/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "assembler_mips.h" #include "base/bit_utils.h" #include "base/casts.h" #include "entrypoints/quick/quick_entrypoints.h" #include "memory_region.h" #include "thread.h" namespace art { namespace mips { std::ostream& operator<<(std::ostream& os, const DRegister& rhs) { if (rhs >= D0 && rhs < kNumberOfDRegisters) { os << "d" << static_cast(rhs); } else { os << "DRegister[" << static_cast(rhs) << "]"; } return os; } void MipsAssembler::Emit(int32_t value) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); buffer_.Emit(value); } void MipsAssembler::EmitR(int opcode, Register rs, Register rt, Register rd, int shamt, int funct) { CHECK_NE(rs, kNoRegister); CHECK_NE(rt, kNoRegister); CHECK_NE(rd, kNoRegister); int32_t encoding = opcode << kOpcodeShift | static_cast(rs) << kRsShift | static_cast(rt) << kRtShift | static_cast(rd) << kRdShift | shamt << kShamtShift | funct; Emit(encoding); } void MipsAssembler::EmitI(int opcode, Register rs, Register rt, uint16_t imm) { CHECK_NE(rs, kNoRegister); CHECK_NE(rt, kNoRegister); int32_t encoding = opcode << kOpcodeShift | static_cast(rs) << kRsShift | static_cast(rt) << kRtShift | imm; Emit(encoding); } void MipsAssembler::EmitJ(int opcode, int address) { int32_t encoding = opcode << kOpcodeShift | address; Emit(encoding); } void MipsAssembler::EmitFR(int opcode, int fmt, FRegister ft, FRegister fs, FRegister fd, int funct) { CHECK_NE(ft, kNoFRegister); CHECK_NE(fs, kNoFRegister); CHECK_NE(fd, kNoFRegister); int32_t encoding = opcode << kOpcodeShift | fmt << kFmtShift | static_cast(ft) << kFtShift | static_cast(fs) << kFsShift | static_cast(fd) << kFdShift | funct; Emit(encoding); } void MipsAssembler::EmitFI(int opcode, int fmt, FRegister rt, uint16_t imm) { CHECK_NE(rt, kNoFRegister); int32_t encoding = opcode << kOpcodeShift | fmt << kFmtShift | static_cast(rt) << kRtShift | imm; Emit(encoding); } void MipsAssembler::EmitBranch(Register rt, Register rs, Label* label, bool equal) { int offset; if (label->IsBound()) { offset = label->Position() - buffer_.Size(); } else { // Use the offset field of the branch instruction for linking the sites. offset = label->position_; label->LinkTo(buffer_.Size()); } if (equal) { Beq(rt, rs, (offset >> 2) & kBranchOffsetMask); } else { Bne(rt, rs, (offset >> 2) & kBranchOffsetMask); } } void MipsAssembler::EmitJump(Label* label, bool link) { int offset; if (label->IsBound()) { offset = label->Position() - buffer_.Size(); } else { // Use the offset field of the jump instruction for linking the sites. offset = label->position_; label->LinkTo(buffer_.Size()); } if (link) { Jal((offset >> 2) & kJumpOffsetMask); } else { J((offset >> 2) & kJumpOffsetMask); } } int32_t MipsAssembler::EncodeBranchOffset(int offset, int32_t inst, bool is_jump) { CHECK_ALIGNED(offset, 4); CHECK(IsInt(POPCOUNT(kBranchOffsetMask), offset)) << offset; // Properly preserve only the bits supported in the instruction. offset >>= 2; if (is_jump) { offset &= kJumpOffsetMask; return (inst & ~kJumpOffsetMask) | offset; } else { offset &= kBranchOffsetMask; return (inst & ~kBranchOffsetMask) | offset; } } int MipsAssembler::DecodeBranchOffset(int32_t inst, bool is_jump) { // Sign-extend, then left-shift by 2. if (is_jump) { return (((inst & kJumpOffsetMask) << 6) >> 4); } else { return (((inst & kBranchOffsetMask) << 16) >> 14); } } void MipsAssembler::Bind(Label* label, bool is_jump) { CHECK(!label->IsBound()); int bound_pc = buffer_.Size(); while (label->IsLinked()) { int32_t position = label->Position(); int32_t next = buffer_.Load(position); int32_t offset = is_jump ? bound_pc - position : bound_pc - position - 4; int32_t encoded = MipsAssembler::EncodeBranchOffset(offset, next, is_jump); buffer_.Store(position, encoded); label->position_ = MipsAssembler::DecodeBranchOffset(next, is_jump); } label->BindTo(bound_pc); } void MipsAssembler::Add(Register rd, Register rs, Register rt) { EmitR(0, rs, rt, rd, 0, 0x20); } void MipsAssembler::Addu(Register rd, Register rs, Register rt) { EmitR(0, rs, rt, rd, 0, 0x21); } void MipsAssembler::Addi(Register rt, Register rs, uint16_t imm16) { EmitI(0x8, rs, rt, imm16); } void MipsAssembler::Addiu(Register rt, Register rs, uint16_t imm16) { EmitI(0x9, rs, rt, imm16); } void MipsAssembler::Sub(Register rd, Register rs, Register rt) { EmitR(0, rs, rt, rd, 0, 0x22); } void MipsAssembler::Subu(Register rd, Register rs, Register rt) { EmitR(0, rs, rt, rd, 0, 0x23); } void MipsAssembler::Mult(Register rs, Register rt) { EmitR(0, rs, rt, static_cast(0), 0, 0x18); } void MipsAssembler::Multu(Register rs, Register rt) { EmitR(0, rs, rt, static_cast(0), 0, 0x19); } void MipsAssembler::Div(Register rs, Register rt) { EmitR(0, rs, rt, static_cast(0), 0, 0x1a); } void MipsAssembler::Divu(Register rs, Register rt) { EmitR(0, rs, rt, static_cast(0), 0, 0x1b); } void MipsAssembler::And(Register rd, Register rs, Register rt) { EmitR(0, rs, rt, rd, 0, 0x24); } void MipsAssembler::Andi(Register rt, Register rs, uint16_t imm16) { EmitI(0xc, rs, rt, imm16); } void MipsAssembler::Or(Register rd, Register rs, Register rt) { EmitR(0, rs, rt, rd, 0, 0x25); } void MipsAssembler::Ori(Register rt, Register rs, uint16_t imm16) { EmitI(0xd, rs, rt, imm16); } void MipsAssembler::Xor(Register rd, Register rs, Register rt) { EmitR(0, rs, rt, rd, 0, 0x26); } void MipsAssembler::Xori(Register rt, Register rs, uint16_t imm16) { EmitI(0xe, rs, rt, imm16); } void MipsAssembler::Nor(Register rd, Register rs, Register rt) { EmitR(0, rs, rt, rd, 0, 0x27); } void MipsAssembler::Sll(Register rd, Register rs, int shamt) { EmitR(0, rs, static_cast(0), rd, shamt, 0x00); } void MipsAssembler::Srl(Register rd, Register rs, int shamt) { EmitR(0, rs, static_cast(0), rd, shamt, 0x02); } void MipsAssembler::Sra(Register rd, Register rs, int shamt) { EmitR(0, rs, static_cast(0), rd, shamt, 0x03); } void MipsAssembler::Sllv(Register rd, Register rs, Register rt) { EmitR(0, rs, rt, rd, 0, 0x04); } void MipsAssembler::Srlv(Register rd, Register rs, Register rt) { EmitR(0, rs, rt, rd, 0, 0x06); } void MipsAssembler::Srav(Register rd, Register rs, Register rt) { EmitR(0, rs, rt, rd, 0, 0x07); } void MipsAssembler::Lb(Register rt, Register rs, uint16_t imm16) { EmitI(0x20, rs, rt, imm16); } void MipsAssembler::Lh(Register rt, Register rs, uint16_t imm16) { EmitI(0x21, rs, rt, imm16); } void MipsAssembler::Lw(Register rt, Register rs, uint16_t imm16) { EmitI(0x23, rs, rt, imm16); } void MipsAssembler::Lbu(Register rt, Register rs, uint16_t imm16) { EmitI(0x24, rs, rt, imm16); } void MipsAssembler::Lhu(Register rt, Register rs, uint16_t imm16) { EmitI(0x25, rs, rt, imm16); } void MipsAssembler::Lui(Register rt, uint16_t imm16) { EmitI(0xf, static_cast(0), rt, imm16); } void MipsAssembler::Mfhi(Register rd) { EmitR(0, static_cast(0), static_cast(0), rd, 0, 0x10); } void MipsAssembler::Mflo(Register rd) { EmitR(0, static_cast(0), static_cast(0), rd, 0, 0x12); } void MipsAssembler::Sb(Register rt, Register rs, uint16_t imm16) { EmitI(0x28, rs, rt, imm16); } void MipsAssembler::Sh(Register rt, Register rs, uint16_t imm16) { EmitI(0x29, rs, rt, imm16); } void MipsAssembler::Sw(Register rt, Register rs, uint16_t imm16) { EmitI(0x2b, rs, rt, imm16); } void MipsAssembler::Slt(Register rd, Register rs, Register rt) { EmitR(0, rs, rt, rd, 0, 0x2a); } void MipsAssembler::Sltu(Register rd, Register rs, Register rt) { EmitR(0, rs, rt, rd, 0, 0x2b); } void MipsAssembler::Slti(Register rt, Register rs, uint16_t imm16) { EmitI(0xa, rs, rt, imm16); } void MipsAssembler::Sltiu(Register rt, Register rs, uint16_t imm16) { EmitI(0xb, rs, rt, imm16); } void MipsAssembler::Beq(Register rt, Register rs, uint16_t imm16) { EmitI(0x4, rs, rt, imm16); Nop(); } void MipsAssembler::Bne(Register rt, Register rs, uint16_t imm16) { EmitI(0x5, rs, rt, imm16); Nop(); } void MipsAssembler::J(uint32_t address) { EmitJ(0x2, address); Nop(); } void MipsAssembler::Jal(uint32_t address) { EmitJ(0x2, address); Nop(); } void MipsAssembler::Jr(Register rs) { EmitR(0, rs, static_cast(0), static_cast(0), 0, 0x09); // Jalr zero, rs Nop(); } void MipsAssembler::Jalr(Register rs) { EmitR(0, rs, static_cast(0), RA, 0, 0x09); Nop(); } void MipsAssembler::AddS(FRegister fd, FRegister fs, FRegister ft) { EmitFR(0x11, 0x10, ft, fs, fd, 0x0); } void MipsAssembler::SubS(FRegister fd, FRegister fs, FRegister ft) { EmitFR(0x11, 0x10, ft, fs, fd, 0x1); } void MipsAssembler::MulS(FRegister fd, FRegister fs, FRegister ft) { EmitFR(0x11, 0x10, ft, fs, fd, 0x2); } void MipsAssembler::DivS(FRegister fd, FRegister fs, FRegister ft) { EmitFR(0x11, 0x10, ft, fs, fd, 0x3); } void MipsAssembler::AddD(DRegister fd, DRegister fs, DRegister ft) { EmitFR(0x11, 0x11, static_cast(ft), static_cast(fs), static_cast(fd), 0x0); } void MipsAssembler::SubD(DRegister fd, DRegister fs, DRegister ft) { EmitFR(0x11, 0x11, static_cast(ft), static_cast(fs), static_cast(fd), 0x1); } void MipsAssembler::MulD(DRegister fd, DRegister fs, DRegister ft) { EmitFR(0x11, 0x11, static_cast(ft), static_cast(fs), static_cast(fd), 0x2); } void MipsAssembler::DivD(DRegister fd, DRegister fs, DRegister ft) { EmitFR(0x11, 0x11, static_cast(ft), static_cast(fs), static_cast(fd), 0x3); } void MipsAssembler::MovS(FRegister fd, FRegister fs) { EmitFR(0x11, 0x10, static_cast(0), fs, fd, 0x6); } void MipsAssembler::MovD(DRegister fd, DRegister fs) { EmitFR(0x11, 0x11, static_cast(0), static_cast(fs), static_cast(fd), 0x6); } void MipsAssembler::Mfc1(Register rt, FRegister fs) { EmitFR(0x11, 0x00, static_cast(rt), fs, static_cast(0), 0x0); } void MipsAssembler::Mtc1(FRegister ft, Register rs) { EmitFR(0x11, 0x04, ft, static_cast(rs), static_cast(0), 0x0); } void MipsAssembler::Lwc1(FRegister ft, Register rs, uint16_t imm16) { EmitI(0x31, rs, static_cast(ft), imm16); } void MipsAssembler::Ldc1(DRegister ft, Register rs, uint16_t imm16) { EmitI(0x35, rs, static_cast(ft), imm16); } void MipsAssembler::Swc1(FRegister ft, Register rs, uint16_t imm16) { EmitI(0x39, rs, static_cast(ft), imm16); } void MipsAssembler::Sdc1(DRegister ft, Register rs, uint16_t imm16) { EmitI(0x3d, rs, static_cast(ft), imm16); } void MipsAssembler::Break() { EmitR(0, static_cast(0), static_cast(0), static_cast(0), 0, 0xD); } void MipsAssembler::Nop() { EmitR(0x0, static_cast(0), static_cast(0), static_cast(0), 0, 0x0); } void MipsAssembler::Move(Register rt, Register rs) { EmitI(0x9, rs, rt, 0); // Addiu } void MipsAssembler::Clear(Register rt) { EmitR(0, static_cast(0), static_cast(0), rt, 0, 0x20); } void MipsAssembler::Not(Register rt, Register rs) { EmitR(0, static_cast(0), rs, rt, 0, 0x27); } void MipsAssembler::Mul(Register rd, Register rs, Register rt) { Mult(rs, rt); Mflo(rd); } void MipsAssembler::Div(Register rd, Register rs, Register rt) { Div(rs, rt); Mflo(rd); } void MipsAssembler::Rem(Register rd, Register rs, Register rt) { Div(rs, rt); Mfhi(rd); } void MipsAssembler::AddConstant(Register rt, Register rs, int32_t value) { Addiu(rt, rs, value); } void MipsAssembler::LoadImmediate(Register rt, int32_t value) { Addiu(rt, ZERO, value); } void MipsAssembler::EmitLoad(ManagedRegister m_dst, Register src_register, int32_t src_offset, size_t size) { MipsManagedRegister dst = m_dst.AsMips(); if (dst.IsNoRegister()) { CHECK_EQ(0u, size) << dst; } else if (dst.IsCoreRegister()) { CHECK_EQ(4u, size) << dst; LoadFromOffset(kLoadWord, dst.AsCoreRegister(), src_register, src_offset); } else if (dst.IsRegisterPair()) { CHECK_EQ(8u, size) << dst; LoadFromOffset(kLoadWord, dst.AsRegisterPairLow(), src_register, src_offset); LoadFromOffset(kLoadWord, dst.AsRegisterPairHigh(), src_register, src_offset + 4); } else if (dst.IsFRegister()) { LoadSFromOffset(dst.AsFRegister(), src_register, src_offset); } else { CHECK(dst.IsDRegister()) << dst; LoadDFromOffset(dst.AsDRegister(), src_register, src_offset); } } void MipsAssembler::LoadFromOffset(LoadOperandType type, Register reg, Register base, int32_t offset) { switch (type) { case kLoadSignedByte: Lb(reg, base, offset); break; case kLoadUnsignedByte: Lbu(reg, base, offset); break; case kLoadSignedHalfword: Lh(reg, base, offset); break; case kLoadUnsignedHalfword: Lhu(reg, base, offset); break; case kLoadWord: Lw(reg, base, offset); break; case kLoadWordPair: LOG(FATAL) << "UNREACHABLE"; break; default: LOG(FATAL) << "UNREACHABLE"; } } void MipsAssembler::LoadSFromOffset(FRegister reg, Register base, int32_t offset) { Lwc1(reg, base, offset); } void MipsAssembler::LoadDFromOffset(DRegister reg, Register base, int32_t offset) { Ldc1(reg, base, offset); } void MipsAssembler::StoreToOffset(StoreOperandType type, Register reg, Register base, int32_t offset) { switch (type) { case kStoreByte: Sb(reg, base, offset); break; case kStoreHalfword: Sh(reg, base, offset); break; case kStoreWord: Sw(reg, base, offset); break; case kStoreWordPair: LOG(FATAL) << "UNREACHABLE"; break; default: LOG(FATAL) << "UNREACHABLE"; } } void MipsAssembler::StoreFToOffset(FRegister reg, Register base, int32_t offset) { Swc1(reg, base, offset); } void MipsAssembler::StoreDToOffset(DRegister reg, Register base, int32_t offset) { Sdc1(reg, base, offset); } static dwarf::Reg DWARFReg(Register reg) { return dwarf::Reg::MipsCore(static_cast(reg)); } constexpr size_t kFramePointerSize = 4; void MipsAssembler::BuildFrame(size_t frame_size, ManagedRegister method_reg, const std::vector& callee_save_regs, const ManagedRegisterEntrySpills& entry_spills) { CHECK_ALIGNED(frame_size, kStackAlignment); // Increase frame to required size. IncreaseFrameSize(frame_size); // Push callee saves and return address int stack_offset = frame_size - kFramePointerSize; StoreToOffset(kStoreWord, RA, SP, stack_offset); cfi_.RelOffset(DWARFReg(RA), stack_offset); for (int i = callee_save_regs.size() - 1; i >= 0; --i) { stack_offset -= kFramePointerSize; Register reg = callee_save_regs.at(i).AsMips().AsCoreRegister(); StoreToOffset(kStoreWord, reg, SP, stack_offset); cfi_.RelOffset(DWARFReg(reg), stack_offset); } // Write out Method*. StoreToOffset(kStoreWord, method_reg.AsMips().AsCoreRegister(), SP, 0); // Write out entry spills. for (size_t i = 0; i < entry_spills.size(); ++i) { Register reg = entry_spills.at(i).AsMips().AsCoreRegister(); StoreToOffset(kStoreWord, reg, SP, frame_size + kFramePointerSize + (i * kFramePointerSize)); } } void MipsAssembler::RemoveFrame(size_t frame_size, const std::vector& callee_save_regs) { CHECK_ALIGNED(frame_size, kStackAlignment); cfi_.RememberState(); // Pop callee saves and return address int stack_offset = frame_size - (callee_save_regs.size() * kFramePointerSize) - kFramePointerSize; for (size_t i = 0; i < callee_save_regs.size(); ++i) { Register reg = callee_save_regs.at(i).AsMips().AsCoreRegister(); LoadFromOffset(kLoadWord, reg, SP, stack_offset); cfi_.Restore(DWARFReg(reg)); stack_offset += kFramePointerSize; } LoadFromOffset(kLoadWord, RA, SP, stack_offset); cfi_.Restore(DWARFReg(RA)); // Decrease frame to required size. DecreaseFrameSize(frame_size); // Then jump to the return address. Jr(RA); // The CFI should be restored for any code that follows the exit block. cfi_.RestoreState(); cfi_.DefCFAOffset(frame_size); } void MipsAssembler::IncreaseFrameSize(size_t adjust) { CHECK_ALIGNED(adjust, kStackAlignment); AddConstant(SP, SP, -adjust); cfi_.AdjustCFAOffset(adjust); } void MipsAssembler::DecreaseFrameSize(size_t adjust) { CHECK_ALIGNED(adjust, kStackAlignment); AddConstant(SP, SP, adjust); cfi_.AdjustCFAOffset(-adjust); } void MipsAssembler::Store(FrameOffset dest, ManagedRegister msrc, size_t size) { MipsManagedRegister src = msrc.AsMips(); if (src.IsNoRegister()) { CHECK_EQ(0u, size); } else if (src.IsCoreRegister()) { CHECK_EQ(4u, size); StoreToOffset(kStoreWord, src.AsCoreRegister(), SP, dest.Int32Value()); } else if (src.IsRegisterPair()) { CHECK_EQ(8u, size); StoreToOffset(kStoreWord, src.AsRegisterPairLow(), SP, dest.Int32Value()); StoreToOffset(kStoreWord, src.AsRegisterPairHigh(), SP, dest.Int32Value() + 4); } else if (src.IsFRegister()) { StoreFToOffset(src.AsFRegister(), SP, dest.Int32Value()); } else { CHECK(src.IsDRegister()); StoreDToOffset(src.AsDRegister(), SP, dest.Int32Value()); } } void MipsAssembler::StoreRef(FrameOffset dest, ManagedRegister msrc) { MipsManagedRegister src = msrc.AsMips(); CHECK(src.IsCoreRegister()); StoreToOffset(kStoreWord, src.AsCoreRegister(), SP, dest.Int32Value()); } void MipsAssembler::StoreRawPtr(FrameOffset dest, ManagedRegister msrc) { MipsManagedRegister src = msrc.AsMips(); CHECK(src.IsCoreRegister()); StoreToOffset(kStoreWord, src.AsCoreRegister(), SP, dest.Int32Value()); } void MipsAssembler::StoreImmediateToFrame(FrameOffset dest, uint32_t imm, ManagedRegister mscratch) { MipsManagedRegister scratch = mscratch.AsMips(); CHECK(scratch.IsCoreRegister()) << scratch; LoadImmediate(scratch.AsCoreRegister(), imm); StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value()); } void MipsAssembler::StoreImmediateToThread32(ThreadOffset<4> dest, uint32_t imm, ManagedRegister mscratch) { MipsManagedRegister scratch = mscratch.AsMips(); CHECK(scratch.IsCoreRegister()) << scratch; LoadImmediate(scratch.AsCoreRegister(), imm); StoreToOffset(kStoreWord, scratch.AsCoreRegister(), S1, dest.Int32Value()); } void MipsAssembler::StoreStackOffsetToThread32(ThreadOffset<4> thr_offs, FrameOffset fr_offs, ManagedRegister mscratch) { MipsManagedRegister scratch = mscratch.AsMips(); CHECK(scratch.IsCoreRegister()) << scratch; AddConstant(scratch.AsCoreRegister(), SP, fr_offs.Int32Value()); StoreToOffset(kStoreWord, scratch.AsCoreRegister(), S1, thr_offs.Int32Value()); } void MipsAssembler::StoreStackPointerToThread32(ThreadOffset<4> thr_offs) { StoreToOffset(kStoreWord, SP, S1, thr_offs.Int32Value()); } void MipsAssembler::StoreSpanning(FrameOffset dest, ManagedRegister msrc, FrameOffset in_off, ManagedRegister mscratch) { MipsManagedRegister src = msrc.AsMips(); MipsManagedRegister scratch = mscratch.AsMips(); StoreToOffset(kStoreWord, src.AsCoreRegister(), SP, dest.Int32Value()); LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, in_off.Int32Value()); StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value() + 4); } void MipsAssembler::Load(ManagedRegister mdest, FrameOffset src, size_t size) { return EmitLoad(mdest, SP, src.Int32Value(), size); } void MipsAssembler::LoadFromThread32(ManagedRegister mdest, ThreadOffset<4> src, size_t size) { return EmitLoad(mdest, S1, src.Int32Value(), size); } void MipsAssembler::LoadRef(ManagedRegister mdest, FrameOffset src) { MipsManagedRegister dest = mdest.AsMips(); CHECK(dest.IsCoreRegister()); LoadFromOffset(kLoadWord, dest.AsCoreRegister(), SP, src.Int32Value()); } void MipsAssembler::LoadRef(ManagedRegister mdest, ManagedRegister base, MemberOffset offs, bool poison_reference) { MipsManagedRegister dest = mdest.AsMips(); CHECK(dest.IsCoreRegister() && dest.IsCoreRegister()); LoadFromOffset(kLoadWord, dest.AsCoreRegister(), base.AsMips().AsCoreRegister(), offs.Int32Value()); if (kPoisonHeapReferences && poison_reference) { Subu(dest.AsCoreRegister(), ZERO, dest.AsCoreRegister()); } } void MipsAssembler::LoadRawPtr(ManagedRegister mdest, ManagedRegister base, Offset offs) { MipsManagedRegister dest = mdest.AsMips(); CHECK(dest.IsCoreRegister() && dest.IsCoreRegister()) << dest; LoadFromOffset(kLoadWord, dest.AsCoreRegister(), base.AsMips().AsCoreRegister(), offs.Int32Value()); } void MipsAssembler::LoadRawPtrFromThread32(ManagedRegister mdest, ThreadOffset<4> offs) { MipsManagedRegister dest = mdest.AsMips(); CHECK(dest.IsCoreRegister()); LoadFromOffset(kLoadWord, dest.AsCoreRegister(), S1, offs.Int32Value()); } void MipsAssembler::SignExtend(ManagedRegister /*mreg*/, size_t /*size*/) { UNIMPLEMENTED(FATAL) << "no sign extension necessary for mips"; } void MipsAssembler::ZeroExtend(ManagedRegister /*mreg*/, size_t /*size*/) { UNIMPLEMENTED(FATAL) << "no zero extension necessary for mips"; } void MipsAssembler::Move(ManagedRegister mdest, ManagedRegister msrc, size_t /*size*/) { MipsManagedRegister dest = mdest.AsMips(); MipsManagedRegister src = msrc.AsMips(); if (!dest.Equals(src)) { if (dest.IsCoreRegister()) { CHECK(src.IsCoreRegister()) << src; Move(dest.AsCoreRegister(), src.AsCoreRegister()); } else if (dest.IsFRegister()) { CHECK(src.IsFRegister()) << src; MovS(dest.AsFRegister(), src.AsFRegister()); } else if (dest.IsDRegister()) { CHECK(src.IsDRegister()) << src; MovD(dest.AsDRegister(), src.AsDRegister()); } else { CHECK(dest.IsRegisterPair()) << dest; CHECK(src.IsRegisterPair()) << src; // Ensure that the first move doesn't clobber the input of the second if (src.AsRegisterPairHigh() != dest.AsRegisterPairLow()) { Move(dest.AsRegisterPairLow(), src.AsRegisterPairLow()); Move(dest.AsRegisterPairHigh(), src.AsRegisterPairHigh()); } else { Move(dest.AsRegisterPairHigh(), src.AsRegisterPairHigh()); Move(dest.AsRegisterPairLow(), src.AsRegisterPairLow()); } } } } void MipsAssembler::CopyRef(FrameOffset dest, FrameOffset src, ManagedRegister mscratch) { MipsManagedRegister scratch = mscratch.AsMips(); CHECK(scratch.IsCoreRegister()) << scratch; LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, src.Int32Value()); StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value()); } void MipsAssembler::CopyRawPtrFromThread32(FrameOffset fr_offs, ThreadOffset<4> thr_offs, ManagedRegister mscratch) { MipsManagedRegister scratch = mscratch.AsMips(); CHECK(scratch.IsCoreRegister()) << scratch; LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), S1, thr_offs.Int32Value()); StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, fr_offs.Int32Value()); } void MipsAssembler::CopyRawPtrToThread32(ThreadOffset<4> thr_offs, FrameOffset fr_offs, ManagedRegister mscratch) { MipsManagedRegister scratch = mscratch.AsMips(); CHECK(scratch.IsCoreRegister()) << scratch; LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, fr_offs.Int32Value()); StoreToOffset(kStoreWord, scratch.AsCoreRegister(), S1, thr_offs.Int32Value()); } void MipsAssembler::Copy(FrameOffset dest, FrameOffset src, ManagedRegister mscratch, size_t size) { MipsManagedRegister scratch = mscratch.AsMips(); CHECK(scratch.IsCoreRegister()) << scratch; CHECK(size == 4 || size == 8) << size; if (size == 4) { LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, src.Int32Value()); StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value()); } else if (size == 8) { LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, src.Int32Value()); StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value()); LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, src.Int32Value() + 4); StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value() + 4); } } void MipsAssembler::Copy(FrameOffset dest, ManagedRegister src_base, Offset src_offset, ManagedRegister mscratch, size_t size) { Register scratch = mscratch.AsMips().AsCoreRegister(); CHECK_EQ(size, 4u); LoadFromOffset(kLoadWord, scratch, src_base.AsMips().AsCoreRegister(), src_offset.Int32Value()); StoreToOffset(kStoreWord, scratch, SP, dest.Int32Value()); } void MipsAssembler::Copy(ManagedRegister dest_base, Offset dest_offset, FrameOffset src, ManagedRegister mscratch, size_t size) { Register scratch = mscratch.AsMips().AsCoreRegister(); CHECK_EQ(size, 4u); LoadFromOffset(kLoadWord, scratch, SP, src.Int32Value()); StoreToOffset(kStoreWord, scratch, dest_base.AsMips().AsCoreRegister(), dest_offset.Int32Value()); } void MipsAssembler::Copy(FrameOffset /*dest*/, FrameOffset /*src_base*/, Offset /*src_offset*/, ManagedRegister /*mscratch*/, size_t /*size*/) { UNIMPLEMENTED(FATAL) << "no mips implementation"; } void MipsAssembler::Copy(ManagedRegister dest, Offset dest_offset, ManagedRegister src, Offset src_offset, ManagedRegister mscratch, size_t size) { CHECK_EQ(size, 4u); Register scratch = mscratch.AsMips().AsCoreRegister(); LoadFromOffset(kLoadWord, scratch, src.AsMips().AsCoreRegister(), src_offset.Int32Value()); StoreToOffset(kStoreWord, scratch, dest.AsMips().AsCoreRegister(), dest_offset.Int32Value()); } void MipsAssembler::Copy(FrameOffset /*dest*/, Offset /*dest_offset*/, FrameOffset /*src*/, Offset /*src_offset*/, ManagedRegister /*mscratch*/, size_t /*size*/) { UNIMPLEMENTED(FATAL) << "no mips implementation"; } void MipsAssembler::MemoryBarrier(ManagedRegister) { UNIMPLEMENTED(FATAL) << "no mips implementation"; } void MipsAssembler::CreateHandleScopeEntry(ManagedRegister mout_reg, FrameOffset handle_scope_offset, ManagedRegister min_reg, bool null_allowed) { MipsManagedRegister out_reg = mout_reg.AsMips(); MipsManagedRegister in_reg = min_reg.AsMips(); CHECK(in_reg.IsNoRegister() || in_reg.IsCoreRegister()) << in_reg; CHECK(out_reg.IsCoreRegister()) << out_reg; if (null_allowed) { Label null_arg; // Null values get a handle scope entry value of 0. Otherwise, the handle scope entry is // the address in the handle scope holding the reference. // e.g. out_reg = (handle == 0) ? 0 : (SP+handle_offset) if (in_reg.IsNoRegister()) { LoadFromOffset(kLoadWord, out_reg.AsCoreRegister(), SP, handle_scope_offset.Int32Value()); in_reg = out_reg; } if (!out_reg.Equals(in_reg)) { LoadImmediate(out_reg.AsCoreRegister(), 0); } EmitBranch(in_reg.AsCoreRegister(), ZERO, &null_arg, true); AddConstant(out_reg.AsCoreRegister(), SP, handle_scope_offset.Int32Value()); Bind(&null_arg, false); } else { AddConstant(out_reg.AsCoreRegister(), SP, handle_scope_offset.Int32Value()); } } void MipsAssembler::CreateHandleScopeEntry(FrameOffset out_off, FrameOffset handle_scope_offset, ManagedRegister mscratch, bool null_allowed) { MipsManagedRegister scratch = mscratch.AsMips(); CHECK(scratch.IsCoreRegister()) << scratch; if (null_allowed) { Label null_arg; LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, handle_scope_offset.Int32Value()); // Null values get a handle scope entry value of 0. Otherwise, the handle scope entry is // the address in the handle scope holding the reference. // e.g. scratch = (scratch == 0) ? 0 : (SP+handle_scope_offset) EmitBranch(scratch.AsCoreRegister(), ZERO, &null_arg, true); AddConstant(scratch.AsCoreRegister(), SP, handle_scope_offset.Int32Value()); Bind(&null_arg, false); } else { AddConstant(scratch.AsCoreRegister(), SP, handle_scope_offset.Int32Value()); } StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, out_off.Int32Value()); } // Given a handle scope entry, load the associated reference. void MipsAssembler::LoadReferenceFromHandleScope(ManagedRegister mout_reg, ManagedRegister min_reg) { MipsManagedRegister out_reg = mout_reg.AsMips(); MipsManagedRegister in_reg = min_reg.AsMips(); CHECK(out_reg.IsCoreRegister()) << out_reg; CHECK(in_reg.IsCoreRegister()) << in_reg; Label null_arg; if (!out_reg.Equals(in_reg)) { LoadImmediate(out_reg.AsCoreRegister(), 0); } EmitBranch(in_reg.AsCoreRegister(), ZERO, &null_arg, true); LoadFromOffset(kLoadWord, out_reg.AsCoreRegister(), in_reg.AsCoreRegister(), 0); Bind(&null_arg, false); } void MipsAssembler::VerifyObject(ManagedRegister /*src*/, bool /*could_be_null*/) { // TODO: not validating references } void MipsAssembler::VerifyObject(FrameOffset /*src*/, bool /*could_be_null*/) { // TODO: not validating references } void MipsAssembler::Call(ManagedRegister mbase, Offset offset, ManagedRegister mscratch) { MipsManagedRegister base = mbase.AsMips(); MipsManagedRegister scratch = mscratch.AsMips(); CHECK(base.IsCoreRegister()) << base; CHECK(scratch.IsCoreRegister()) << scratch; LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), base.AsCoreRegister(), offset.Int32Value()); Jalr(scratch.AsCoreRegister()); // TODO: place reference map on call } void MipsAssembler::Call(FrameOffset base, Offset offset, ManagedRegister mscratch) { MipsManagedRegister scratch = mscratch.AsMips(); CHECK(scratch.IsCoreRegister()) << scratch; // Call *(*(SP + base) + offset) LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, base.Int32Value()); LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), scratch.AsCoreRegister(), offset.Int32Value()); Jalr(scratch.AsCoreRegister()); // TODO: place reference map on call } void MipsAssembler::CallFromThread32(ThreadOffset<4> /*offset*/, ManagedRegister /*mscratch*/) { UNIMPLEMENTED(FATAL) << "no mips implementation"; } void MipsAssembler::GetCurrentThread(ManagedRegister tr) { Move(tr.AsMips().AsCoreRegister(), S1); } void MipsAssembler::GetCurrentThread(FrameOffset offset, ManagedRegister /*mscratch*/) { StoreToOffset(kStoreWord, S1, SP, offset.Int32Value()); } void MipsAssembler::ExceptionPoll(ManagedRegister mscratch, size_t stack_adjust) { MipsManagedRegister scratch = mscratch.AsMips(); MipsExceptionSlowPath* slow = new MipsExceptionSlowPath(scratch, stack_adjust); buffer_.EnqueueSlowPath(slow); LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), S1, Thread::ExceptionOffset<4>().Int32Value()); EmitBranch(scratch.AsCoreRegister(), ZERO, slow->Entry(), false); } void MipsExceptionSlowPath::Emit(Assembler* sasm) { MipsAssembler* sp_asm = down_cast(sasm); #define __ sp_asm-> __ Bind(&entry_, false); if (stack_adjust_ != 0) { // Fix up the frame. __ DecreaseFrameSize(stack_adjust_); } // Pass exception object as argument // Don't care about preserving A0 as this call won't return __ Move(A0, scratch_.AsCoreRegister()); // Set up call to Thread::Current()->pDeliverException __ LoadFromOffset(kLoadWord, T9, S1, QUICK_ENTRYPOINT_OFFSET(4, pDeliverException).Int32Value()); __ Jr(T9); // Call never returns __ Break(); #undef __ } } // namespace mips } // namespace art