/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include "base/stringpiece.h" #include "base/unix_file/fd_file.h" #include "class_linker.h" #include "class_linker-inl.h" #include "dex_file-inl.h" #include "dex_instruction.h" #include "disassembler.h" #include "elf_builder.h" #include "field_helper.h" #include "gc_map.h" #include "gc/space/image_space.h" #include "gc/space/large_object_space.h" #include "gc/space/space-inl.h" #include "image.h" #include "indenter.h" #include "mapping_table.h" #include "mirror/art_field-inl.h" #include "mirror/art_method-inl.h" #include "mirror/array-inl.h" #include "mirror/class-inl.h" #include "mirror/object-inl.h" #include "mirror/object_array-inl.h" #include "noop_compiler_callbacks.h" #include "oat.h" #include "oat_file-inl.h" #include "os.h" #include "output_stream.h" #include "runtime.h" #include "safe_map.h" #include "scoped_thread_state_change.h" #include "ScopedLocalRef.h" #include "thread_list.h" #include "verifier/dex_gc_map.h" #include "verifier/method_verifier.h" #include "vmap_table.h" #include "well_known_classes.h" namespace art { static void usage() { fprintf(stderr, "Usage: oatdump [options] ...\n" " Example: oatdump --image=$ANDROID_PRODUCT_OUT/system/framework/boot.art\n" " Example: adb shell oatdump --image=/system/framework/boot.art\n" "\n"); fprintf(stderr, " --oat-file=: specifies an input oat filename.\n" " Example: --oat-file=/system/framework/boot.oat\n" "\n"); fprintf(stderr, " --image=: specifies an input image filename.\n" " Example: --image=/system/framework/boot.art\n" "\n"); fprintf(stderr, " --boot-image=: provide the image file for the boot class path.\n" " Example: --boot-image=/system/framework/boot.art\n" "\n"); fprintf(stderr, " --instruction-set=(arm|arm64|mips|x86|x86_64): for locating the image\n" " file based on the image location set.\n" " Example: --instruction-set=x86\n" " Default: %s\n" "\n", GetInstructionSetString(kRuntimeISA)); fprintf(stderr, " --output= may be used to send the output to a file.\n" " Example: --output=/tmp/oatdump.txt\n" "\n"); fprintf(stderr, " --dump:raw_mapping_table enables dumping of the mapping table.\n" " Example: --dump:raw_mapping_table\n" "\n"); fprintf(stderr, " --dump:raw_mapping_table enables dumping of the GC map.\n" " Example: --dump:raw_gc_map\n" "\n"); fprintf(stderr, " --no-dump:vmap may be used to disable vmap dumping.\n" " Example: --no-dump:vmap\n" "\n"); fprintf(stderr, " --no-disassemble may be used to disable disassembly.\n" " Example: --no-disassemble\n" "\n"); } const char* image_roots_descriptions_[] = { "kResolutionMethod", "kImtConflictMethod", "kDefaultImt", "kCalleeSaveMethod", "kRefsOnlySaveMethod", "kRefsAndArgsSaveMethod", "kDexCaches", "kClassRoots", }; class OatSymbolizer FINAL : public CodeOutput { public: explicit OatSymbolizer(const OatFile* oat_file, const std::string& output_name) : oat_file_(oat_file), builder_(nullptr), elf_output_(nullptr), output_name_(output_name.empty() ? "symbolized.oat" : output_name) { } bool Init() { Elf32_Word oat_data_size = oat_file_->GetOatHeader().GetExecutableOffset(); uint32_t diff = static_cast(oat_file_->End() - oat_file_->Begin()); uint32_t oat_exec_size = diff - oat_data_size; elf_output_ = OS::CreateEmptyFile(output_name_.c_str()); builder_.reset(new ElfBuilder( this, elf_output_, oat_file_->GetOatHeader().GetInstructionSet(), 0, oat_data_size, oat_data_size, oat_exec_size, true, false)); if (!builder_->Init()) { builder_.reset(nullptr); return false; } return true; } typedef void (OatSymbolizer::*Callback)(const DexFile::ClassDef&, uint32_t, const OatFile::OatMethod&, const DexFile&, uint32_t, const DexFile::CodeItem*, uint32_t); bool Symbolize() { if (builder_.get() == nullptr) { return false; } Walk(&art::OatSymbolizer::RegisterForDedup); NormalizeState(); Walk(&art::OatSymbolizer::AddSymbol); bool result = builder_->Write(); elf_output_->Flush(); elf_output_->Close(); return result; } void Walk(Callback callback) { std::vector oat_dex_files = oat_file_->GetOatDexFiles(); for (size_t i = 0; i < oat_dex_files.size(); i++) { const OatFile::OatDexFile* oat_dex_file = oat_dex_files[i]; CHECK(oat_dex_file != NULL); WalkOatDexFile(oat_dex_file, callback); } } void WalkOatDexFile(const OatFile::OatDexFile* oat_dex_file, Callback callback) { std::string error_msg; std::unique_ptr dex_file(oat_dex_file->OpenDexFile(&error_msg)); if (dex_file.get() == nullptr) { return; } for (size_t class_def_index = 0; class_def_index < dex_file->NumClassDefs(); class_def_index++) { const DexFile::ClassDef& class_def = dex_file->GetClassDef(class_def_index); const OatFile::OatClass oat_class = oat_dex_file->GetOatClass(class_def_index); OatClassType type = oat_class.GetType(); switch (type) { case kOatClassAllCompiled: case kOatClassSomeCompiled: WalkOatClass(oat_class, *dex_file.get(), class_def, callback); break; case kOatClassNoneCompiled: case kOatClassMax: // Ignore. break; } } } void WalkOatClass(const OatFile::OatClass& oat_class, const DexFile& dex_file, const DexFile::ClassDef& class_def, Callback callback) { const byte* class_data = dex_file.GetClassData(class_def); if (class_data == nullptr) { // empty class such as a marker interface? return; } // Note: even if this is an interface or a native class, we still have to walk it, as there // might be a static initializer. ClassDataItemIterator it(dex_file, class_data); SkipAllFields(&it); uint32_t class_method_idx = 0; while (it.HasNextDirectMethod()) { const OatFile::OatMethod oat_method = oat_class.GetOatMethod(class_method_idx); WalkOatMethod(class_def, class_method_idx, oat_method, dex_file, it.GetMemberIndex(), it.GetMethodCodeItem(), it.GetMethodAccessFlags(), callback); class_method_idx++; it.Next(); } while (it.HasNextVirtualMethod()) { const OatFile::OatMethod oat_method = oat_class.GetOatMethod(class_method_idx); WalkOatMethod(class_def, class_method_idx, oat_method, dex_file, it.GetMemberIndex(), it.GetMethodCodeItem(), it.GetMethodAccessFlags(), callback); class_method_idx++; it.Next(); } DCHECK(!it.HasNext()); } void WalkOatMethod(const DexFile::ClassDef& class_def, uint32_t class_method_index, const OatFile::OatMethod& oat_method, const DexFile& dex_file, uint32_t dex_method_idx, const DexFile::CodeItem* code_item, uint32_t method_access_flags, Callback callback) { if ((method_access_flags & kAccAbstract) != 0) { // Abstract method, no code. return; } if (oat_method.GetCodeOffset() == 0) { // No code. return; } (this->*callback)(class_def, class_method_index, oat_method, dex_file, dex_method_idx, code_item, method_access_flags); } void RegisterForDedup(const DexFile::ClassDef& class_def, uint32_t class_method_index, const OatFile::OatMethod& oat_method, const DexFile& dex_file, uint32_t dex_method_idx, const DexFile::CodeItem* code_item, uint32_t method_access_flags) { state_[oat_method.GetCodeOffset()]++; } void NormalizeState() { for (auto& x : state_) { if (x.second == 1) { state_[x.first] = 0; } } } enum class DedupState { // private kNotDeduplicated, kDeduplicatedFirst, kDeduplicatedOther }; DedupState IsDuplicated(uint32_t offset) { if (state_[offset] == 0) { return DedupState::kNotDeduplicated; } if (state_[offset] == 1) { return DedupState::kDeduplicatedOther; } state_[offset] = 1; return DedupState::kDeduplicatedFirst; } void AddSymbol(const DexFile::ClassDef& class_def, uint32_t class_method_index, const OatFile::OatMethod& oat_method, const DexFile& dex_file, uint32_t dex_method_idx, const DexFile::CodeItem* code_item, uint32_t method_access_flags) { DedupState dedup = IsDuplicated(oat_method.GetCodeOffset()); if (dedup != DedupState::kDeduplicatedOther) { std::string pretty_name = PrettyMethod(dex_method_idx, dex_file, true); if (dedup == DedupState::kDeduplicatedFirst) { pretty_name = "[Dedup]" + pretty_name; } ElfSymtabBuilder* symtab = builder_->GetSymtabBuilder(); symtab->AddSymbol(pretty_name, &builder_->GetTextBuilder(), oat_method.GetCodeOffset() - oat_file_->GetOatHeader().GetExecutableOffset(), true, oat_method.GetQuickCodeSize(), STB_GLOBAL, STT_FUNC); } } // Set oat data offset. Required by ElfBuilder/CodeOutput. void SetCodeOffset(size_t offset) { // Nothing to do. } // Write oat code. Required by ElfBuilder/CodeOutput. bool Write(OutputStream* out) { return out->WriteFully(oat_file_->Begin(), oat_file_->End() - oat_file_->Begin()); } private: static void SkipAllFields(ClassDataItemIterator* it) { while (it->HasNextStaticField()) { it->Next(); } while (it->HasNextInstanceField()) { it->Next(); } } const OatFile* oat_file_; std::unique_ptr > builder_; File* elf_output_; std::unordered_map state_; const std::string output_name_; }; class OatDumperOptions { public: OatDumperOptions(bool dump_raw_mapping_table, bool dump_raw_gc_map, bool dump_vmap, bool disassemble_code, bool absolute_addresses, Handle* class_loader) : dump_raw_mapping_table_(dump_raw_mapping_table), dump_raw_gc_map_(dump_raw_gc_map), dump_vmap_(dump_vmap), disassemble_code_(disassemble_code), absolute_addresses_(absolute_addresses), class_loader_(class_loader) {} const bool dump_raw_mapping_table_; const bool dump_raw_gc_map_; const bool dump_vmap_; const bool disassemble_code_; const bool absolute_addresses_; Handle* class_loader_; }; class OatDumper { public: explicit OatDumper(const OatFile& oat_file, OatDumperOptions* options) : oat_file_(oat_file), oat_dex_files_(oat_file.GetOatDexFiles()), options_(options), disassembler_(Disassembler::Create(oat_file_.GetOatHeader().GetInstructionSet(), new DisassemblerOptions(options_->absolute_addresses_, oat_file.Begin()))) { CHECK(options_->class_loader_ != nullptr); AddAllOffsets(); } ~OatDumper() { delete options_; delete disassembler_; } bool Dump(std::ostream& os) { bool success = true; const OatHeader& oat_header = oat_file_.GetOatHeader(); os << "MAGIC:\n"; os << oat_header.GetMagic() << "\n\n"; os << "CHECKSUM:\n"; os << StringPrintf("0x%08x\n\n", oat_header.GetChecksum()); os << "INSTRUCTION SET:\n"; os << oat_header.GetInstructionSet() << "\n\n"; os << "INSTRUCTION SET FEATURES:\n"; os << oat_header.GetInstructionSetFeatures().GetFeatureString() << "\n\n"; os << "DEX FILE COUNT:\n"; os << oat_header.GetDexFileCount() << "\n\n"; #define DUMP_OAT_HEADER_OFFSET(label, offset) \ os << label " OFFSET:\n"; \ os << StringPrintf("0x%08x", oat_header.offset()); \ if (oat_header.offset() != 0 && options_->absolute_addresses_) { \ os << StringPrintf(" (%p)", oat_file_.Begin() + oat_header.offset()); \ } \ os << StringPrintf("\n\n"); DUMP_OAT_HEADER_OFFSET("EXECUTABLE", GetExecutableOffset); DUMP_OAT_HEADER_OFFSET("INTERPRETER TO INTERPRETER BRIDGE", GetInterpreterToInterpreterBridgeOffset); DUMP_OAT_HEADER_OFFSET("INTERPRETER TO COMPILED CODE BRIDGE", GetInterpreterToCompiledCodeBridgeOffset); DUMP_OAT_HEADER_OFFSET("JNI DLSYM LOOKUP", GetJniDlsymLookupOffset); DUMP_OAT_HEADER_OFFSET("PORTABLE IMT CONFLICT TRAMPOLINE", GetPortableImtConflictTrampolineOffset); DUMP_OAT_HEADER_OFFSET("PORTABLE RESOLUTION TRAMPOLINE", GetPortableResolutionTrampolineOffset); DUMP_OAT_HEADER_OFFSET("PORTABLE TO INTERPRETER BRIDGE", GetPortableToInterpreterBridgeOffset); DUMP_OAT_HEADER_OFFSET("QUICK GENERIC JNI TRAMPOLINE", GetQuickGenericJniTrampolineOffset); DUMP_OAT_HEADER_OFFSET("QUICK IMT CONFLICT TRAMPOLINE", GetQuickImtConflictTrampolineOffset); DUMP_OAT_HEADER_OFFSET("QUICK RESOLUTION TRAMPOLINE", GetQuickResolutionTrampolineOffset); DUMP_OAT_HEADER_OFFSET("QUICK TO INTERPRETER BRIDGE", GetQuickToInterpreterBridgeOffset); #undef DUMP_OAT_HEADER_OFFSET os << "IMAGE PATCH DELTA:\n"; os << StringPrintf("%d (0x%08x)\n\n", oat_header.GetImagePatchDelta(), oat_header.GetImagePatchDelta()); os << "IMAGE FILE LOCATION OAT CHECKSUM:\n"; os << StringPrintf("0x%08x\n\n", oat_header.GetImageFileLocationOatChecksum()); os << "IMAGE FILE LOCATION OAT BEGIN:\n"; os << StringPrintf("0x%08x\n\n", oat_header.GetImageFileLocationOatDataBegin()); // Print the key-value store. { os << "KEY VALUE STORE:\n"; size_t index = 0; const char* key; const char* value; while (oat_header.GetStoreKeyValuePairByIndex(index, &key, &value)) { os << key << " = " << value << "\n"; index++; } os << "\n"; } if (options_->absolute_addresses_) { os << "BEGIN:\n"; os << reinterpret_cast(oat_file_.Begin()) << "\n\n"; os << "END:\n"; os << reinterpret_cast(oat_file_.End()) << "\n\n"; } os << "SIZE:\n"; os << oat_file_.Size() << "\n\n"; os << std::flush; for (size_t i = 0; i < oat_dex_files_.size(); i++) { const OatFile::OatDexFile* oat_dex_file = oat_dex_files_[i]; CHECK(oat_dex_file != nullptr); if (!DumpOatDexFile(os, *oat_dex_file)) { success = false; } } os << std::flush; return success; } size_t ComputeSize(const void* oat_data) { if (reinterpret_cast(oat_data) < oat_file_.Begin() || reinterpret_cast(oat_data) > oat_file_.End()) { return 0; // Address not in oat file } uintptr_t begin_offset = reinterpret_cast(oat_data) - reinterpret_cast(oat_file_.Begin()); auto it = offsets_.upper_bound(begin_offset); CHECK(it != offsets_.end()); uintptr_t end_offset = *it; return end_offset - begin_offset; } InstructionSet GetInstructionSet() { return oat_file_.GetOatHeader().GetInstructionSet(); } const void* GetQuickOatCode(mirror::ArtMethod* m) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { for (size_t i = 0; i < oat_dex_files_.size(); i++) { const OatFile::OatDexFile* oat_dex_file = oat_dex_files_[i]; CHECK(oat_dex_file != nullptr); std::string error_msg; std::unique_ptr dex_file(oat_dex_file->OpenDexFile(&error_msg)); if (dex_file.get() == nullptr) { LOG(WARNING) << "Failed to open dex file '" << oat_dex_file->GetDexFileLocation() << "': " << error_msg; } else { const DexFile::ClassDef* class_def = dex_file->FindClassDef(m->GetDeclaringClassDescriptor()); if (class_def != nullptr) { uint16_t class_def_index = dex_file->GetIndexForClassDef(*class_def); const OatFile::OatClass oat_class = oat_dex_file->GetOatClass(class_def_index); size_t method_index = m->GetMethodIndex(); return oat_class.GetOatMethod(method_index).GetQuickCode(); } } } return nullptr; } private: void AddAllOffsets() { // We don't know the length of the code for each method, but we need to know where to stop // when disassembling. What we do know is that a region of code will be followed by some other // region, so if we keep a sorted sequence of the start of each region, we can infer the length // of a piece of code by using upper_bound to find the start of the next region. for (size_t i = 0; i < oat_dex_files_.size(); i++) { const OatFile::OatDexFile* oat_dex_file = oat_dex_files_[i]; CHECK(oat_dex_file != nullptr); std::string error_msg; std::unique_ptr dex_file(oat_dex_file->OpenDexFile(&error_msg)); if (dex_file.get() == nullptr) { LOG(WARNING) << "Failed to open dex file '" << oat_dex_file->GetDexFileLocation() << "': " << error_msg; continue; } offsets_.insert(reinterpret_cast(&dex_file->GetHeader())); for (size_t class_def_index = 0; class_def_index < dex_file->NumClassDefs(); class_def_index++) { const DexFile::ClassDef& class_def = dex_file->GetClassDef(class_def_index); const OatFile::OatClass oat_class = oat_dex_file->GetOatClass(class_def_index); const byte* class_data = dex_file->GetClassData(class_def); if (class_data != nullptr) { ClassDataItemIterator it(*dex_file, class_data); SkipAllFields(it); uint32_t class_method_index = 0; while (it.HasNextDirectMethod()) { AddOffsets(oat_class.GetOatMethod(class_method_index++)); it.Next(); } while (it.HasNextVirtualMethod()) { AddOffsets(oat_class.GetOatMethod(class_method_index++)); it.Next(); } } } } // If the last thing in the file is code for a method, there won't be an offset for the "next" // thing. Instead of having a special case in the upper_bound code, let's just add an entry // for the end of the file. offsets_.insert(oat_file_.Size()); } static uint32_t AlignCodeOffset(uint32_t maybe_thumb_offset) { return maybe_thumb_offset & ~0x1; // TODO: Make this Thumb2 specific. } void AddOffsets(const OatFile::OatMethod& oat_method) { uint32_t code_offset = oat_method.GetCodeOffset(); if (oat_file_.GetOatHeader().GetInstructionSet() == kThumb2) { code_offset &= ~0x1; } offsets_.insert(code_offset); offsets_.insert(oat_method.GetMappingTableOffset()); offsets_.insert(oat_method.GetVmapTableOffset()); offsets_.insert(oat_method.GetNativeGcMapOffset()); } bool DumpOatDexFile(std::ostream& os, const OatFile::OatDexFile& oat_dex_file) { bool success = true; os << "OatDexFile:\n"; os << StringPrintf("location: %s\n", oat_dex_file.GetDexFileLocation().c_str()); os << StringPrintf("checksum: 0x%08x\n", oat_dex_file.GetDexFileLocationChecksum()); // Create the verifier early. std::string error_msg; std::unique_ptr dex_file(oat_dex_file.OpenDexFile(&error_msg)); if (dex_file.get() == nullptr) { os << "NOT FOUND: " << error_msg << "\n\n"; os << std::flush; return false; } for (size_t class_def_index = 0; class_def_index < dex_file->NumClassDefs(); class_def_index++) { const DexFile::ClassDef& class_def = dex_file->GetClassDef(class_def_index); const char* descriptor = dex_file->GetClassDescriptor(class_def); uint32_t oat_class_offset = oat_dex_file.GetOatClassOffset(class_def_index); const OatFile::OatClass oat_class = oat_dex_file.GetOatClass(class_def_index); os << StringPrintf("%zd: %s (offset=0x%08x) (type_idx=%d)", class_def_index, descriptor, oat_class_offset, class_def.class_idx_) << " (" << oat_class.GetStatus() << ")" << " (" << oat_class.GetType() << ")\n"; // TODO: include bitmap here if type is kOatClassSomeCompiled? Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count); std::ostream indented_os(&indent_filter); if (!DumpOatClass(indented_os, oat_class, *(dex_file.get()), class_def)) { success = false; } } os << std::flush; return success; } static void SkipAllFields(ClassDataItemIterator& it) { while (it.HasNextStaticField()) { it.Next(); } while (it.HasNextInstanceField()) { it.Next(); } } bool DumpOatClass(std::ostream& os, const OatFile::OatClass& oat_class, const DexFile& dex_file, const DexFile::ClassDef& class_def) { bool success = true; const byte* class_data = dex_file.GetClassData(class_def); if (class_data == nullptr) { // empty class such as a marker interface? os << std::flush; return success; } ClassDataItemIterator it(dex_file, class_data); SkipAllFields(it); uint32_t class_method_index = 0; while (it.HasNextDirectMethod()) { if (!DumpOatMethod(os, class_def, class_method_index, oat_class, dex_file, it.GetMemberIndex(), it.GetMethodCodeItem(), it.GetRawMemberAccessFlags())) { success = false; } class_method_index++; it.Next(); } while (it.HasNextVirtualMethod()) { if (!DumpOatMethod(os, class_def, class_method_index, oat_class, dex_file, it.GetMemberIndex(), it.GetMethodCodeItem(), it.GetRawMemberAccessFlags())) { success = false; } class_method_index++; it.Next(); } DCHECK(!it.HasNext()); os << std::flush; return success; } static constexpr uint32_t kPrologueBytes = 16; // When this was picked, the largest arm method was 55,256 bytes and arm64 was 50,412 bytes. static constexpr uint32_t kMaxCodeSize = 100 * 1000; bool DumpOatMethod(std::ostream& os, const DexFile::ClassDef& class_def, uint32_t class_method_index, const OatFile::OatClass& oat_class, const DexFile& dex_file, uint32_t dex_method_idx, const DexFile::CodeItem* code_item, uint32_t method_access_flags) { bool success = true; os << StringPrintf("%d: %s (dex_method_idx=%d)\n", class_method_index, PrettyMethod(dex_method_idx, dex_file, true).c_str(), dex_method_idx); Indenter indent1_filter(os.rdbuf(), kIndentChar, kIndentBy1Count); std::unique_ptr indent1_os(new std::ostream(&indent1_filter)); Indenter indent2_filter(indent1_os->rdbuf(), kIndentChar, kIndentBy1Count); std::unique_ptr indent2_os(new std::ostream(&indent2_filter)); { *indent1_os << "DEX CODE:\n"; DumpDexCode(*indent2_os, dex_file, code_item); } std::unique_ptr verifier; if (Runtime::Current() != nullptr) { *indent1_os << "VERIFIER TYPE ANALYSIS:\n"; verifier.reset(DumpVerifier(*indent2_os, dex_method_idx, &dex_file, class_def, code_item, method_access_flags)); } uint32_t oat_method_offsets_offset = oat_class.GetOatMethodOffsetsOffset(class_method_index); const OatMethodOffsets* oat_method_offsets = oat_class.GetOatMethodOffsets(class_method_index); const OatFile::OatMethod oat_method = oat_class.GetOatMethod(class_method_index); { *indent1_os << "OatMethodOffsets "; if (options_->absolute_addresses_) { *indent1_os << StringPrintf("%p ", oat_method_offsets); } *indent1_os << StringPrintf("(offset=0x%08x)\n", oat_method_offsets_offset); if (oat_method_offsets_offset > oat_file_.Size()) { *indent1_os << StringPrintf( "WARNING: oat method offsets offset 0x%08x is past end of file 0x%08zx.\n", oat_method_offsets_offset, oat_file_.Size()); // If we can't read OatMethodOffsets, the rest of the data is dangerous to read. os << std::flush; return false; } uint32_t code_offset = oat_method.GetCodeOffset(); *indent2_os << StringPrintf("code_offset: 0x%08x ", code_offset); uint32_t aligned_code_begin = AlignCodeOffset(oat_method.GetCodeOffset()); if (aligned_code_begin > oat_file_.Size()) { *indent2_os << StringPrintf("WARNING: " "code offset 0x%08x is past end of file 0x%08zx.\n", aligned_code_begin, oat_file_.Size()); success = false; } *indent2_os << "\n"; *indent2_os << "gc_map: "; if (options_->absolute_addresses_) { *indent2_os << StringPrintf("%p ", oat_method.GetNativeGcMap()); } uint32_t gc_map_offset = oat_method.GetNativeGcMapOffset(); *indent2_os << StringPrintf("(offset=0x%08x)\n", gc_map_offset); if (gc_map_offset > oat_file_.Size()) { *indent2_os << StringPrintf("WARNING: " "gc map table offset 0x%08x is past end of file 0x%08zx.\n", gc_map_offset, oat_file_.Size()); success = false; } else if (options_->dump_raw_gc_map_) { Indenter indent3_filter(indent2_os->rdbuf(), kIndentChar, kIndentBy1Count); std::ostream indent3_os(&indent3_filter); DumpGcMap(indent3_os, oat_method, code_item); } } { *indent1_os << "OatQuickMethodHeader "; uint32_t method_header_offset = oat_method.GetOatQuickMethodHeaderOffset(); const OatQuickMethodHeader* method_header = oat_method.GetOatQuickMethodHeader(); if (options_->absolute_addresses_) { *indent1_os << StringPrintf("%p ", method_header); } *indent1_os << StringPrintf("(offset=0x%08x)\n", method_header_offset); if (method_header_offset > oat_file_.Size()) { *indent1_os << StringPrintf( "WARNING: oat quick method header offset 0x%08x is past end of file 0x%08zx.\n", method_header_offset, oat_file_.Size()); // If we can't read the OatQuickMethodHeader, the rest of the data is dangerous to read. os << std::flush; return false; } *indent2_os << "mapping_table: "; if (options_->absolute_addresses_) { *indent2_os << StringPrintf("%p ", oat_method.GetMappingTable()); } uint32_t mapping_table_offset = oat_method.GetMappingTableOffset(); *indent2_os << StringPrintf("(offset=0x%08x)\n", oat_method.GetMappingTableOffset()); if (mapping_table_offset > oat_file_.Size()) { *indent2_os << StringPrintf("WARNING: " "mapping table offset 0x%08x is past end of file 0x%08zx. " "mapping table offset was loaded from offset 0x%08x.\n", mapping_table_offset, oat_file_.Size(), oat_method.GetMappingTableOffsetOffset()); success = false; } else if (options_->dump_raw_mapping_table_) { Indenter indent3_filter(indent2_os->rdbuf(), kIndentChar, kIndentBy1Count); std::ostream indent3_os(&indent3_filter); DumpMappingTable(indent3_os, oat_method); } *indent2_os << "vmap_table: "; if (options_->absolute_addresses_) { *indent2_os << StringPrintf("%p ", oat_method.GetVmapTable()); } uint32_t vmap_table_offset = oat_method.GetVmapTableOffset(); *indent2_os << StringPrintf("(offset=0x%08x)\n", vmap_table_offset); if (vmap_table_offset > oat_file_.Size()) { *indent2_os << StringPrintf("WARNING: " "vmap table offset 0x%08x is past end of file 0x%08zx. " "vmap table offset was loaded from offset 0x%08x.\n", vmap_table_offset, oat_file_.Size(), oat_method.GetVmapTableOffsetOffset()); success = false; } else if (options_->dump_vmap_) { DumpVmap(*indent2_os, oat_method); } } { *indent1_os << "QuickMethodFrameInfo\n"; *indent2_os << StringPrintf("frame_size_in_bytes: %zd\n", oat_method.GetFrameSizeInBytes()); *indent2_os << StringPrintf("core_spill_mask: 0x%08x ", oat_method.GetCoreSpillMask()); DumpSpillMask(*indent2_os, oat_method.GetCoreSpillMask(), false); *indent2_os << "\n"; *indent2_os << StringPrintf("fp_spill_mask: 0x%08x ", oat_method.GetFpSpillMask()); DumpSpillMask(*indent2_os, oat_method.GetFpSpillMask(), true); *indent2_os << "\n"; } { // Based on spill masks from QuickMethodFrameInfo so placed // after it is dumped, but useful for understanding quick // code, so dumped here. DumpVregLocations(*indent2_os, oat_method, code_item); } { *indent1_os << "CODE: "; uint32_t code_size_offset = oat_method.GetQuickCodeSizeOffset(); if (code_size_offset > oat_file_.Size()) { *indent2_os << StringPrintf("WARNING: " "code size offset 0x%08x is past end of file 0x%08zx.", code_size_offset, oat_file_.Size()); success = false; } else { const void* code = oat_method.GetQuickCode(); uint32_t code_size = oat_method.GetQuickCodeSize(); if (code == nullptr) { code = oat_method.GetPortableCode(); code_size = oat_method.GetPortableCodeSize(); code_size_offset = 0; } uint32_t code_offset = oat_method.GetCodeOffset(); uint32_t aligned_code_begin = AlignCodeOffset(code_offset); uint64_t aligned_code_end = aligned_code_begin + code_size; if (options_->absolute_addresses_) { *indent1_os << StringPrintf("%p ", code); } *indent1_os << StringPrintf("(code_offset=0x%08x size_offset=0x%08x size=%u)%s\n", code_offset, code_size_offset, code_size, code != nullptr ? "..." : ""); if (aligned_code_begin > oat_file_.Size()) { *indent2_os << StringPrintf("WARNING: " "start of code at 0x%08x is past end of file 0x%08zx.", aligned_code_begin, oat_file_.Size()); success = false; } else if (aligned_code_end > oat_file_.Size()) { *indent2_os << StringPrintf("WARNING: " "end of code at 0x%08" PRIx64 " is past end of file 0x%08zx. " "code size is 0x%08x loaded from offset 0x%08x.\n", aligned_code_end, oat_file_.Size(), code_size, code_size_offset); success = false; if (options_->disassemble_code_) { if (code_size_offset + kPrologueBytes <= oat_file_.Size()) { DumpCode(*indent2_os, verifier.get(), oat_method, code_item, true, kPrologueBytes); } } } else if (code_size > kMaxCodeSize) { *indent2_os << StringPrintf("WARNING: " "code size %d is bigger than max expected threshold of %d. " "code size is 0x%08x loaded from offset 0x%08x.\n", code_size, kMaxCodeSize, code_size, code_size_offset); success = false; if (options_->disassemble_code_) { if (code_size_offset + kPrologueBytes <= oat_file_.Size()) { DumpCode(*indent2_os, verifier.get(), oat_method, code_item, true, kPrologueBytes); } } } else if (options_->disassemble_code_) { DumpCode(*indent2_os, verifier.get(), oat_method, code_item, !success, 0); } } } os << std::flush; return success; } void DumpSpillMask(std::ostream& os, uint32_t spill_mask, bool is_float) { if (spill_mask == 0) { return; } os << "("; for (size_t i = 0; i < 32; i++) { if ((spill_mask & (1 << i)) != 0) { if (is_float) { os << "fr" << i; } else { os << "r" << i; } spill_mask ^= 1 << i; // clear bit if (spill_mask != 0) { os << ", "; } else { break; } } } os << ")"; } void DumpVmap(std::ostream& os, const OatFile::OatMethod& oat_method) { // If the native GC map is null, then this method has been compiled with the // optimizing compiler. The optimizing compiler currently outputs its stack map // in the vmap table, and the code below does not work with such a stack map. if (oat_method.GetNativeGcMap() == nullptr) { return; } const uint8_t* raw_table = oat_method.GetVmapTable(); if (raw_table != nullptr) { const VmapTable vmap_table(raw_table); bool first = true; bool processing_fp = false; uint32_t spill_mask = oat_method.GetCoreSpillMask(); for (size_t i = 0; i < vmap_table.Size(); i++) { uint16_t dex_reg = vmap_table[i]; uint32_t cpu_reg = vmap_table.ComputeRegister(spill_mask, i, processing_fp ? kFloatVReg : kIntVReg); os << (first ? "v" : ", v") << dex_reg; if (!processing_fp) { os << "/r" << cpu_reg; } else { os << "/fr" << cpu_reg; } first = false; if (!processing_fp && dex_reg == 0xFFFF) { processing_fp = true; spill_mask = oat_method.GetFpSpillMask(); } } os << "\n"; } } void DumpVregLocations(std::ostream& os, const OatFile::OatMethod& oat_method, const DexFile::CodeItem* code_item) { if (code_item != nullptr) { size_t num_locals_ins = code_item->registers_size_; size_t num_ins = code_item->ins_size_; size_t num_locals = num_locals_ins - num_ins; size_t num_outs = code_item->outs_size_; os << "vr_stack_locations:"; for (size_t reg = 0; reg <= num_locals_ins; reg++) { // For readability, delimit the different kinds of VRs. if (reg == num_locals_ins) { os << "\n\tmethod*:"; } else if (reg == num_locals && num_ins > 0) { os << "\n\tins:"; } else if (reg == 0 && num_locals > 0) { os << "\n\tlocals:"; } uint32_t offset = StackVisitor::GetVRegOffset(code_item, oat_method.GetCoreSpillMask(), oat_method.GetFpSpillMask(), oat_method.GetFrameSizeInBytes(), reg, GetInstructionSet()); os << " v" << reg << "[sp + #" << offset << "]"; } for (size_t out_reg = 0; out_reg < num_outs; out_reg++) { if (out_reg == 0) { os << "\n\touts:"; } uint32_t offset = StackVisitor::GetOutVROffset(out_reg, GetInstructionSet()); os << " v" << out_reg << "[sp + #" << offset << "]"; } os << "\n"; } } void DescribeVReg(std::ostream& os, const OatFile::OatMethod& oat_method, const DexFile::CodeItem* code_item, size_t reg, VRegKind kind) { const uint8_t* raw_table = oat_method.GetVmapTable(); if (raw_table != nullptr) { const VmapTable vmap_table(raw_table); uint32_t vmap_offset; if (vmap_table.IsInContext(reg, kind, &vmap_offset)) { bool is_float = (kind == kFloatVReg) || (kind == kDoubleLoVReg) || (kind == kDoubleHiVReg); uint32_t spill_mask = is_float ? oat_method.GetFpSpillMask() : oat_method.GetCoreSpillMask(); os << (is_float ? "fr" : "r") << vmap_table.ComputeRegister(spill_mask, vmap_offset, kind); } else { uint32_t offset = StackVisitor::GetVRegOffset(code_item, oat_method.GetCoreSpillMask(), oat_method.GetFpSpillMask(), oat_method.GetFrameSizeInBytes(), reg, GetInstructionSet()); os << "[sp + #" << offset << "]"; } } } void DumpGcMapRegisters(std::ostream& os, const OatFile::OatMethod& oat_method, const DexFile::CodeItem* code_item, size_t num_regs, const uint8_t* reg_bitmap) { bool first = true; for (size_t reg = 0; reg < num_regs; reg++) { if (((reg_bitmap[reg / 8] >> (reg % 8)) & 0x01) != 0) { if (first) { os << " v" << reg << " ("; DescribeVReg(os, oat_method, code_item, reg, kReferenceVReg); os << ")"; first = false; } else { os << ", v" << reg << " ("; DescribeVReg(os, oat_method, code_item, reg, kReferenceVReg); os << ")"; } } } if (first) { os << "No registers in GC map\n"; } else { os << "\n"; } } void DumpGcMap(std::ostream& os, const OatFile::OatMethod& oat_method, const DexFile::CodeItem* code_item) { const uint8_t* gc_map_raw = oat_method.GetNativeGcMap(); if (gc_map_raw == nullptr) { return; // No GC map. } const void* quick_code = oat_method.GetQuickCode(); if (quick_code != nullptr) { NativePcOffsetToReferenceMap map(gc_map_raw); for (size_t entry = 0; entry < map.NumEntries(); entry++) { const uint8_t* native_pc = reinterpret_cast(quick_code) + map.GetNativePcOffset(entry); os << StringPrintf("%p", native_pc); DumpGcMapRegisters(os, oat_method, code_item, map.RegWidth() * 8, map.GetBitMap(entry)); } } else { const void* portable_code = oat_method.GetPortableCode(); CHECK(portable_code != nullptr); verifier::DexPcToReferenceMap map(gc_map_raw); for (size_t entry = 0; entry < map.NumEntries(); entry++) { uint32_t dex_pc = map.GetDexPc(entry); os << StringPrintf("0x%08x", dex_pc); DumpGcMapRegisters(os, oat_method, code_item, map.RegWidth() * 8, map.GetBitMap(entry)); } } } void DumpMappingTable(std::ostream& os, const OatFile::OatMethod& oat_method) { const void* quick_code = oat_method.GetQuickCode(); if (quick_code == nullptr) { return; } MappingTable table(oat_method.GetMappingTable()); if (table.TotalSize() != 0) { Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count); std::ostream indent_os(&indent_filter); if (table.PcToDexSize() != 0) { typedef MappingTable::PcToDexIterator It; os << "suspend point mappings {\n"; for (It cur = table.PcToDexBegin(), end = table.PcToDexEnd(); cur != end; ++cur) { indent_os << StringPrintf("0x%04x -> 0x%04x\n", cur.NativePcOffset(), cur.DexPc()); } os << "}\n"; } if (table.DexToPcSize() != 0) { typedef MappingTable::DexToPcIterator It; os << "catch entry mappings {\n"; for (It cur = table.DexToPcBegin(), end = table.DexToPcEnd(); cur != end; ++cur) { indent_os << StringPrintf("0x%04x -> 0x%04x\n", cur.NativePcOffset(), cur.DexPc()); } os << "}\n"; } } } uint32_t DumpMappingAtOffset(std::ostream& os, const OatFile::OatMethod& oat_method, size_t offset, bool suspend_point_mapping) { MappingTable table(oat_method.GetMappingTable()); if (suspend_point_mapping && table.PcToDexSize() > 0) { typedef MappingTable::PcToDexIterator It; for (It cur = table.PcToDexBegin(), end = table.PcToDexEnd(); cur != end; ++cur) { if (offset == cur.NativePcOffset()) { os << StringPrintf("suspend point dex PC: 0x%04x\n", cur.DexPc()); return cur.DexPc(); } } } else if (!suspend_point_mapping && table.DexToPcSize() > 0) { typedef MappingTable::DexToPcIterator It; for (It cur = table.DexToPcBegin(), end = table.DexToPcEnd(); cur != end; ++cur) { if (offset == cur.NativePcOffset()) { os << StringPrintf("catch entry dex PC: 0x%04x\n", cur.DexPc()); return cur.DexPc(); } } } return DexFile::kDexNoIndex; } void DumpGcMapAtNativePcOffset(std::ostream& os, const OatFile::OatMethod& oat_method, const DexFile::CodeItem* code_item, size_t native_pc_offset) { const uint8_t* gc_map_raw = oat_method.GetNativeGcMap(); if (gc_map_raw != nullptr) { NativePcOffsetToReferenceMap map(gc_map_raw); if (map.HasEntry(native_pc_offset)) { size_t num_regs = map.RegWidth() * 8; const uint8_t* reg_bitmap = map.FindBitMap(native_pc_offset); bool first = true; for (size_t reg = 0; reg < num_regs; reg++) { if (((reg_bitmap[reg / 8] >> (reg % 8)) & 0x01) != 0) { if (first) { os << "GC map objects: v" << reg << " ("; DescribeVReg(os, oat_method, code_item, reg, kReferenceVReg); os << ")"; first = false; } else { os << ", v" << reg << " ("; DescribeVReg(os, oat_method, code_item, reg, kReferenceVReg); os << ")"; } } } if (!first) { os << "\n"; } } } } void DumpVRegsAtDexPc(std::ostream& os, verifier::MethodVerifier* verifier, const OatFile::OatMethod& oat_method, const DexFile::CodeItem* code_item, uint32_t dex_pc) { DCHECK(verifier != nullptr); std::vector kinds = verifier->DescribeVRegs(dex_pc); bool first = true; for (size_t reg = 0; reg < code_item->registers_size_; reg++) { VRegKind kind = static_cast(kinds.at(reg * 2)); if (kind != kUndefined) { if (first) { os << "VRegs: v"; first = false; } else { os << ", v"; } os << reg << " ("; switch (kind) { case kImpreciseConstant: os << "Imprecise Constant: " << kinds.at((reg * 2) + 1) << ", "; DescribeVReg(os, oat_method, code_item, reg, kind); break; case kConstant: os << "Constant: " << kinds.at((reg * 2) + 1); break; default: DescribeVReg(os, oat_method, code_item, reg, kind); break; } os << ")"; } } if (!first) { os << "\n"; } } void DumpDexCode(std::ostream& os, const DexFile& dex_file, const DexFile::CodeItem* code_item) { if (code_item != nullptr) { size_t i = 0; while (i < code_item->insns_size_in_code_units_) { const Instruction* instruction = Instruction::At(&code_item->insns_[i]); os << StringPrintf("0x%04zx: %s\n", i, instruction->DumpString(&dex_file).c_str()); i += instruction->SizeInCodeUnits(); } } } verifier::MethodVerifier* DumpVerifier(std::ostream& os, uint32_t dex_method_idx, const DexFile* dex_file, const DexFile::ClassDef& class_def, const DexFile::CodeItem* code_item, uint32_t method_access_flags) { if ((method_access_flags & kAccNative) == 0) { ScopedObjectAccess soa(Thread::Current()); StackHandleScope<1> hs(soa.Self()); Handle dex_cache( hs.NewHandle(Runtime::Current()->GetClassLinker()->FindDexCache(*dex_file))); DCHECK(options_->class_loader_ != nullptr); return verifier::MethodVerifier::VerifyMethodAndDump(soa.Self(), os, dex_method_idx, dex_file, dex_cache, *options_->class_loader_, &class_def, code_item, NullHandle(), method_access_flags); } return nullptr; } void DumpCode(std::ostream& os, verifier::MethodVerifier* verifier, const OatFile::OatMethod& oat_method, const DexFile::CodeItem* code_item, bool bad_input, size_t code_size) { const void* portable_code = oat_method.GetPortableCode(); const void* quick_code = oat_method.GetQuickCode(); if (code_size == 0) { code_size = oat_method.GetQuickCodeSize(); } if ((code_size == 0) || ((portable_code == nullptr) && (quick_code == nullptr))) { os << "NO CODE!\n"; return; } else if (quick_code != nullptr) { const uint8_t* quick_native_pc = reinterpret_cast(quick_code); size_t offset = 0; while (offset < code_size) { if (!bad_input) { DumpMappingAtOffset(os, oat_method, offset, false); } offset += disassembler_->Dump(os, quick_native_pc + offset); if (!bad_input) { uint32_t dex_pc = DumpMappingAtOffset(os, oat_method, offset, true); if (dex_pc != DexFile::kDexNoIndex) { DumpGcMapAtNativePcOffset(os, oat_method, code_item, offset); if (verifier != nullptr) { DumpVRegsAtDexPc(os, verifier, oat_method, code_item, dex_pc); } } } } } else { CHECK(portable_code != nullptr); CHECK_EQ(code_size, 0U); // TODO: disassembly of portable is currently not supported. } } const OatFile& oat_file_; const std::vector oat_dex_files_; const OatDumperOptions* options_; std::set offsets_; Disassembler* disassembler_; }; class ImageDumper { public: explicit ImageDumper(std::ostream* os, gc::space::ImageSpace& image_space, const ImageHeader& image_header, OatDumperOptions* oat_dumper_options) : os_(os), image_space_(image_space), image_header_(image_header), oat_dumper_options_(oat_dumper_options) {} bool Dump() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { std::ostream& os = *os_; os << "MAGIC: " << image_header_.GetMagic() << "\n\n"; os << "IMAGE BEGIN: " << reinterpret_cast(image_header_.GetImageBegin()) << "\n\n"; os << "IMAGE BITMAP OFFSET: " << reinterpret_cast(image_header_.GetImageBitmapOffset()) << " SIZE: " << reinterpret_cast(image_header_.GetImageBitmapSize()) << "\n\n"; os << "OAT CHECKSUM: " << StringPrintf("0x%08x\n\n", image_header_.GetOatChecksum()); os << "OAT FILE BEGIN:" << reinterpret_cast(image_header_.GetOatFileBegin()) << "\n\n"; os << "OAT DATA BEGIN:" << reinterpret_cast(image_header_.GetOatDataBegin()) << "\n\n"; os << "OAT DATA END:" << reinterpret_cast(image_header_.GetOatDataEnd()) << "\n\n"; os << "OAT FILE END:" << reinterpret_cast(image_header_.GetOatFileEnd()) << "\n\n"; os << "PATCH DELTA:" << image_header_.GetPatchDelta() << "\n\n"; { os << "ROOTS: " << reinterpret_cast(image_header_.GetImageRoots()) << "\n"; Indenter indent1_filter(os.rdbuf(), kIndentChar, kIndentBy1Count); std::ostream indent1_os(&indent1_filter); CHECK_EQ(arraysize(image_roots_descriptions_), size_t(ImageHeader::kImageRootsMax)); for (int i = 0; i < ImageHeader::kImageRootsMax; i++) { ImageHeader::ImageRoot image_root = static_cast(i); const char* image_root_description = image_roots_descriptions_[i]; mirror::Object* image_root_object = image_header_.GetImageRoot(image_root); indent1_os << StringPrintf("%s: %p\n", image_root_description, image_root_object); if (image_root_object->IsObjectArray()) { Indenter indent2_filter(indent1_os.rdbuf(), kIndentChar, kIndentBy1Count); std::ostream indent2_os(&indent2_filter); mirror::ObjectArray* image_root_object_array = image_root_object->AsObjectArray(); for (int i = 0; i < image_root_object_array->GetLength(); i++) { mirror::Object* value = image_root_object_array->Get(i); size_t run = 0; for (int32_t j = i + 1; j < image_root_object_array->GetLength(); j++) { if (value == image_root_object_array->Get(j)) { run++; } else { break; } } if (run == 0) { indent2_os << StringPrintf("%d: ", i); } else { indent2_os << StringPrintf("%d to %zd: ", i, i + run); i = i + run; } if (value != nullptr) { PrettyObjectValue(indent2_os, value->GetClass(), value); } else { indent2_os << i << ": null\n"; } } } } } os << "\n"; ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); std::string image_filename = image_space_.GetImageFilename(); std::string oat_location = ImageHeader::GetOatLocationFromImageLocation(image_filename); os << "OAT LOCATION: " << oat_location; os << "\n"; std::string error_msg; const OatFile* oat_file = class_linker->FindOpenedOatFileFromOatLocation(oat_location); if (oat_file == nullptr) { oat_file = OatFile::Open(oat_location, oat_location, nullptr, false, &error_msg); if (oat_file == nullptr) { os << "NOT FOUND: " << error_msg << "\n"; return false; } } os << "\n"; stats_.oat_file_bytes = oat_file->Size(); oat_dumper_.reset(new OatDumper(*oat_file, oat_dumper_options_.release())); for (const OatFile::OatDexFile* oat_dex_file : oat_file->GetOatDexFiles()) { CHECK(oat_dex_file != nullptr); stats_.oat_dex_file_sizes.push_back(std::make_pair(oat_dex_file->GetDexFileLocation(), oat_dex_file->FileSize())); } os << "OBJECTS:\n" << std::flush; // Loop through all the image spaces and dump their objects. gc::Heap* heap = Runtime::Current()->GetHeap(); const std::vector& spaces = heap->GetContinuousSpaces(); Thread* self = Thread::Current(); { { WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); heap->FlushAllocStack(); } // Since FlushAllocStack() above resets the (active) allocation // stack. Need to revoke the thread-local allocation stacks that // point into it. { self->TransitionFromRunnableToSuspended(kNative); ThreadList* thread_list = Runtime::Current()->GetThreadList(); thread_list->SuspendAll(); heap->RevokeAllThreadLocalAllocationStacks(self); thread_list->ResumeAll(); self->TransitionFromSuspendedToRunnable(); } } { std::ostream* saved_os = os_; Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count); std::ostream indent_os(&indent_filter); os_ = &indent_os; ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); for (const auto& space : spaces) { if (space->IsImageSpace()) { gc::space::ImageSpace* image_space = space->AsImageSpace(); image_space->GetLiveBitmap()->Walk(ImageDumper::Callback, this); indent_os << "\n"; } } // Dump the large objects separately. heap->GetLargeObjectsSpace()->GetLiveBitmap()->Walk(ImageDumper::Callback, this); indent_os << "\n"; os_ = saved_os; } os << "STATS:\n" << std::flush; std::unique_ptr file(OS::OpenFileForReading(image_filename.c_str())); if (file.get() == nullptr) { LOG(WARNING) << "Failed to find image in " << image_filename; } if (file.get() != nullptr) { stats_.file_bytes = file->GetLength(); } size_t header_bytes = sizeof(ImageHeader); stats_.header_bytes = header_bytes; size_t alignment_bytes = RoundUp(header_bytes, kObjectAlignment) - header_bytes; stats_.alignment_bytes += alignment_bytes; stats_.alignment_bytes += image_header_.GetImageBitmapOffset() - image_header_.GetImageSize(); stats_.bitmap_bytes += image_header_.GetImageBitmapSize(); stats_.Dump(os); os << "\n"; os << std::flush; return oat_dumper_->Dump(os); } private: static void PrettyObjectValue(std::ostream& os, mirror::Class* type, mirror::Object* value) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { CHECK(type != nullptr); if (value == nullptr) { os << StringPrintf("null %s\n", PrettyDescriptor(type).c_str()); } else if (type->IsStringClass()) { mirror::String* string = value->AsString(); os << StringPrintf("%p String: %s\n", string, PrintableString(string->ToModifiedUtf8().c_str()).c_str()); } else if (type->IsClassClass()) { mirror::Class* klass = value->AsClass(); os << StringPrintf("%p Class: %s\n", klass, PrettyDescriptor(klass).c_str()); } else if (type->IsArtFieldClass()) { mirror::ArtField* field = value->AsArtField(); os << StringPrintf("%p Field: %s\n", field, PrettyField(field).c_str()); } else if (type->IsArtMethodClass()) { mirror::ArtMethod* method = value->AsArtMethod(); os << StringPrintf("%p Method: %s\n", method, PrettyMethod(method).c_str()); } else { os << StringPrintf("%p %s\n", value, PrettyDescriptor(type).c_str()); } } static void PrintField(std::ostream& os, mirror::ArtField* field, mirror::Object* obj) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { const char* descriptor = field->GetTypeDescriptor(); os << StringPrintf("%s: ", field->GetName()); if (descriptor[0] != 'L' && descriptor[0] != '[') { StackHandleScope<1> hs(Thread::Current()); FieldHelper fh(hs.NewHandle(field)); mirror::Class* type = fh.GetType(); DCHECK(type->IsPrimitive()); if (type->IsPrimitiveLong()) { os << StringPrintf("%" PRId64 " (0x%" PRIx64 ")\n", field->Get64(obj), field->Get64(obj)); } else if (type->IsPrimitiveDouble()) { os << StringPrintf("%f (%a)\n", field->GetDouble(obj), field->GetDouble(obj)); } else if (type->IsPrimitiveFloat()) { os << StringPrintf("%f (%a)\n", field->GetFloat(obj), field->GetFloat(obj)); } else if (type->IsPrimitiveInt()) { os << StringPrintf("%d (0x%x)\n", field->Get32(obj), field->Get32(obj)); } else if (type->IsPrimitiveChar()) { os << StringPrintf("%u (0x%x)\n", field->GetChar(obj), field->GetChar(obj)); } else if (type->IsPrimitiveShort()) { os << StringPrintf("%d (0x%x)\n", field->GetShort(obj), field->GetShort(obj)); } else if (type->IsPrimitiveBoolean()) { os << StringPrintf("%s (0x%x)\n", field->GetBoolean(obj)? "true" : "false", field->GetBoolean(obj)); } else if (type->IsPrimitiveByte()) { os << StringPrintf("%d (0x%x)\n", field->GetByte(obj), field->GetByte(obj)); } else { LOG(FATAL) << "Unknown type: " << PrettyClass(type); } } else { // Get the value, don't compute the type unless it is non-null as we don't want // to cause class loading. mirror::Object* value = field->GetObj(obj); if (value == nullptr) { os << StringPrintf("null %s\n", PrettyDescriptor(descriptor).c_str()); } else { // Grab the field type without causing resolution. StackHandleScope<1> hs(Thread::Current()); FieldHelper fh(hs.NewHandle(field)); mirror::Class* field_type = fh.GetType(false); if (field_type != nullptr) { PrettyObjectValue(os, field_type, value); } else { os << StringPrintf("%p %s\n", value, PrettyDescriptor(descriptor).c_str()); } } } } static void DumpFields(std::ostream& os, mirror::Object* obj, mirror::Class* klass) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { mirror::Class* super = klass->GetSuperClass(); if (super != nullptr) { DumpFields(os, obj, super); } mirror::ObjectArray* fields = klass->GetIFields(); if (fields != nullptr) { for (int32_t i = 0; i < fields->GetLength(); i++) { mirror::ArtField* field = fields->Get(i); PrintField(os, field, obj); } } } bool InDumpSpace(const mirror::Object* object) { return image_space_.Contains(object); } const void* GetQuickOatCodeBegin(mirror::ArtMethod* m) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { const void* quick_code = m->GetEntryPointFromQuickCompiledCode(); if (quick_code == Runtime::Current()->GetClassLinker()->GetQuickResolutionTrampoline()) { quick_code = oat_dumper_->GetQuickOatCode(m); } if (oat_dumper_->GetInstructionSet() == kThumb2) { quick_code = reinterpret_cast(reinterpret_cast(quick_code) & ~0x1); } return quick_code; } uint32_t GetQuickOatCodeSize(mirror::ArtMethod* m) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { const uint32_t* oat_code_begin = reinterpret_cast(GetQuickOatCodeBegin(m)); if (oat_code_begin == nullptr) { return 0; } return oat_code_begin[-1]; } const void* GetQuickOatCodeEnd(mirror::ArtMethod* m) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { const uint8_t* oat_code_begin = reinterpret_cast(GetQuickOatCodeBegin(m)); if (oat_code_begin == nullptr) { return nullptr; } return oat_code_begin + GetQuickOatCodeSize(m); } static void Callback(mirror::Object* obj, void* arg) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { DCHECK(obj != nullptr); DCHECK(arg != nullptr); ImageDumper* state = reinterpret_cast(arg); if (!state->InDumpSpace(obj)) { return; } size_t object_bytes = obj->SizeOf(); size_t alignment_bytes = RoundUp(object_bytes, kObjectAlignment) - object_bytes; state->stats_.object_bytes += object_bytes; state->stats_.alignment_bytes += alignment_bytes; std::ostream& os = *state->os_; mirror::Class* obj_class = obj->GetClass(); if (obj_class->IsArrayClass()) { os << StringPrintf("%p: %s length:%d\n", obj, PrettyDescriptor(obj_class).c_str(), obj->AsArray()->GetLength()); } else if (obj->IsClass()) { mirror::Class* klass = obj->AsClass(); os << StringPrintf("%p: java.lang.Class \"%s\" (", obj, PrettyDescriptor(klass).c_str()) << klass->GetStatus() << ")\n"; } else if (obj->IsArtField()) { os << StringPrintf("%p: java.lang.reflect.ArtField %s\n", obj, PrettyField(obj->AsArtField()).c_str()); } else if (obj->IsArtMethod()) { os << StringPrintf("%p: java.lang.reflect.ArtMethod %s\n", obj, PrettyMethod(obj->AsArtMethod()).c_str()); } else if (obj_class->IsStringClass()) { os << StringPrintf("%p: java.lang.String %s\n", obj, PrintableString(obj->AsString()->ToModifiedUtf8().c_str()).c_str()); } else { os << StringPrintf("%p: %s\n", obj, PrettyDescriptor(obj_class).c_str()); } Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count); std::ostream indent_os(&indent_filter); DumpFields(indent_os, obj, obj_class); if (obj->IsObjectArray()) { mirror::ObjectArray* obj_array = obj->AsObjectArray(); int32_t length = obj_array->GetLength(); for (int32_t i = 0; i < length; i++) { mirror::Object* value = obj_array->Get(i); size_t run = 0; for (int32_t j = i + 1; j < length; j++) { if (value == obj_array->Get(j)) { run++; } else { break; } } if (run == 0) { indent_os << StringPrintf("%d: ", i); } else { indent_os << StringPrintf("%d to %zd: ", i, i + run); i = i + run; } mirror::Class* value_class = (value == nullptr) ? obj_class->GetComponentType() : value->GetClass(); PrettyObjectValue(indent_os, value_class, value); } } else if (obj->IsClass()) { mirror::ObjectArray* sfields = obj->AsClass()->GetSFields(); if (sfields != nullptr) { indent_os << "STATICS:\n"; Indenter indent2_filter(indent_os.rdbuf(), kIndentChar, kIndentBy1Count); std::ostream indent2_os(&indent2_filter); for (int32_t i = 0; i < sfields->GetLength(); i++) { mirror::ArtField* field = sfields->Get(i); PrintField(indent2_os, field, field->GetDeclaringClass()); } } } else if (obj->IsArtMethod()) { mirror::ArtMethod* method = obj->AsArtMethod(); if (method->IsNative()) { // TODO: portable dumping. DCHECK(method->GetNativeGcMap() == nullptr) << PrettyMethod(method); DCHECK(method->GetMappingTable() == nullptr) << PrettyMethod(method); bool first_occurrence; const void* quick_oat_code = state->GetQuickOatCodeBegin(method); uint32_t quick_oat_code_size = state->GetQuickOatCodeSize(method); state->ComputeOatSize(quick_oat_code, &first_occurrence); if (first_occurrence) { state->stats_.native_to_managed_code_bytes += quick_oat_code_size; } if (quick_oat_code != method->GetEntryPointFromQuickCompiledCode()) { indent_os << StringPrintf("OAT CODE: %p\n", quick_oat_code); } } else if (method->IsAbstract() || method->IsCalleeSaveMethod() || method->IsResolutionMethod() || method->IsImtConflictMethod() || method->IsClassInitializer()) { DCHECK(method->GetNativeGcMap() == nullptr) << PrettyMethod(method); DCHECK(method->GetMappingTable() == nullptr) << PrettyMethod(method); } else { const DexFile::CodeItem* code_item = method->GetCodeItem(); size_t dex_instruction_bytes = code_item->insns_size_in_code_units_ * 2; state->stats_.dex_instruction_bytes += dex_instruction_bytes; bool first_occurrence; size_t gc_map_bytes = state->ComputeOatSize(method->GetNativeGcMap(), &first_occurrence); if (first_occurrence) { state->stats_.gc_map_bytes += gc_map_bytes; } size_t pc_mapping_table_bytes = state->ComputeOatSize(method->GetMappingTable(), &first_occurrence); if (first_occurrence) { state->stats_.pc_mapping_table_bytes += pc_mapping_table_bytes; } size_t vmap_table_bytes = state->ComputeOatSize(method->GetVmapTable(), &first_occurrence); if (first_occurrence) { state->stats_.vmap_table_bytes += vmap_table_bytes; } // TODO: portable dumping. const void* quick_oat_code_begin = state->GetQuickOatCodeBegin(method); const void* quick_oat_code_end = state->GetQuickOatCodeEnd(method); uint32_t quick_oat_code_size = state->GetQuickOatCodeSize(method); state->ComputeOatSize(quick_oat_code_begin, &first_occurrence); if (first_occurrence) { state->stats_.managed_code_bytes += quick_oat_code_size; if (method->IsConstructor()) { if (method->IsStatic()) { state->stats_.class_initializer_code_bytes += quick_oat_code_size; } else if (dex_instruction_bytes > kLargeConstructorDexBytes) { state->stats_.large_initializer_code_bytes += quick_oat_code_size; } } else if (dex_instruction_bytes > kLargeMethodDexBytes) { state->stats_.large_method_code_bytes += quick_oat_code_size; } } state->stats_.managed_code_bytes_ignoring_deduplication += quick_oat_code_size; indent_os << StringPrintf("OAT CODE: %p-%p\n", quick_oat_code_begin, quick_oat_code_end); indent_os << StringPrintf("SIZE: Dex Instructions=%zd GC=%zd Mapping=%zd\n", dex_instruction_bytes, gc_map_bytes, pc_mapping_table_bytes); size_t total_size = dex_instruction_bytes + gc_map_bytes + pc_mapping_table_bytes + vmap_table_bytes + quick_oat_code_size + object_bytes; double expansion = static_cast(quick_oat_code_size) / static_cast(dex_instruction_bytes); state->stats_.ComputeOutliers(total_size, expansion, method); } } std::string temp; state->stats_.Update(obj_class->GetDescriptor(&temp), object_bytes); } std::set already_seen_; // Compute the size of the given data within the oat file and whether this is the first time // this data has been requested size_t ComputeOatSize(const void* oat_data, bool* first_occurrence) { if (already_seen_.count(oat_data) == 0) { *first_occurrence = true; already_seen_.insert(oat_data); } else { *first_occurrence = false; } return oat_dumper_->ComputeSize(oat_data); } public: struct Stats { size_t oat_file_bytes; size_t file_bytes; size_t header_bytes; size_t object_bytes; size_t bitmap_bytes; size_t alignment_bytes; size_t managed_code_bytes; size_t managed_code_bytes_ignoring_deduplication; size_t managed_to_native_code_bytes; size_t native_to_managed_code_bytes; size_t class_initializer_code_bytes; size_t large_initializer_code_bytes; size_t large_method_code_bytes; size_t gc_map_bytes; size_t pc_mapping_table_bytes; size_t vmap_table_bytes; size_t dex_instruction_bytes; std::vector method_outlier; std::vector method_outlier_size; std::vector method_outlier_expansion; std::vector> oat_dex_file_sizes; explicit Stats() : oat_file_bytes(0), file_bytes(0), header_bytes(0), object_bytes(0), bitmap_bytes(0), alignment_bytes(0), managed_code_bytes(0), managed_code_bytes_ignoring_deduplication(0), managed_to_native_code_bytes(0), native_to_managed_code_bytes(0), class_initializer_code_bytes(0), large_initializer_code_bytes(0), large_method_code_bytes(0), gc_map_bytes(0), pc_mapping_table_bytes(0), vmap_table_bytes(0), dex_instruction_bytes(0) {} struct SizeAndCount { SizeAndCount(size_t bytes, size_t count) : bytes(bytes), count(count) {} size_t bytes; size_t count; }; typedef SafeMap SizeAndCountTable; SizeAndCountTable sizes_and_counts; void Update(const char* descriptor, size_t object_bytes) { SizeAndCountTable::iterator it = sizes_and_counts.find(descriptor); if (it != sizes_and_counts.end()) { it->second.bytes += object_bytes; it->second.count += 1; } else { sizes_and_counts.Put(descriptor, SizeAndCount(object_bytes, 1)); } } double PercentOfOatBytes(size_t size) { return (static_cast(size) / static_cast(oat_file_bytes)) * 100; } double PercentOfFileBytes(size_t size) { return (static_cast(size) / static_cast(file_bytes)) * 100; } double PercentOfObjectBytes(size_t size) { return (static_cast(size) / static_cast(object_bytes)) * 100; } void ComputeOutliers(size_t total_size, double expansion, mirror::ArtMethod* method) { method_outlier_size.push_back(total_size); method_outlier_expansion.push_back(expansion); method_outlier.push_back(method); } void DumpOutliers(std::ostream& os) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { size_t sum_of_sizes = 0; size_t sum_of_sizes_squared = 0; size_t sum_of_expansion = 0; size_t sum_of_expansion_squared = 0; size_t n = method_outlier_size.size(); for (size_t i = 0; i < n; i++) { size_t cur_size = method_outlier_size[i]; sum_of_sizes += cur_size; sum_of_sizes_squared += cur_size * cur_size; double cur_expansion = method_outlier_expansion[i]; sum_of_expansion += cur_expansion; sum_of_expansion_squared += cur_expansion * cur_expansion; } size_t size_mean = sum_of_sizes / n; size_t size_variance = (sum_of_sizes_squared - sum_of_sizes * size_mean) / (n - 1); double expansion_mean = sum_of_expansion / n; double expansion_variance = (sum_of_expansion_squared - sum_of_expansion * expansion_mean) / (n - 1); // Dump methods whose size is a certain number of standard deviations from the mean size_t dumped_values = 0; size_t skipped_values = 0; for (size_t i = 100; i > 0; i--) { // i is the current number of standard deviations size_t cur_size_variance = i * i * size_variance; bool first = true; for (size_t j = 0; j < n; j++) { size_t cur_size = method_outlier_size[j]; if (cur_size > size_mean) { size_t cur_var = cur_size - size_mean; cur_var = cur_var * cur_var; if (cur_var > cur_size_variance) { if (dumped_values > 20) { if (i == 1) { skipped_values++; } else { i = 2; // jump to counting for 1 standard deviation break; } } else { if (first) { os << "\nBig methods (size > " << i << " standard deviations the norm):\n"; first = false; } os << PrettyMethod(method_outlier[j]) << " requires storage of " << PrettySize(cur_size) << "\n"; method_outlier_size[j] = 0; // don't consider this method again dumped_values++; } } } } } if (skipped_values > 0) { os << "... skipped " << skipped_values << " methods with size > 1 standard deviation from the norm\n"; } os << std::flush; // Dump methods whose expansion is a certain number of standard deviations from the mean dumped_values = 0; skipped_values = 0; for (size_t i = 10; i > 0; i--) { // i is the current number of standard deviations double cur_expansion_variance = i * i * expansion_variance; bool first = true; for (size_t j = 0; j < n; j++) { double cur_expansion = method_outlier_expansion[j]; if (cur_expansion > expansion_mean) { size_t cur_var = cur_expansion - expansion_mean; cur_var = cur_var * cur_var; if (cur_var > cur_expansion_variance) { if (dumped_values > 20) { if (i == 1) { skipped_values++; } else { i = 2; // jump to counting for 1 standard deviation break; } } else { if (first) { os << "\nLarge expansion methods (size > " << i << " standard deviations the norm):\n"; first = false; } os << PrettyMethod(method_outlier[j]) << " expanded code by " << cur_expansion << "\n"; method_outlier_expansion[j] = 0.0; // don't consider this method again dumped_values++; } } } } } if (skipped_values > 0) { os << "... skipped " << skipped_values << " methods with expansion > 1 standard deviation from the norm\n"; } os << "\n" << std::flush; } void Dump(std::ostream& os) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { { os << "art_file_bytes = " << PrettySize(file_bytes) << "\n\n" << "art_file_bytes = header_bytes + object_bytes + alignment_bytes\n"; Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count); std::ostream indent_os(&indent_filter); indent_os << StringPrintf("header_bytes = %8zd (%2.0f%% of art file bytes)\n" "object_bytes = %8zd (%2.0f%% of art file bytes)\n" "bitmap_bytes = %8zd (%2.0f%% of art file bytes)\n" "alignment_bytes = %8zd (%2.0f%% of art file bytes)\n\n", header_bytes, PercentOfFileBytes(header_bytes), object_bytes, PercentOfFileBytes(object_bytes), bitmap_bytes, PercentOfFileBytes(bitmap_bytes), alignment_bytes, PercentOfFileBytes(alignment_bytes)) << std::flush; CHECK_EQ(file_bytes, bitmap_bytes + header_bytes + object_bytes + alignment_bytes); } os << "object_bytes breakdown:\n"; size_t object_bytes_total = 0; for (const auto& sizes_and_count : sizes_and_counts) { const std::string& descriptor(sizes_and_count.first); double average = static_cast(sizes_and_count.second.bytes) / static_cast(sizes_and_count.second.count); double percent = PercentOfObjectBytes(sizes_and_count.second.bytes); os << StringPrintf("%32s %8zd bytes %6zd instances " "(%4.0f bytes/instance) %2.0f%% of object_bytes\n", descriptor.c_str(), sizes_and_count.second.bytes, sizes_and_count.second.count, average, percent); object_bytes_total += sizes_and_count.second.bytes; } os << "\n" << std::flush; CHECK_EQ(object_bytes, object_bytes_total); os << StringPrintf("oat_file_bytes = %8zd\n" "managed_code_bytes = %8zd (%2.0f%% of oat file bytes)\n" "managed_to_native_code_bytes = %8zd (%2.0f%% of oat file bytes)\n" "native_to_managed_code_bytes = %8zd (%2.0f%% of oat file bytes)\n\n" "class_initializer_code_bytes = %8zd (%2.0f%% of oat file bytes)\n" "large_initializer_code_bytes = %8zd (%2.0f%% of oat file bytes)\n" "large_method_code_bytes = %8zd (%2.0f%% of oat file bytes)\n\n", oat_file_bytes, managed_code_bytes, PercentOfOatBytes(managed_code_bytes), managed_to_native_code_bytes, PercentOfOatBytes(managed_to_native_code_bytes), native_to_managed_code_bytes, PercentOfOatBytes(native_to_managed_code_bytes), class_initializer_code_bytes, PercentOfOatBytes(class_initializer_code_bytes), large_initializer_code_bytes, PercentOfOatBytes(large_initializer_code_bytes), large_method_code_bytes, PercentOfOatBytes(large_method_code_bytes)) << "DexFile sizes:\n"; for (const std::pair& oat_dex_file_size : oat_dex_file_sizes) { os << StringPrintf("%s = %zd (%2.0f%% of oat file bytes)\n", oat_dex_file_size.first.c_str(), oat_dex_file_size.second, PercentOfOatBytes(oat_dex_file_size.second)); } os << "\n" << StringPrintf("gc_map_bytes = %7zd (%2.0f%% of oat file bytes)\n" "pc_mapping_table_bytes = %7zd (%2.0f%% of oat file bytes)\n" "vmap_table_bytes = %7zd (%2.0f%% of oat file bytes)\n\n", gc_map_bytes, PercentOfOatBytes(gc_map_bytes), pc_mapping_table_bytes, PercentOfOatBytes(pc_mapping_table_bytes), vmap_table_bytes, PercentOfOatBytes(vmap_table_bytes)) << std::flush; os << StringPrintf("dex_instruction_bytes = %zd\n", dex_instruction_bytes) << StringPrintf("managed_code_bytes expansion = %.2f (ignoring deduplication %.2f)\n\n", static_cast(managed_code_bytes) / static_cast(dex_instruction_bytes), static_cast(managed_code_bytes_ignoring_deduplication) / static_cast(dex_instruction_bytes)) << std::flush; DumpOutliers(os); } } stats_; private: enum { // Number of bytes for a constructor to be considered large. Based on the 1000 basic block // threshold, we assume 2 bytes per instruction and 2 instructions per block. kLargeConstructorDexBytes = 4000, // Number of bytes for a method to be considered large. Based on the 4000 basic block // threshold, we assume 2 bytes per instruction and 2 instructions per block. kLargeMethodDexBytes = 16000 }; std::ostream* os_; gc::space::ImageSpace& image_space_; const ImageHeader& image_header_; std::unique_ptr oat_dumper_; std::unique_ptr oat_dumper_options_; DISALLOW_COPY_AND_ASSIGN(ImageDumper); }; static NoopCompilerCallbacks callbacks; static Runtime* StartRuntime(const char* boot_image_location, const char* image_location, InstructionSet instruction_set) { RuntimeOptions options; std::string image_option; std::string oat_option; std::string boot_image_option; std::string boot_oat_option; // We are more like a compiler than a run-time. We don't want to execute code. options.push_back(std::make_pair("compilercallbacks", &callbacks)); if (boot_image_location != nullptr) { boot_image_option += "-Ximage:"; boot_image_option += boot_image_location; options.push_back(std::make_pair(boot_image_option.c_str(), nullptr)); } if (image_location != nullptr) { image_option += "-Ximage:"; image_option += image_location; options.push_back(std::make_pair(image_option.c_str(), nullptr)); } options.push_back( std::make_pair("imageinstructionset", reinterpret_cast(GetInstructionSetString(instruction_set)))); if (!Runtime::Create(options, false)) { fprintf(stderr, "Failed to create runtime\n"); return nullptr; } // Runtime::Create acquired the mutator_lock_ that is normally given away when we Runtime::Start, // give it away now and then switch to a more manageable ScopedObjectAccess. Thread::Current()->TransitionFromRunnableToSuspended(kNative); return Runtime::Current(); } static int DumpImage(Runtime* runtime, const char* image_location, OatDumperOptions* options, std::ostream* os) { // Dumping the image, no explicit class loader. NullHandle null_class_loader; options->class_loader_ = &null_class_loader; ScopedObjectAccess soa(Thread::Current()); gc::Heap* heap = runtime->GetHeap(); gc::space::ImageSpace* image_space = heap->GetImageSpace(); CHECK(image_space != nullptr); const ImageHeader& image_header = image_space->GetImageHeader(); if (!image_header.IsValid()) { fprintf(stderr, "Invalid image header %s\n", image_location); return EXIT_FAILURE; } ImageDumper image_dumper(os, *image_space, image_header, options); bool success = image_dumper.Dump(); return (success) ? EXIT_SUCCESS : EXIT_FAILURE; } static int DumpOatWithRuntime(Runtime* runtime, OatFile* oat_file, OatDumperOptions* options, std::ostream* os) { CHECK(runtime != nullptr && oat_file != nullptr && options != nullptr); Thread* self = Thread::Current(); CHECK(self != nullptr); // Need well-known-classes. WellKnownClasses::Init(self->GetJniEnv()); // Need to register dex files to get a working dex cache. ScopedObjectAccess soa(self); ClassLinker* class_linker = runtime->GetClassLinker(); class_linker->RegisterOatFile(oat_file); std::vector dex_files; for (const OatFile::OatDexFile* odf : oat_file->GetOatDexFiles()) { std::string error_msg; const DexFile* dex_file = odf->OpenDexFile(&error_msg); CHECK(dex_file != nullptr) << error_msg; class_linker->RegisterDexFile(*dex_file); dex_files.push_back(dex_file); } // Need a class loader. soa.Env()->AllocObject(WellKnownClasses::dalvik_system_PathClassLoader); ScopedLocalRef class_loader_local(soa.Env(), soa.Env()->AllocObject(WellKnownClasses::dalvik_system_PathClassLoader)); jobject class_loader = soa.Env()->NewGlobalRef(class_loader_local.get()); // Fake that we're a compiler. runtime->SetCompileTimeClassPath(class_loader, dex_files); // Use the class loader while dumping. StackHandleScope<1> scope(self); Handle loader_handle = scope.NewHandle( soa.Decode(class_loader)); options->class_loader_ = &loader_handle; OatDumper oat_dumper(*oat_file, options); bool success = oat_dumper.Dump(*os); return (success) ? EXIT_SUCCESS : EXIT_FAILURE; } static int DumpOatWithoutRuntime(OatFile* oat_file, OatDumperOptions* options, std::ostream* os) { // No image = no class loader. NullHandle null_class_loader; options->class_loader_ = &null_class_loader; OatDumper oat_dumper(*oat_file, options); bool success = oat_dumper.Dump(*os); return (success) ? EXIT_SUCCESS : EXIT_FAILURE; } static int DumpOat(Runtime* runtime, const char* oat_filename, OatDumperOptions* options, std::ostream* os) { std::string error_msg; OatFile* oat_file = OatFile::Open(oat_filename, oat_filename, nullptr, false, &error_msg); if (oat_file == nullptr) { fprintf(stderr, "Failed to open oat file from '%s': %s\n", oat_filename, error_msg.c_str()); return EXIT_FAILURE; } if (runtime != nullptr) { return DumpOatWithRuntime(runtime, oat_file, options, os); } else { return DumpOatWithoutRuntime(oat_file, options, os); } } static int SymbolizeOat(const char* oat_filename, std::string& output_name) { std::string error_msg; OatFile* oat_file = OatFile::Open(oat_filename, oat_filename, nullptr, false, &error_msg); if (oat_file == nullptr) { fprintf(stderr, "Failed to open oat file from '%s': %s\n", oat_filename, error_msg.c_str()); return EXIT_FAILURE; } OatSymbolizer oat_symbolizer(oat_file, output_name); if (!oat_symbolizer.Init()) { fprintf(stderr, "Failed to initialize symbolizer\n"); return EXIT_FAILURE; } if (!oat_symbolizer.Symbolize()) { fprintf(stderr, "Failed to symbolize\n"); return EXIT_FAILURE; } return EXIT_SUCCESS; } struct OatdumpArgs { bool Parse(int argc, char** argv) { // Skip over argv[0]. argv++; argc--; if (argc == 0) { fprintf(stderr, "No arguments specified\n"); usage(); return false; } for (int i = 0; i < argc; i++) { const StringPiece option(argv[i]); if (option.starts_with("--oat-file=")) { oat_filename_ = option.substr(strlen("--oat-file=")).data(); } else if (option.starts_with("--image=")) { image_location_ = option.substr(strlen("--image=")).data(); } else if (option.starts_with("--boot-image=")) { boot_image_location_ = option.substr(strlen("--boot-image=")).data(); } else if (option.starts_with("--instruction-set=")) { StringPiece instruction_set_str = option.substr(strlen("--instruction-set=")).data(); instruction_set_ = GetInstructionSetFromString(instruction_set_str.data()); if (instruction_set_ == kNone) { fprintf(stderr, "Unsupported instruction set %s\n", instruction_set_str.data()); usage(); return false; } } else if (option =="--dump:raw_mapping_table") { dump_raw_mapping_table_ = true; } else if (option == "--dump:raw_gc_map") { dump_raw_gc_map_ = true; } else if (option == "--no-dump:vmap") { dump_vmap_ = false; } else if (option == "--no-disassemble") { disassemble_code_ = false; } else if (option.starts_with("--output=")) { output_name_ = option.substr(strlen("--output=")).ToString(); const char* filename = output_name_.c_str(); out_.reset(new std::ofstream(filename)); if (!out_->good()) { fprintf(stderr, "Failed to open output filename %s\n", filename); usage(); return false; } os_ = out_.get(); } else if (option.starts_with("--symbolize=")) { oat_filename_ = option.substr(strlen("--symbolize=")).data(); symbolize_ = true; } else { fprintf(stderr, "Unknown argument %s\n", option.data()); usage(); return false; } } if (image_location_ == nullptr && oat_filename_ == nullptr) { fprintf(stderr, "Either --image or --oat must be specified\n"); return false; } if (image_location_ != nullptr && oat_filename_ != nullptr) { fprintf(stderr, "Either --image or --oat must be specified but not both\n"); return false; } return true; } const char* oat_filename_ = nullptr; const char* image_location_ = nullptr; const char* boot_image_location_ = nullptr; InstructionSet instruction_set_ = kRuntimeISA; std::string elf_filename_prefix_; std::ostream* os_ = &std::cout; std::unique_ptr out_; std::string output_name_; bool dump_raw_mapping_table_ = false; bool dump_raw_gc_map_ = false; bool dump_vmap_ = true; bool disassemble_code_ = true; bool symbolize_ = false; }; static int oatdump(int argc, char** argv) { InitLogging(argv); OatdumpArgs args; if (!args.Parse(argc, argv)) { return EXIT_FAILURE; } // If we are only doing the oat file, disable absolute_addresses. Keep them for image dumping. bool absolute_addresses = (args.oat_filename_ == nullptr); std::unique_ptr oat_dumper_options(new OatDumperOptions( args.dump_raw_mapping_table_, args.dump_raw_gc_map_, args.dump_vmap_, args.disassemble_code_, absolute_addresses, nullptr)); std::unique_ptr runtime; if ((args.boot_image_location_ != nullptr || args.image_location_ != nullptr) && !args.symbolize_) { // If we have a boot image option, try to start the runtime; except when just symbolizing. runtime.reset(StartRuntime(args.boot_image_location_, args.image_location_, args.instruction_set_)); } if (args.oat_filename_ != nullptr) { if (args.symbolize_) { return SymbolizeOat(args.oat_filename_, args.output_name_); } else { return DumpOat(runtime.get(), args.oat_filename_, oat_dumper_options.release(), args.os_); } } if (runtime.get() == nullptr) { // We need the runtime when printing an image. return EXIT_FAILURE; } return DumpImage(runtime.get(), args.image_location_, oat_dumper_options.release(), args.os_); } } // namespace art int main(int argc, char** argv) { return art::oatdump(argc, argv); }