rm_) | offset_ << 4; } else { encoding = static_cast(rn_) << 3 | static_cast(rm_) << 6; } } return encoding; } // This is very like the ARM encoding except the offset is 10 bits. uint32_t Address::encodingThumbLdrdStrd() const { uint32_t encoding; uint32_t am = am_; // If P is 0 then W must be 1 (Different from ARM). uint32_t PU1W = am_ >> 21; // Move down to bottom of word. if ((PU1W & 8U /* 0b1000 */) == 0) { am |= 1 << 21; // Set W bit. } if (offset_ < 0) { int32_t off = -offset_; CHECK_LT(off, 1024); CHECK_EQ((off & 3 /* 0b11 */), 0); // Must be multiple of 4. encoding = (am ^ (1 << kUShift)) | off >> 2; // Flip U to adjust sign. } else { CHECK_LT(offset_, 1024); CHECK_EQ((offset_ & 3 /* 0b11 */), 0); // Must be multiple of 4. encoding = am | offset_ >> 2; } encoding |= static_cast(rn_) << 16; return encoding; } // Encoding for ARM addressing mode 3. uint32_t Address::encoding3() const { const uint32_t offset_mask = (1 << 12) - 1; uint32_t encoding = encodingArm(); uint32_t offset = encoding & offset_mask; CHECK_LT(offset, 256u); return (encoding & ~offset_mask) | ((offset & 0xf0) << 4) | (offset & 0xf); } // Encoding for vfp load/store addressing. uint32_t Address::vencoding() const { const uint32_t offset_mask = (1 << 12) - 1; uint32_t encoding = encodingArm(); uint32_t offset = encoding & offset_mask; CHECK(IsAbsoluteUint(10, offset)); // In the range -1020 to +1020. CHECK_ALIGNED(offset, 2); // Multiple of 4. CHECK((am_ == Offset) || (am_ == NegOffset)); uint32_t vencoding = (encoding & (0xf << kRnShift)) | (offset >> 2); if (am_ == Offset) { vencoding |= 1 << 23; } return vencoding; } bool Address::CanHoldLoadOffsetArm(LoadOperandType type, int offset) { switch (type) { case kLoadSignedByte: case kLoadSignedHalfword: case kLoadUnsignedHalfword: case kLoadWordPair: return IsAbsoluteUint(8, offset); // Addressing mode 3. case kLoadUnsignedByte: case kLoadWord: return IsAbsoluteUint(12, offset); // Addressing mode 2. case kLoadSWord: case kLoadDWord: return IsAbsoluteUint(10, offset); // VFP addressing mode. default: LOG(FATAL) << "UNREACHABLE"; return false; } } bool Address::CanHoldStoreOffsetArm(StoreOperandType type, int offset) { switch (type) { case kStoreHalfword: case kStoreWordPair: return IsAbsoluteUint(8, offset); // Addressing mode 3. case kStoreByte: case kStoreWord: return IsAbsoluteUint(12, offset); // Addressing mode 2. case kStoreSWord: case kStoreDWord: return IsAbsoluteUint(10, offset); // VFP addressing mode. default: LOG(FATAL) << "UNREACHABLE"; return false; } } bool Address::CanHoldLoadOffsetThumb(LoadOperandType type, int offset) { switch (type) { case kLoadSignedByte: case kLoadSignedHalfword: case kLoadUnsignedHalfword: case kLoadUnsignedByte: case kLoadWord: return IsAbsoluteUint(12, offset); case kLoadSWord: case kLoadDWord: return IsAbsoluteUint(10, offset); // VFP addressing mode. case kLoadWordPair: return IsAbsoluteUint(10, offset); default: LOG(FATAL) << "UNREACHABLE"; return false; } } bool Address::CanHoldStoreOffsetThumb(StoreOperandType type, int offset) { switch (type) { case kStoreHalfword: case kStoreByte: case kStoreWord: return IsAbsoluteUint(12, offset); case kStoreSWord: case kStoreDWord: return IsAbsoluteUint(10, offset); // VFP addressing mode. case kStoreWordPair: return IsAbsoluteUint(10, offset); default: LOG(FATAL) << "UNREACHABLE"; return false; } } void ArmAssembler::Pad(uint32_t bytes) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); for (uint32_t i = 0; i < bytes; ++i) { buffer_.Emit(0); } } constexpr size_t kFramePointerSize = 4; void ArmAssembler::BuildFrame(size_t frame_size, ManagedRegister method_reg, const std::vector& callee_save_regs, const ManagedRegisterEntrySpills& entry_spills) { CHECK_ALIGNED(frame_size, kStackAlignment); CHECK_EQ(R0, method_reg.AsArm().AsCoreRegister()); // Push callee saves and link register. RegList push_list = 1 << LR; size_t pushed_values = 1; for (size_t i = 0; i < callee_save_regs.size(); i++) { Register reg = callee_save_regs.at(i).AsArm().AsCoreRegister(); push_list |= 1 << reg; pushed_values++; } PushList(push_list); // Increase frame to required size. CHECK_GT(frame_size, pushed_values * kFramePointerSize); // Must at least have space for Method*. size_t adjust = frame_size - (pushed_values * kFramePointerSize); IncreaseFrameSize(adjust); // Write out Method*. StoreToOffset(kStoreWord, R0, SP, 0); // Write out entry spills. for (size_t i = 0; i < entry_spills.size(); ++i) { Register reg = entry_spills.at(i).AsArm().AsCoreRegister(); StoreToOffset(kStoreWord, reg, SP, frame_size + kFramePointerSize + (i * kFramePointerSize)); } } void ArmAssembler::RemoveFrame(size_t frame_size, const std::vector& callee_save_regs) { CHECK_ALIGNED(frame_size, kStackAlignment); // Compute callee saves to pop and PC. RegList pop_list = 1 << PC; size_t pop_values = 1; for (size_t i = 0; i < callee_save_regs.size(); i++) { Register reg = callee_save_regs.at(i).AsArm().AsCoreRegister(); pop_list |= 1 << reg; pop_values++; } // Decrease frame to start of callee saves. CHECK_GT(frame_size, pop_values * kFramePointerSize); size_t adjust = frame_size - (pop_values * kFramePointerSize); DecreaseFrameSize(adjust); // Pop callee saves and PC. PopList(pop_list); } void ArmAssembler::IncreaseFrameSize(size_t adjust) { AddConstant(SP, -adjust); } void ArmAssembler::DecreaseFrameSize(size_t adjust) { AddConstant(SP, adjust); } void ArmAssembler::Store(FrameOffset dest, ManagedRegister msrc, size_t size) { ArmManagedRegister src = msrc.AsArm(); if (src.IsNoRegister()) { CHECK_EQ(0u, size); } else if (src.IsCoreRegister()) { CHECK_EQ(4u, size); StoreToOffset(kStoreWord, src.AsCoreRegister(), SP, dest.Int32Value()); } else if (src.IsRegisterPair()) { CHECK_EQ(8u, size); StoreToOffset(kStoreWord, src.AsRegisterPairLow(), SP, dest.Int32Value()); StoreToOffset(kStoreWord, src.AsRegisterPairHigh(), SP, dest.Int32Value() + 4); } else if (src.IsSRegister()) { StoreSToOffset(src.AsSRegister(), SP, dest.Int32Value()); } else { CHECK(src.IsDRegister()) << src; StoreDToOffset(src.AsDRegister(), SP, dest.Int32Value()); } } void ArmAssembler::StoreRef(FrameOffset dest, ManagedRegister msrc) { ArmManagedRegister src = msrc.AsArm(); CHECK(src.IsCoreRegister()) << src; StoreToOffset(kStoreWord, src.AsCoreRegister(), SP, dest.Int32Value()); } void ArmAssembler::StoreRawPtr(FrameOffset dest, ManagedRegister msrc) { ArmManagedRegister src = msrc.AsArm(); CHECK(src.IsCoreRegister()) << src; StoreToOffset(kStoreWord, src.AsCoreRegister(), SP, dest.Int32Value()); } void ArmAssembler::StoreSpanning(FrameOffset dest, ManagedRegister msrc, FrameOffset in_off, ManagedRegister mscratch) { ArmManagedRegister src = msrc.AsArm(); ArmManagedRegister scratch = mscratch.AsArm(); StoreToOffset(kStoreWord, src.AsCoreRegister(), SP, dest.Int32Value()); LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, in_off.Int32Value()); StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value() + 4); } void ArmAssembler::CopyRef(FrameOffset dest, FrameOffset src, ManagedRegister mscratch) { ArmManagedRegister scratch = mscratch.AsArm(); LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, src.Int32Value()); StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value()); } void ArmAssembler::LoadRef(ManagedRegister mdest, ManagedRegister base, MemberOffset offs) { ArmManagedRegister dst = mdest.AsArm(); CHECK(dst.IsCoreRegister() && dst.IsCoreRegister()) << dst; LoadFromOffset(kLoadWord, dst.AsCoreRegister(), base.AsArm().AsCoreRegister(), offs.Int32Value()); if (kPoisonHeapReferences) { rsb(dst.AsCoreRegister(), dst.AsCoreRegister(), ShifterOperand(0)); } } void ArmAssembler::LoadRef(ManagedRegister mdest, FrameOffset src) { ArmManagedRegister dst = mdest.AsArm(); CHECK(dst.IsCoreRegister()) << dst; LoadFromOffset(kLoadWord, dst.AsCoreRegister(), SP, src.Int32Value()); } void ArmAssembler::LoadRawPtr(ManagedRegister mdest, ManagedRegister base, Offset offs) { ArmManagedRegister dst = mdest.AsArm(); CHECK(dst.IsCoreRegister() && dst.IsCoreRegister()) << dst; LoadFromOffset(kLoadWord, dst.AsCoreRegister(), base.AsArm().AsCoreRegister(), offs.Int32Value()); } void ArmAssembler::StoreImmediateToFrame(FrameOffset dest, uint32_t imm, ManagedRegister mscratch) { ArmManagedRegister scratch = mscratch.AsArm(); CHECK(scratch.IsCoreRegister()) << scratch; LoadImmediate(scratch.AsCoreRegister(), imm); StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value()); } void ArmAssembler::StoreImmediateToThread32(ThreadOffset<4> dest, uint32_t imm, ManagedRegister mscratch) { ArmManagedRegister scratch = mscratch.AsArm(); CHECK(scratch.IsCoreRegister()) << scratch; LoadImmediate(scratch.AsCoreRegister(), imm); StoreToOffset(kStoreWord, scratch.AsCoreRegister(), TR, dest.Int32Value()); } static void EmitLoad(ArmAssembler* assembler, ManagedRegister m_dst, Register src_register, int32_t src_offset, size_t size) { ArmManagedRegister dst = m_dst.AsArm(); if (dst.IsNoRegister()) { CHECK_EQ(0u, size) << dst; } else if (dst.IsCoreRegister()) { CHECK_EQ(4u, size) << dst; assembler->LoadFromOffset(kLoadWord, dst.AsCoreRegister(), src_register, src_offset); } else if (dst.IsRegisterPair()) { CHECK_EQ(8u, size) << dst; assembler->LoadFromOffset(kLoadWord, dst.AsRegisterPairLow(), src_register, src_offset); assembler->LoadFromOffset(kLoadWord, dst.AsRegisterPairHigh(), src_register, src_offset + 4); } else if (dst.IsSRegister()) { assembler->LoadSFromOffset(dst.AsSRegister(), src_register, src_offset); } else { CHECK(dst.IsDRegister()) << dst; assembler->LoadDFromOffset(dst.AsDRegister(), src_register, src_offset); } } void ArmAssembler::Load(ManagedRegister m_dst, FrameOffset src, size_t size) { return EmitLoad(this, m_dst, SP, src.Int32Value(), size); } void ArmAssembler::LoadFromThread32(ManagedRegister m_dst, ThreadOffset<4> src, size_t size) { return EmitLoad(this, m_dst, TR, src.Int32Value(), size); } void ArmAssembler::LoadRawPtrFromThread32(ManagedRegister m_dst, ThreadOffset<4> offs) { ArmManagedRegister dst = m_dst.AsArm(); CHECK(dst.IsCoreRegister()) << dst; LoadFromOffset(kLoadWord, dst.AsCoreRegister(), TR, offs.Int32Value()); } void ArmAssembler::CopyRawPtrFromThread32(FrameOffset fr_offs, ThreadOffset<4> thr_offs, ManagedRegister mscratch) { ArmManagedRegister scratch = mscratch.AsArm(); CHECK(scratch.IsCoreRegister()) << scratch; LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), TR, thr_offs.Int32Value()); StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, fr_offs.Int32Value()); } void ArmAssembler::CopyRawPtrToThread32(ThreadOffset<4> thr_offs, FrameOffset fr_offs, ManagedRegister mscratch) { ArmManagedRegister scratch = mscratch.AsArm(); CHECK(scratch.IsCoreRegister()) << scratch; LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, fr_offs.Int32Value()); StoreToOffset(kStoreWord, scratch.AsCoreRegister(), TR, thr_offs.Int32Value()); } void ArmAssembler::StoreStackOffsetToThread32(ThreadOffset<4> thr_offs, FrameOffset fr_offs, ManagedRegister mscratch) { ArmManagedRegister scratch = mscratch.AsArm(); CHECK(scratch.IsCoreRegister()) << scratch; AddConstant(scratch.AsCoreRegister(), SP, fr_offs.Int32Value(), AL); StoreToOffset(kStoreWord, scratch.AsCoreRegister(), TR, thr_offs.Int32Value()); } void ArmAssembler::StoreStackPointerToThread32(ThreadOffset<4> thr_offs) { StoreToOffset(kStoreWord, SP, TR, thr_offs.Int32Value()); } void ArmAssembler::SignExtend(ManagedRegister /*mreg*/, size_t /*size*/) { UNIMPLEMENTED(FATAL) << "no sign extension necessary for arm"; } void ArmAssembler::ZeroExtend(ManagedRegister /*mreg*/, size_t /*size*/) { UNIMPLEMENTED(FATAL) << "no zero extension necessary for arm"; } void ArmAssembler::Move(ManagedRegister m_dst, ManagedRegister m_src, size_t /*size*/) { ArmManagedRegister dst = m_dst.AsArm(); ArmManagedRegister src = m_src.AsArm(); if (!dst.Equals(src)) { if (dst.IsCoreRegister()) { CHECK(src.IsCoreRegister()) << src; mov(dst.AsCoreRegister(), ShifterOperand(src.AsCoreRegister())); } else if (dst.IsDRegister()) { CHECK(src.IsDRegister()) << src; vmovd(dst.AsDRegister(), src.AsDRegister()); } else if (dst.IsSRegister()) { CHECK(src.IsSRegister()) << src; vmovs(dst.AsSRegister(), src.AsSRegister()); } else { CHECK(dst.IsRegisterPair()) << dst; CHECK(src.IsRegisterPair()) << src; // Ensure that the first move doesn't clobber the input of the second. if (src.AsRegisterPairHigh() != dst.AsRegisterPairLow()) { mov(dst.AsRegisterPairLow(), ShifterOperand(src.AsRegisterPairLow())); mov(dst.AsRegisterPairHigh(), ShifterOperand(src.AsRegisterPairHigh())); } else { mov(dst.AsRegisterPairHigh(), ShifterOperand(src.AsRegisterPairHigh())); mov(dst.AsRegisterPairLow(), ShifterOperand(src.AsRegisterPairLow())); } } } } void ArmAssembler::Copy(FrameOffset dest, FrameOffset src, ManagedRegister mscratch, size_t size) { ArmManagedRegister scratch = mscratch.AsArm(); CHECK(scratch.IsCoreRegister()) << scratch; CHECK(size == 4 || size == 8) << size; if (size == 4) { LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, src.Int32Value()); StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value()); } else if (size == 8) { LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, src.Int32Value()); StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value()); LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, src.Int32Value() + 4); StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value() + 4); } } void ArmAssembler::Copy(FrameOffset dest, ManagedRegister src_base, Offset src_offset, ManagedRegister mscratch, size_t size) { Register scratch = mscratch.AsArm().AsCoreRegister(); CHECK_EQ(size, 4u); LoadFromOffset(kLoadWord, scratch, src_base.AsArm().AsCoreRegister(), src_offset.Int32Value()); StoreToOffset(kStoreWord, scratch, SP, dest.Int32Value()); } void ArmAssembler::Copy(ManagedRegister dest_base, Offset dest_offset, FrameOffset src, ManagedRegister mscratch, size_t size) { Register scratch = mscratch.AsArm().AsCoreRegister(); CHECK_EQ(size, 4u); LoadFromOffset(kLoadWord, scratch, SP, src.Int32Value()); StoreToOffset(kStoreWord, scratch, dest_base.AsArm().AsCoreRegister(), dest_offset.Int32Value()); } void ArmAssembler::Copy(FrameOffset /*dst*/, FrameOffset /*src_base*/, Offset /*src_offset*/, ManagedRegister /*mscratch*/, size_t /*size*/) { UNIMPLEMENTED(FATAL); } void ArmAssembler::Copy(ManagedRegister dest, Offset dest_offset, ManagedRegister src, Offset src_offset, ManagedRegister mscratch, size_t size) { CHECK_EQ(size, 4u); Register scratch = mscratch.AsArm().AsCoreRegister(); LoadFromOffset(kLoadWord, scratch, src.AsArm().AsCoreRegister(), src_offset.Int32Value()); StoreToOffset(kStoreWord, scratch, dest.AsArm().AsCoreRegister(), dest_offset.Int32Value()); } void ArmAssembler::Copy(FrameOffset /*dst*/, Offset /*dest_offset*/, FrameOffset /*src*/, Offset /*src_offset*/, ManagedRegister /*scratch*/, size_t /*size*/) { UNIMPLEMENTED(FATAL); } void ArmAssembler::CreateHandleScopeEntry(ManagedRegister mout_reg, FrameOffset handle_scope_offset, ManagedRegister min_reg, bool null_allowed) { ArmManagedRegister out_reg = mout_reg.AsArm(); ArmManagedRegister in_reg = min_reg.AsArm(); CHECK(in_reg.IsNoRegister() || in_reg.IsCoreRegister()) << in_reg; CHECK(out_reg.IsCoreRegister()) << out_reg; if (null_allowed) { // Null values get a handle scope entry value of 0. Otherwise, the handle scope entry is // the address in the handle scope holding the reference. // e.g. out_reg = (handle == 0) ? 0 : (SP+handle_offset) if (in_reg.IsNoRegister()) { LoadFromOffset(kLoadWord, out_reg.AsCoreRegister(), SP, handle_scope_offset.Int32Value()); in_reg = out_reg; } cmp(in_reg.AsCoreRegister(), ShifterOperand(0)); if (!out_reg.Equals(in_reg)) { it(EQ, kItElse); LoadImmediate(out_reg.AsCoreRegister(), 0, EQ); } else { it(NE); } AddConstant(out_reg.AsCoreRegister(), SP, handle_scope_offset.Int32Value(), NE); } else { AddConstant(out_reg.AsCoreRegister(), SP, handle_scope_offset.Int32Value(), AL); } } void ArmAssembler::CreateHandleScopeEntry(FrameOffset out_off, FrameOffset handle_scope_offset, ManagedRegister mscratch, bool null_allowed) { ArmManagedRegister scratch = mscratch.AsArm(); CHECK(scratch.IsCoreRegister()) << scratch; if (null_allowed) { LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, handle_scope_offset.Int32Value()); // Null values get a handle scope entry value of 0. Otherwise, the handle scope entry is // the address in the handle scope holding the reference. // e.g. scratch = (scratch == 0) ? 0 : (SP+handle_scope_offset) cmp(scratch.AsCoreRegister(), ShifterOperand(0)); it(NE); AddConstant(scratch.AsCoreRegister(), SP, handle_scope_offset.Int32Value(), NE); } else { AddConstant(scratch.AsCoreRegister(), SP, handle_scope_offset.Int32Value(), AL); } StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, out_off.Int32Value()); } void ArmAssembler::LoadReferenceFromHandleScope(ManagedRegister mout_reg, ManagedRegister min_reg) { ArmManagedRegister out_reg = mout_reg.AsArm(); ArmManagedRegister in_reg = min_reg.AsArm(); CHECK(out_reg.IsCoreRegister()) << out_reg; CHECK(in_reg.IsCoreRegister()) << in_reg; Label null_arg; if (!out_reg.Equals(in_reg)) { LoadImmediate(out_reg.AsCoreRegister(), 0, EQ); // TODO: why EQ? } cmp(in_reg.AsCoreRegister(), ShifterOperand(0)); it(NE); LoadFromOffset(kLoadWord, out_reg.AsCoreRegister(), in_reg.AsCoreRegister(), 0, NE); } void ArmAssembler::VerifyObject(ManagedRegister /*src*/, bool /*could_be_null*/) { // TODO: not validating references. } void ArmAssembler::VerifyObject(FrameOffset /*src*/, bool /*could_be_null*/) { // TODO: not validating references. } void ArmAssembler::Call(ManagedRegister mbase, Offset offset, ManagedRegister mscratch) { ArmManagedRegister base = mbase.AsArm(); ArmManagedRegister scratch = mscratch.AsArm(); CHECK(base.IsCoreRegister()) << base; CHECK(scratch.IsCoreRegister()) << scratch; LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), base.AsCoreRegister(), offset.Int32Value()); blx(scratch.AsCoreRegister()); // TODO: place reference map on call. } void ArmAssembler::Call(FrameOffset base, Offset offset, ManagedRegister mscratch) { ArmManagedRegister scratch = mscratch.AsArm(); CHECK(scratch.IsCoreRegister()) << scratch; // Call *(*(SP + base) + offset) LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, base.Int32Value()); LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), scratch.AsCoreRegister(), offset.Int32Value()); blx(scratch.AsCoreRegister()); // TODO: place reference map on call } void ArmAssembler::CallFromThread32(ThreadOffset<4> /*offset*/, ManagedRegister /*scratch*/) { UNIMPLEMENTED(FATAL); } void ArmAssembler::GetCurrentThread(ManagedRegister tr) { mov(tr.AsArm().AsCoreRegister(), ShifterOperand(TR)); } void ArmAssembler::GetCurrentThread(FrameOffset offset, ManagedRegister /*scratch*/) { StoreToOffset(kStoreWord, TR, SP, offset.Int32Value(), AL); } void ArmAssembler::ExceptionPoll(ManagedRegister mscratch, size_t stack_adjust) { ArmManagedRegister scratch = mscratch.AsArm(); ArmExceptionSlowPath* slow = new ArmExceptionSlowPath(scratch, stack_adjust); buffer_.EnqueueSlowPath(slow); LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), TR, Thread::ExceptionOffset<4>().Int32Value()); cmp(scratch.AsCoreRegister(), ShifterOperand(0)); b(slow->Entry(), NE); } void ArmExceptionSlowPath::Emit(Assembler* sasm) { ArmAssembler* sp_asm = down_cast(sasm); #define __ sp_asm-> __ Bind(&entry_); if (stack_adjust_ != 0) { // Fix up the frame. __ DecreaseFrameSize(stack_adjust_); } // Pass exception object as argument. // Don't care about preserving R0 as this call won't return. __ mov(R0, ShifterOperand(scratch_.AsCoreRegister())); // Set up call to Thread::Current()->pDeliverException. __ LoadFromOffset(kLoadWord, R12, TR, QUICK_ENTRYPOINT_OFFSET(4, pDeliverException).Int32Value()); __ blx(R12); // Call never returns. __ bkpt(0); #undef __ } static int LeadingZeros(uint32_t val) { uint32_t alt; int32_t n; int32_t count; count = 16; n = 32; do { alt = val >> count; if (alt != 0) { n = n - count; val = alt; } count >>= 1; } while (count); return n - val; } uint32_t ArmAssembler::ModifiedImmediate(uint32_t value) { int32_t z_leading; int32_t z_trailing; uint32_t b0 = value & 0xff; /* Note: case of value==0 must use 0:000:0:0000000 encoding */ if (value <= 0xFF) return b0; // 0:000:a:bcdefgh. if (value == ((b0 << 16) | b0)) return (0x1 << 12) | b0; /* 0:001:a:bcdefgh */ if (value == ((b0 << 24) | (b0 << 16) | (b0 << 8) | b0)) return (0x3 << 12) | b0; /* 0:011:a:bcdefgh */ b0 = (value >> 8) & 0xff; if (value == ((b0 << 24) | (b0 << 8))) return (0x2 << 12) | b0; /* 0:010:a:bcdefgh */ /* Can we do it with rotation? */ z_leading = LeadingZeros(value); z_trailing = 32 - LeadingZeros(~value & (value - 1)); /* A run of eight or fewer active bits? */ if ((z_leading + z_trailing) < 24) return kInvalidModifiedImmediate; /* No - bail */ /* left-justify the constant, discarding msb (known to be 1) */ value <<= z_leading + 1; /* Create bcdefgh */ value >>= 25; /* Put it all together */ uint32_t v = 8 + z_leading; uint32_t i = (v & 16U /* 0b10000 */) >> 4; uint32_t imm3 = (v >> 1) & 7U /* 0b111 */; uint32_t a = v & 1; return value | i << 26 | imm3 << 12 | a << 7; } } // namespace arm } // namespace art