/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include "base/stringpiece.h" #include "base/unix_file/fd_file.h" #include "class_linker.h" #include "class_linker-inl.h" #include "dex_file-inl.h" #include "dex_instruction.h" #include "disassembler.h" #include "gc_map.h" #include "gc/space/image_space.h" #include "gc/space/large_object_space.h" #include "gc/space/space-inl.h" #include "image.h" #include "indenter.h" #include "mapping_table.h" #include "mirror/art_field-inl.h" #include "mirror/art_method-inl.h" #include "mirror/array-inl.h" #include "mirror/class-inl.h" #include "mirror/object-inl.h" #include "mirror/object_array-inl.h" #include "oat.h" #include "object_utils.h" #include "os.h" #include "runtime.h" #include "safe_map.h" #include "scoped_thread_state_change.h" #include "verifier/method_verifier.h" #include "vmap_table.h" namespace art { static void usage() { fprintf(stderr, "Usage: oatdump [options] ...\n" " Example: oatdump --image=$ANDROID_PRODUCT_OUT/system/framework/boot.art --host-prefix=$ANDROID_PRODUCT_OUT\n" " Example: adb shell oatdump --image=/system/framework/boot.art\n" "\n"); fprintf(stderr, " --oat-file=: specifies an input oat filename.\n" " Example: --oat-file=/system/framework/boot.oat\n" "\n"); fprintf(stderr, " --image=: specifies an input image filename.\n" " Example: --image=/system/framework/boot.art\n" "\n"); fprintf(stderr, " --boot-image=: provide the image file for the boot class path.\n" " Example: --boot-image=/system/framework/boot.art\n" "\n"); fprintf(stderr, " --host-prefix may be used to translate host paths to target paths during\n" " cross compilation.\n" " Example: --host-prefix=out/target/product/crespo\n" " Default: $ANDROID_PRODUCT_OUT\n" "\n"); fprintf(stderr, " --output= may be used to send the output to a file.\n" " Example: --output=/tmp/oatdump.txt\n" "\n"); exit(EXIT_FAILURE); } const char* image_roots_descriptions_[] = { "kResolutionMethod", "kCalleeSaveMethod", "kRefsOnlySaveMethod", "kRefsAndArgsSaveMethod", "kOatLocation", "kDexCaches", "kClassRoots", }; class OatDumper { public: explicit OatDumper(const std::string& host_prefix, const OatFile& oat_file) : host_prefix_(host_prefix), oat_file_(oat_file), oat_dex_files_(oat_file.GetOatDexFiles()), disassembler_(Disassembler::Create(oat_file_.GetOatHeader().GetInstructionSet())) { AddAllOffsets(); } void Dump(std::ostream& os) { const OatHeader& oat_header = oat_file_.GetOatHeader(); os << "MAGIC:\n"; os << oat_header.GetMagic() << "\n\n"; os << "CHECKSUM:\n"; os << StringPrintf("0x%08x\n\n", oat_header.GetChecksum()); os << "INSTRUCTION SET:\n"; os << oat_header.GetInstructionSet() << "\n\n"; os << "DEX FILE COUNT:\n"; os << oat_header.GetDexFileCount() << "\n\n"; os << "EXECUTABLE OFFSET:\n"; os << StringPrintf("0x%08x\n\n", oat_header.GetExecutableOffset()); os << "IMAGE FILE LOCATION OAT CHECKSUM:\n"; os << StringPrintf("0x%08x\n\n", oat_header.GetImageFileLocationOatChecksum()); os << "IMAGE FILE LOCATION OAT BEGIN:\n"; os << StringPrintf("0x%08x\n\n", oat_header.GetImageFileLocationOatDataBegin()); os << "IMAGE FILE LOCATION:\n"; const std::string image_file_location(oat_header.GetImageFileLocation()); os << image_file_location; if (!image_file_location.empty() && !host_prefix_.empty()) { os << " (" << host_prefix_ << image_file_location << ")"; } os << "\n\n"; os << "BEGIN:\n"; os << reinterpret_cast(oat_file_.Begin()) << "\n\n"; os << "END:\n"; os << reinterpret_cast(oat_file_.End()) << "\n\n"; os << std::flush; for (size_t i = 0; i < oat_dex_files_.size(); i++) { const OatFile::OatDexFile* oat_dex_file = oat_dex_files_[i]; CHECK(oat_dex_file != NULL); DumpOatDexFile(os, *oat_dex_file); } } size_t ComputeSize(const void* oat_data) { if (reinterpret_cast(oat_data) < oat_file_.Begin() || reinterpret_cast(oat_data) > oat_file_.End()) { return 0; // Address not in oat file } uint32_t begin_offset = reinterpret_cast(oat_data) - reinterpret_cast(oat_file_.Begin()); typedef std::set::iterator It; It it = offsets_.upper_bound(begin_offset); CHECK(it != offsets_.end()); uint32_t end_offset = *it; return end_offset - begin_offset; } InstructionSet GetInstructionSet() { return oat_file_.GetOatHeader().GetInstructionSet(); } const void* GetOatCode(mirror::ArtMethod* m) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { MethodHelper mh(m); for (size_t i = 0; i < oat_dex_files_.size(); i++) { const OatFile::OatDexFile* oat_dex_file = oat_dex_files_[i]; CHECK(oat_dex_file != nullptr); std::string error_msg; UniquePtr dex_file(oat_dex_file->OpenDexFile(&error_msg)); if (dex_file.get() == nullptr) { LOG(WARNING) << "Failed to open dex file '" << oat_dex_file->GetDexFileLocation() << "': " << error_msg; } else { const DexFile::ClassDef* class_def = dex_file->FindClassDef(mh.GetDeclaringClassDescriptor()); if (class_def != NULL) { uint16_t class_def_index = dex_file->GetIndexForClassDef(*class_def); const OatFile::OatClass* oat_class = oat_dex_file->GetOatClass(class_def_index); CHECK(oat_class != NULL); size_t method_index = m->GetMethodIndex(); return oat_class->GetOatMethod(method_index).GetCode(); } } } return NULL; } private: void AddAllOffsets() { // We don't know the length of the code for each method, but we need to know where to stop // when disassembling. What we do know is that a region of code will be followed by some other // region, so if we keep a sorted sequence of the start of each region, we can infer the length // of a piece of code by using upper_bound to find the start of the next region. for (size_t i = 0; i < oat_dex_files_.size(); i++) { const OatFile::OatDexFile* oat_dex_file = oat_dex_files_[i]; CHECK(oat_dex_file != NULL); std::string error_msg; UniquePtr dex_file(oat_dex_file->OpenDexFile(&error_msg)); if (dex_file.get() == nullptr) { LOG(WARNING) << "Failed to open dex file '" << oat_dex_file->GetDexFileLocation() << "': " << error_msg; continue; } offsets_.insert(reinterpret_cast(&dex_file->GetHeader())); for (size_t class_def_index = 0; class_def_index < dex_file->NumClassDefs(); class_def_index++) { const DexFile::ClassDef& class_def = dex_file->GetClassDef(class_def_index); UniquePtr oat_class(oat_dex_file->GetOatClass(class_def_index)); const byte* class_data = dex_file->GetClassData(class_def); if (class_data != NULL) { ClassDataItemIterator it(*dex_file, class_data); SkipAllFields(it); uint32_t class_method_index = 0; while (it.HasNextDirectMethod()) { AddOffsets(oat_class->GetOatMethod(class_method_index++)); it.Next(); } while (it.HasNextVirtualMethod()) { AddOffsets(oat_class->GetOatMethod(class_method_index++)); it.Next(); } } } } // If the last thing in the file is code for a method, there won't be an offset for the "next" // thing. Instead of having a special case in the upper_bound code, let's just add an entry // for the end of the file. offsets_.insert(static_cast(oat_file_.Size())); } void AddOffsets(const OatFile::OatMethod& oat_method) { uint32_t code_offset = oat_method.GetCodeOffset(); if (oat_file_.GetOatHeader().GetInstructionSet() == kThumb2) { code_offset &= ~0x1; } offsets_.insert(code_offset); offsets_.insert(oat_method.GetMappingTableOffset()); offsets_.insert(oat_method.GetVmapTableOffset()); offsets_.insert(oat_method.GetNativeGcMapOffset()); } void DumpOatDexFile(std::ostream& os, const OatFile::OatDexFile& oat_dex_file) { os << "OAT DEX FILE:\n"; os << StringPrintf("location: %s\n", oat_dex_file.GetDexFileLocation().c_str()); os << StringPrintf("checksum: 0x%08x\n", oat_dex_file.GetDexFileLocationChecksum()); std::string error_msg; UniquePtr dex_file(oat_dex_file.OpenDexFile(&error_msg)); if (dex_file.get() == NULL) { os << "NOT FOUND: " << error_msg << "\n\n"; return; } for (size_t class_def_index = 0; class_def_index < dex_file->NumClassDefs(); class_def_index++) { const DexFile::ClassDef& class_def = dex_file->GetClassDef(class_def_index); const char* descriptor = dex_file->GetClassDescriptor(class_def); UniquePtr oat_class(oat_dex_file.GetOatClass(class_def_index)); CHECK(oat_class.get() != NULL); os << StringPrintf("%zd: %s (type_idx=%d)", class_def_index, descriptor, class_def.class_idx_) << " (" << oat_class->GetStatus() << ")" << " (" << oat_class->GetType() << ")\n"; // TODO: include bitmap here if type is kOatClassBitmap? Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count); std::ostream indented_os(&indent_filter); DumpOatClass(indented_os, *oat_class.get(), *(dex_file.get()), class_def); } os << std::flush; } static void SkipAllFields(ClassDataItemIterator& it) { while (it.HasNextStaticField()) { it.Next(); } while (it.HasNextInstanceField()) { it.Next(); } } void DumpOatClass(std::ostream& os, const OatFile::OatClass& oat_class, const DexFile& dex_file, const DexFile::ClassDef& class_def) { const byte* class_data = dex_file.GetClassData(class_def); if (class_data == NULL) { // empty class such as a marker interface? return; } ClassDataItemIterator it(dex_file, class_data); SkipAllFields(it); uint32_t class_method_idx = 0; while (it.HasNextDirectMethod()) { const OatFile::OatMethod oat_method = oat_class.GetOatMethod(class_method_idx); DumpOatMethod(os, class_def, class_method_idx, oat_method, dex_file, it.GetMemberIndex(), it.GetMethodCodeItem(), it.GetMemberAccessFlags()); class_method_idx++; it.Next(); } while (it.HasNextVirtualMethod()) { const OatFile::OatMethod oat_method = oat_class.GetOatMethod(class_method_idx); DumpOatMethod(os, class_def, class_method_idx, oat_method, dex_file, it.GetMemberIndex(), it.GetMethodCodeItem(), it.GetMemberAccessFlags()); class_method_idx++; it.Next(); } DCHECK(!it.HasNext()); os << std::flush; } void DumpOatMethod(std::ostream& os, const DexFile::ClassDef& class_def, uint32_t class_method_index, const OatFile::OatMethod& oat_method, const DexFile& dex_file, uint32_t dex_method_idx, const DexFile::CodeItem* code_item, uint32_t method_access_flags) { os << StringPrintf("%d: %s (dex_method_idx=%d)\n", class_method_index, PrettyMethod(dex_method_idx, dex_file, true).c_str(), dex_method_idx); Indenter indent1_filter(os.rdbuf(), kIndentChar, kIndentBy1Count); std::ostream indent1_os(&indent1_filter); { indent1_os << "DEX CODE:\n"; Indenter indent2_filter(indent1_os.rdbuf(), kIndentChar, kIndentBy1Count); std::ostream indent2_os(&indent2_filter); DumpDexCode(indent2_os, dex_file, code_item); } if (Runtime::Current() != NULL) { indent1_os << "VERIFIER TYPE ANALYSIS:\n"; Indenter indent2_filter(indent1_os.rdbuf(), kIndentChar, kIndentBy1Count); std::ostream indent2_os(&indent2_filter); DumpVerifier(indent2_os, dex_method_idx, &dex_file, class_def, code_item, method_access_flags); } { indent1_os << "OAT DATA:\n"; Indenter indent2_filter(indent1_os.rdbuf(), kIndentChar, kIndentBy1Count); std::ostream indent2_os(&indent2_filter); indent2_os << StringPrintf("frame_size_in_bytes: %zd\n", oat_method.GetFrameSizeInBytes()); indent2_os << StringPrintf("core_spill_mask: 0x%08x ", oat_method.GetCoreSpillMask()); DumpSpillMask(indent2_os, oat_method.GetCoreSpillMask(), false); indent2_os << StringPrintf("\nfp_spill_mask: 0x%08x ", oat_method.GetFpSpillMask()); DumpSpillMask(indent2_os, oat_method.GetFpSpillMask(), true); indent2_os << StringPrintf("\nvmap_table: %p (offset=0x%08x)\n", oat_method.GetVmapTable(), oat_method.GetVmapTableOffset()); DumpVmap(indent2_os, oat_method); indent2_os << StringPrintf("mapping_table: %p (offset=0x%08x)\n", oat_method.GetMappingTable(), oat_method.GetMappingTableOffset()); const bool kDumpRawMappingTable = false; if (kDumpRawMappingTable) { Indenter indent3_filter(indent2_os.rdbuf(), kIndentChar, kIndentBy1Count); std::ostream indent3_os(&indent3_filter); DumpMappingTable(indent3_os, oat_method); } indent2_os << StringPrintf("gc_map: %p (offset=0x%08x)\n", oat_method.GetNativeGcMap(), oat_method.GetNativeGcMapOffset()); const bool kDumpRawGcMap = false; if (kDumpRawGcMap) { Indenter indent3_filter(indent2_os.rdbuf(), kIndentChar, kIndentBy1Count); std::ostream indent3_os(&indent3_filter); DumpGcMap(indent3_os, oat_method, code_item); } } { indent1_os << StringPrintf("CODE: %p (offset=0x%08x size=%d)%s\n", oat_method.GetCode(), oat_method.GetCodeOffset(), oat_method.GetCodeSize(), oat_method.GetCode() != NULL ? "..." : ""); Indenter indent2_filter(indent1_os.rdbuf(), kIndentChar, kIndentBy1Count); std::ostream indent2_os(&indent2_filter); DumpCode(indent2_os, oat_method, dex_method_idx, &dex_file, class_def, code_item, method_access_flags); } } void DumpSpillMask(std::ostream& os, uint32_t spill_mask, bool is_float) { if (spill_mask == 0) { return; } os << "("; for (size_t i = 0; i < 32; i++) { if ((spill_mask & (1 << i)) != 0) { if (is_float) { os << "fr" << i; } else { os << "r" << i; } spill_mask ^= 1 << i; // clear bit if (spill_mask != 0) { os << ", "; } else { break; } } } os << ")"; } void DumpVmap(std::ostream& os, const OatFile::OatMethod& oat_method) { const uint8_t* raw_table = oat_method.GetVmapTable(); if (raw_table != NULL) { const VmapTable vmap_table(raw_table); bool first = true; bool processing_fp = false; uint32_t spill_mask = oat_method.GetCoreSpillMask(); for (size_t i = 0; i < vmap_table.Size(); i++) { uint16_t dex_reg = vmap_table[i]; uint32_t cpu_reg = vmap_table.ComputeRegister(spill_mask, i, processing_fp ? kFloatVReg : kIntVReg); os << (first ? "v" : ", v") << dex_reg; if (!processing_fp) { os << "/r" << cpu_reg; } else { os << "/fr" << cpu_reg; } first = false; if (!processing_fp && dex_reg == 0xFFFF) { processing_fp = true; spill_mask = oat_method.GetFpSpillMask(); } } os << "\n"; } } void DescribeVReg(std::ostream& os, const OatFile::OatMethod& oat_method, const DexFile::CodeItem* code_item, size_t reg, VRegKind kind) { const uint8_t* raw_table = oat_method.GetVmapTable(); if (raw_table != NULL) { const VmapTable vmap_table(raw_table); uint32_t vmap_offset; if (vmap_table.IsInContext(reg, kind, &vmap_offset)) { bool is_float = (kind == kFloatVReg) || (kind == kDoubleLoVReg) || (kind == kDoubleHiVReg); uint32_t spill_mask = is_float ? oat_method.GetFpSpillMask() : oat_method.GetCoreSpillMask(); os << (is_float ? "fr" : "r") << vmap_table.ComputeRegister(spill_mask, vmap_offset, kind); } else { uint32_t offset = StackVisitor::GetVRegOffset(code_item, oat_method.GetCoreSpillMask(), oat_method.GetFpSpillMask(), oat_method.GetFrameSizeInBytes(), reg); os << "[sp + #" << offset << "]"; } } } void DumpGcMap(std::ostream& os, const OatFile::OatMethod& oat_method, const DexFile::CodeItem* code_item) { const uint8_t* gc_map_raw = oat_method.GetNativeGcMap(); if (gc_map_raw == NULL) { return; } NativePcOffsetToReferenceMap map(gc_map_raw); const void* code = oat_method.GetCode(); for (size_t entry = 0; entry < map.NumEntries(); entry++) { const uint8_t* native_pc = reinterpret_cast(code) + map.GetNativePcOffset(entry); os << StringPrintf("%p", native_pc); size_t num_regs = map.RegWidth() * 8; const uint8_t* reg_bitmap = map.GetBitMap(entry); bool first = true; for (size_t reg = 0; reg < num_regs; reg++) { if (((reg_bitmap[reg / 8] >> (reg % 8)) & 0x01) != 0) { if (first) { os << " v" << reg << " ("; DescribeVReg(os, oat_method, code_item, reg, kReferenceVReg); os << ")"; first = false; } else { os << ", v" << reg << " ("; DescribeVReg(os, oat_method, code_item, reg, kReferenceVReg); os << ")"; } } } os << "\n"; } } void DumpMappingTable(std::ostream& os, const OatFile::OatMethod& oat_method) { const void* code = oat_method.GetCode(); if (code == NULL) { return; } MappingTable table(oat_method.GetMappingTable()); if (table.TotalSize() != 0) { Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count); std::ostream indent_os(&indent_filter); if (table.PcToDexSize() != 0) { typedef MappingTable::PcToDexIterator It; os << "suspend point mappings {\n"; for (It cur = table.PcToDexBegin(), end = table.PcToDexEnd(); cur != end; ++cur) { indent_os << StringPrintf("0x%04x -> 0x%04x\n", cur.NativePcOffset(), cur.DexPc()); } os << "}\n"; } if (table.DexToPcSize() != 0) { typedef MappingTable::DexToPcIterator It; os << "catch entry mappings {\n"; for (It cur = table.DexToPcBegin(), end = table.DexToPcEnd(); cur != end; ++cur) { indent_os << StringPrintf("0x%04x -> 0x%04x\n", cur.NativePcOffset(), cur.DexPc()); } os << "}\n"; } } } uint32_t DumpMappingAtOffset(std::ostream& os, const OatFile::OatMethod& oat_method, size_t offset, bool suspend_point_mapping) { MappingTable table(oat_method.GetMappingTable()); if (suspend_point_mapping && table.PcToDexSize() > 0) { typedef MappingTable::PcToDexIterator It; for (It cur = table.PcToDexBegin(), end = table.PcToDexEnd(); cur != end; ++cur) { if (offset == cur.NativePcOffset()) { os << StringPrintf("suspend point dex PC: 0x%04x\n", cur.DexPc()); return cur.DexPc(); } } } else if (!suspend_point_mapping && table.DexToPcSize() > 0) { typedef MappingTable::DexToPcIterator It; for (It cur = table.DexToPcBegin(), end = table.DexToPcEnd(); cur != end; ++cur) { if (offset == cur.NativePcOffset()) { os << StringPrintf("catch entry dex PC: 0x%04x\n", cur.DexPc()); return cur.DexPc(); } } } return DexFile::kDexNoIndex; } void DumpGcMapAtNativePcOffset(std::ostream& os, const OatFile::OatMethod& oat_method, const DexFile::CodeItem* code_item, size_t native_pc_offset) { const uint8_t* gc_map_raw = oat_method.GetNativeGcMap(); if (gc_map_raw != NULL) { NativePcOffsetToReferenceMap map(gc_map_raw); if (map.HasEntry(native_pc_offset)) { size_t num_regs = map.RegWidth() * 8; const uint8_t* reg_bitmap = map.FindBitMap(native_pc_offset); bool first = true; for (size_t reg = 0; reg < num_regs; reg++) { if (((reg_bitmap[reg / 8] >> (reg % 8)) & 0x01) != 0) { if (first) { os << "GC map objects: v" << reg << " ("; DescribeVReg(os, oat_method, code_item, reg, kReferenceVReg); os << ")"; first = false; } else { os << ", v" << reg << " ("; DescribeVReg(os, oat_method, code_item, reg, kReferenceVReg); os << ")"; } } } if (!first) { os << "\n"; } } } } void DumpVRegsAtDexPc(std::ostream& os, const OatFile::OatMethod& oat_method, uint32_t dex_method_idx, const DexFile* dex_file, const DexFile::ClassDef& class_def, const DexFile::CodeItem* code_item, uint32_t method_access_flags, uint32_t dex_pc) { static UniquePtr verifier; static const DexFile* verified_dex_file = NULL; static uint32_t verified_dex_method_idx = DexFile::kDexNoIndex; if (dex_file != verified_dex_file || verified_dex_method_idx != dex_method_idx) { ScopedObjectAccess soa(Thread::Current()); mirror::DexCache* dex_cache = Runtime::Current()->GetClassLinker()->FindDexCache(*dex_file); mirror::ClassLoader* class_loader = NULL; verifier.reset(new verifier::MethodVerifier(dex_file, dex_cache, class_loader, &class_def, code_item, dex_method_idx, NULL, method_access_flags, true, true)); verifier->Verify(); verified_dex_file = dex_file; verified_dex_method_idx = dex_method_idx; } std::vector kinds = verifier->DescribeVRegs(dex_pc); bool first = true; for (size_t reg = 0; reg < code_item->registers_size_; reg++) { VRegKind kind = static_cast(kinds.at(reg * 2)); if (kind != kUndefined) { if (first) { os << "VRegs: v"; first = false; } else { os << ", v"; } os << reg << " ("; switch (kind) { case kImpreciseConstant: os << "Imprecise Constant: " << kinds.at((reg * 2) + 1) << ", "; DescribeVReg(os, oat_method, code_item, reg, kind); break; case kConstant: os << "Constant: " << kinds.at((reg * 2) + 1); break; default: DescribeVReg(os, oat_method, code_item, reg, kind); break; } os << ")"; } } if (!first) { os << "\n"; } } void DumpDexCode(std::ostream& os, const DexFile& dex_file, const DexFile::CodeItem* code_item) { if (code_item != NULL) { size_t i = 0; while (i < code_item->insns_size_in_code_units_) { const Instruction* instruction = Instruction::At(&code_item->insns_[i]); os << StringPrintf("0x%04zx: %s\n", i, instruction->DumpString(&dex_file).c_str()); i += instruction->SizeInCodeUnits(); } } } void DumpVerifier(std::ostream& os, uint32_t dex_method_idx, const DexFile* dex_file, const DexFile::ClassDef& class_def, const DexFile::CodeItem* code_item, uint32_t method_access_flags) { if ((method_access_flags & kAccNative) == 0) { ScopedObjectAccess soa(Thread::Current()); mirror::DexCache* dex_cache = Runtime::Current()->GetClassLinker()->FindDexCache(*dex_file); mirror::ClassLoader* class_loader = NULL; verifier::MethodVerifier::VerifyMethodAndDump(os, dex_method_idx, dex_file, dex_cache, class_loader, &class_def, code_item, NULL, method_access_flags); } } void DumpCode(std::ostream& os, const OatFile::OatMethod& oat_method, uint32_t dex_method_idx, const DexFile* dex_file, const DexFile::ClassDef& class_def, const DexFile::CodeItem* code_item, uint32_t method_access_flags) { const void* code = oat_method.GetCode(); size_t code_size = oat_method.GetCodeSize(); if (code == NULL || code_size == 0) { os << "NO CODE!\n"; return; } const uint8_t* native_pc = reinterpret_cast(code); size_t offset = 0; const bool kDumpVRegs = (Runtime::Current() != NULL); while (offset < code_size) { DumpMappingAtOffset(os, oat_method, offset, false); offset += disassembler_->Dump(os, native_pc + offset); uint32_t dex_pc = DumpMappingAtOffset(os, oat_method, offset, true); if (dex_pc != DexFile::kDexNoIndex) { DumpGcMapAtNativePcOffset(os, oat_method, code_item, offset); if (kDumpVRegs) { DumpVRegsAtDexPc(os, oat_method, dex_method_idx, dex_file, class_def, code_item, method_access_flags, dex_pc); } } } } const std::string host_prefix_; const OatFile& oat_file_; std::vector oat_dex_files_; std::set offsets_; UniquePtr disassembler_; }; class ImageDumper { public: explicit ImageDumper(std::ostream* os, const std::string& image_filename, const std::string& host_prefix, gc::space::ImageSpace& image_space, const ImageHeader& image_header) : os_(os), image_filename_(image_filename), host_prefix_(host_prefix), image_space_(image_space), image_header_(image_header) {} void Dump() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { std::ostream& os = *os_; os << "MAGIC: " << image_header_.GetMagic() << "\n\n"; os << "IMAGE BEGIN: " << reinterpret_cast(image_header_.GetImageBegin()) << "\n\n"; os << "IMAGE BITMAP OFFSET: " << reinterpret_cast(image_header_.GetImageBitmapOffset()) << " SIZE: " << reinterpret_cast(image_header_.GetImageBitmapSize()) << "\n\n"; os << "OAT CHECKSUM: " << StringPrintf("0x%08x\n\n", image_header_.GetOatChecksum()); os << "OAT FILE BEGIN:" << reinterpret_cast(image_header_.GetOatFileBegin()) << "\n\n"; os << "OAT DATA BEGIN:" << reinterpret_cast(image_header_.GetOatDataBegin()) << "\n\n"; os << "OAT DATA END:" << reinterpret_cast(image_header_.GetOatDataEnd()) << "\n\n"; os << "OAT FILE END:" << reinterpret_cast(image_header_.GetOatFileEnd()) << "\n\n"; { os << "ROOTS: " << reinterpret_cast(image_header_.GetImageRoots()) << "\n"; Indenter indent1_filter(os.rdbuf(), kIndentChar, kIndentBy1Count); std::ostream indent1_os(&indent1_filter); CHECK_EQ(arraysize(image_roots_descriptions_), size_t(ImageHeader::kImageRootsMax)); for (int i = 0; i < ImageHeader::kImageRootsMax; i++) { ImageHeader::ImageRoot image_root = static_cast(i); const char* image_root_description = image_roots_descriptions_[i]; mirror::Object* image_root_object = image_header_.GetImageRoot(image_root); indent1_os << StringPrintf("%s: %p\n", image_root_description, image_root_object); if (image_root_object->IsObjectArray()) { Indenter indent2_filter(indent1_os.rdbuf(), kIndentChar, kIndentBy1Count); std::ostream indent2_os(&indent2_filter); // TODO: replace down_cast with AsObjectArray (g++ currently has a problem with this) mirror::ObjectArray* image_root_object_array = down_cast*>(image_root_object); // = image_root_object->AsObjectArray(); for (int i = 0; i < image_root_object_array->GetLength(); i++) { mirror::Object* value = image_root_object_array->Get(i); if (value != NULL) { indent2_os << i << ": "; PrettyObjectValue(indent2_os, value->GetClass(), value); } else { indent2_os << i << ": null\n"; } } } } } os << "\n"; ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); mirror::Object* oat_location_object = image_header_.GetImageRoot(ImageHeader::kOatLocation); std::string oat_location(oat_location_object->AsString()->ToModifiedUtf8()); os << "OAT LOCATION: " << oat_location; if (!host_prefix_.empty()) { oat_location = host_prefix_ + oat_location; os << " (" << oat_location << ")"; } os << "\n"; std::string error_msg; const OatFile* oat_file = class_linker->FindOatFileFromOatLocation(oat_location, &error_msg); if (oat_file == NULL) { os << "NOT FOUND: " << error_msg << "\n"; return; } os << "\n"; stats_.oat_file_bytes = oat_file->Size(); oat_dumper_.reset(new OatDumper(host_prefix_, *oat_file)); for (const OatFile::OatDexFile* oat_dex_file : oat_file->GetOatDexFiles()) { CHECK(oat_dex_file != NULL); stats_.oat_dex_file_sizes.push_back(std::make_pair(oat_dex_file->GetDexFileLocation(), oat_dex_file->FileSize())); } os << "OBJECTS:\n" << std::flush; // Loop through all the image spaces and dump their objects. gc::Heap* heap = Runtime::Current()->GetHeap(); const std::vector& spaces = heap->GetContinuousSpaces(); Thread* self = Thread::Current(); { WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); heap->FlushAllocStack(); } { std::ostream* saved_os = os_; Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count); std::ostream indent_os(&indent_filter); os_ = &indent_os; ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); for (const auto& space : spaces) { if (space->IsImageSpace()) { gc::space::ImageSpace* image_space = space->AsImageSpace(); image_space->GetLiveBitmap()->Walk(ImageDumper::Callback, this); indent_os << "\n"; } } // Dump the large objects separately. heap->GetLargeObjectsSpace()->GetLiveObjects()->Walk(ImageDumper::Callback, this); indent_os << "\n"; os_ = saved_os; } os << "STATS:\n" << std::flush; UniquePtr file(OS::OpenFileForReading(image_filename_.c_str())); if (file.get() == NULL) { std::string cache_location(GetDalvikCacheFilenameOrDie(image_filename_.c_str())); file.reset(OS::OpenFileForReading(cache_location.c_str())); if (file.get() == NULL) { LOG(WARNING) << "Failed to find image in " << image_filename_ << " and " << cache_location; } } if (file.get() != NULL) { stats_.file_bytes = file->GetLength(); } size_t header_bytes = sizeof(ImageHeader); stats_.header_bytes = header_bytes; size_t alignment_bytes = RoundUp(header_bytes, kObjectAlignment) - header_bytes; stats_.alignment_bytes += alignment_bytes; stats_.alignment_bytes += image_header_.GetImageBitmapOffset() - image_header_.GetImageSize(); stats_.bitmap_bytes += image_header_.GetImageBitmapSize(); stats_.Dump(os); os << "\n"; os << std::flush; oat_dumper_->Dump(os); } private: static void PrettyObjectValue(std::ostream& os, mirror::Class* type, mirror::Object* value) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { CHECK(type != NULL); if (value == NULL) { os << StringPrintf("null %s\n", PrettyDescriptor(type).c_str()); } else if (type->IsStringClass()) { mirror::String* string = value->AsString(); os << StringPrintf("%p String: %s\n", string, PrintableString(string->ToModifiedUtf8()).c_str()); } else if (type->IsClassClass()) { mirror::Class* klass = value->AsClass(); os << StringPrintf("%p Class: %s\n", klass, PrettyDescriptor(klass).c_str()); } else if (type->IsArtFieldClass()) { mirror::ArtField* field = value->AsArtField(); os << StringPrintf("%p Field: %s\n", field, PrettyField(field).c_str()); } else if (type->IsArtMethodClass()) { mirror::ArtMethod* method = value->AsArtMethod(); os << StringPrintf("%p Method: %s\n", method, PrettyMethod(method).c_str()); } else { os << StringPrintf("%p %s\n", value, PrettyDescriptor(type).c_str()); } } static void PrintField(std::ostream& os, mirror::ArtField* field, mirror::Object* obj) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { FieldHelper fh(field); const char* descriptor = fh.GetTypeDescriptor(); os << StringPrintf("%s: ", fh.GetName()); if (descriptor[0] != 'L' && descriptor[0] != '[') { mirror::Class* type = fh.GetType(); if (type->IsPrimitiveLong()) { os << StringPrintf("%lld (0x%llx)\n", field->Get64(obj), field->Get64(obj)); } else if (type->IsPrimitiveDouble()) { os << StringPrintf("%f (%a)\n", field->GetDouble(obj), field->GetDouble(obj)); } else if (type->IsPrimitiveFloat()) { os << StringPrintf("%f (%a)\n", field->GetFloat(obj), field->GetFloat(obj)); } else { DCHECK(type->IsPrimitive()); os << StringPrintf("%d (0x%x)\n", field->Get32(obj), field->Get32(obj)); } } else { // Get the value, don't compute the type unless it is non-null as we don't want // to cause class loading. mirror::Object* value = field->GetObj(obj); if (value == NULL) { os << StringPrintf("null %s\n", PrettyDescriptor(descriptor).c_str()); } else { // Grab the field type without causing resolution. mirror::Class* field_type = fh.GetType(false); if (field_type != NULL) { PrettyObjectValue(os, field_type, value); } else { os << StringPrintf("%p %s\n", value, PrettyDescriptor(descriptor).c_str()); } } } } static void DumpFields(std::ostream& os, mirror::Object* obj, mirror::Class* klass) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { mirror::Class* super = klass->GetSuperClass(); if (super != NULL) { DumpFields(os, obj, super); } mirror::ObjectArray* fields = klass->GetIFields(); if (fields != NULL) { for (int32_t i = 0; i < fields->GetLength(); i++) { mirror::ArtField* field = fields->Get(i); PrintField(os, field, obj); } } } bool InDumpSpace(const mirror::Object* object) { return image_space_.Contains(object); } const void* GetOatCodeBegin(mirror::ArtMethod* m) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { const void* code = m->GetEntryPointFromCompiledCode(); if (code == GetResolutionTrampoline(Runtime::Current()->GetClassLinker())) { code = oat_dumper_->GetOatCode(m); } if (oat_dumper_->GetInstructionSet() == kThumb2) { code = reinterpret_cast(reinterpret_cast(code) & ~0x1); } return code; } uint32_t GetOatCodeSize(mirror::ArtMethod* m) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { const uint32_t* oat_code_begin = reinterpret_cast(GetOatCodeBegin(m)); if (oat_code_begin == NULL) { return 0; } return oat_code_begin[-1]; } const void* GetOatCodeEnd(mirror::ArtMethod* m) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { const uint8_t* oat_code_begin = reinterpret_cast(GetOatCodeBegin(m)); if (oat_code_begin == NULL) { return NULL; } return oat_code_begin + GetOatCodeSize(m); } static void Callback(mirror::Object* obj, void* arg) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { DCHECK(obj != NULL); DCHECK(arg != NULL); ImageDumper* state = reinterpret_cast(arg); if (!state->InDumpSpace(obj)) { return; } size_t object_bytes = obj->SizeOf(); size_t alignment_bytes = RoundUp(object_bytes, kObjectAlignment) - object_bytes; state->stats_.object_bytes += object_bytes; state->stats_.alignment_bytes += alignment_bytes; std::ostream& os = *state->os_; mirror::Class* obj_class = obj->GetClass(); if (obj_class->IsArrayClass()) { os << StringPrintf("%p: %s length:%d\n", obj, PrettyDescriptor(obj_class).c_str(), obj->AsArray()->GetLength()); } else if (obj->IsClass()) { mirror::Class* klass = obj->AsClass(); os << StringPrintf("%p: java.lang.Class \"%s\" (", obj, PrettyDescriptor(klass).c_str()) << klass->GetStatus() << ")\n"; } else if (obj->IsArtField()) { os << StringPrintf("%p: java.lang.reflect.ArtField %s\n", obj, PrettyField(obj->AsArtField()).c_str()); } else if (obj->IsArtMethod()) { os << StringPrintf("%p: java.lang.reflect.ArtMethod %s\n", obj, PrettyMethod(obj->AsArtMethod()).c_str()); } else if (obj_class->IsStringClass()) { os << StringPrintf("%p: java.lang.String %s\n", obj, PrintableString(obj->AsString()->ToModifiedUtf8()).c_str()); } else { os << StringPrintf("%p: %s\n", obj, PrettyDescriptor(obj_class).c_str()); } Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count); std::ostream indent_os(&indent_filter); DumpFields(indent_os, obj, obj_class); if (obj->IsObjectArray()) { mirror::ObjectArray* obj_array = obj->AsObjectArray(); int32_t length = obj_array->GetLength(); for (int32_t i = 0; i < length; i++) { mirror::Object* value = obj_array->Get(i); size_t run = 0; for (int32_t j = i + 1; j < length; j++) { if (value == obj_array->Get(j)) { run++; } else { break; } } if (run == 0) { indent_os << StringPrintf("%d: ", i); } else { indent_os << StringPrintf("%d to %zd: ", i, i + run); i = i + run; } mirror::Class* value_class = value == NULL ? obj_class->GetComponentType() : value->GetClass(); PrettyObjectValue(indent_os, value_class, value); } } else if (obj->IsClass()) { mirror::ObjectArray* sfields = obj->AsClass()->GetSFields(); if (sfields != NULL) { indent_os << "STATICS:\n"; Indenter indent2_filter(indent_os.rdbuf(), kIndentChar, kIndentBy1Count); std::ostream indent2_os(&indent2_filter); for (int32_t i = 0; i < sfields->GetLength(); i++) { mirror::ArtField* field = sfields->Get(i); PrintField(indent2_os, field, field->GetDeclaringClass()); } } } else if (obj->IsArtMethod()) { mirror::ArtMethod* method = obj->AsArtMethod(); if (method->IsNative()) { DCHECK(method->GetNativeGcMap() == NULL) << PrettyMethod(method); DCHECK(method->GetMappingTable() == NULL) << PrettyMethod(method); bool first_occurrence; const void* oat_code = state->GetOatCodeBegin(method); uint32_t oat_code_size = state->GetOatCodeSize(method); state->ComputeOatSize(oat_code, &first_occurrence); if (first_occurrence) { state->stats_.native_to_managed_code_bytes += oat_code_size; } if (oat_code != method->GetEntryPointFromCompiledCode()) { indent_os << StringPrintf("OAT CODE: %p\n", oat_code); } } else if (method->IsAbstract() || method->IsCalleeSaveMethod() || method->IsResolutionMethod() || MethodHelper(method).IsClassInitializer()) { DCHECK(method->GetNativeGcMap() == NULL) << PrettyMethod(method); DCHECK(method->GetMappingTable() == NULL) << PrettyMethod(method); } else { // TODO: we check there is a GC map here, we may not have a GC map if the code is pointing // to the quick/portable to interpreter bridge. CHECK(method->GetNativeGcMap() != NULL) << PrettyMethod(method); const DexFile::CodeItem* code_item = MethodHelper(method).GetCodeItem(); size_t dex_instruction_bytes = code_item->insns_size_in_code_units_ * 2; state->stats_.dex_instruction_bytes += dex_instruction_bytes; bool first_occurrence; size_t gc_map_bytes = state->ComputeOatSize(method->GetNativeGcMap(), &first_occurrence); if (first_occurrence) { state->stats_.gc_map_bytes += gc_map_bytes; } size_t pc_mapping_table_bytes = state->ComputeOatSize(method->GetMappingTable(), &first_occurrence); if (first_occurrence) { state->stats_.pc_mapping_table_bytes += pc_mapping_table_bytes; } size_t vmap_table_bytes = state->ComputeOatSize(method->GetVmapTable(), &first_occurrence); if (first_occurrence) { state->stats_.vmap_table_bytes += vmap_table_bytes; } const void* oat_code_begin = state->GetOatCodeBegin(method); const void* oat_code_end = state->GetOatCodeEnd(method); uint32_t oat_code_size = state->GetOatCodeSize(method); state->ComputeOatSize(oat_code_begin, &first_occurrence); if (first_occurrence) { state->stats_.managed_code_bytes += oat_code_size; if (method->IsConstructor()) { if (method->IsStatic()) { state->stats_.class_initializer_code_bytes += oat_code_size; } else if (dex_instruction_bytes > kLargeConstructorDexBytes) { state->stats_.large_initializer_code_bytes += oat_code_size; } } else if (dex_instruction_bytes > kLargeMethodDexBytes) { state->stats_.large_method_code_bytes += oat_code_size; } } state->stats_.managed_code_bytes_ignoring_deduplication += oat_code_size; indent_os << StringPrintf("OAT CODE: %p-%p\n", oat_code_begin, oat_code_end); indent_os << StringPrintf("SIZE: Dex Instructions=%zd GC=%zd Mapping=%zd\n", dex_instruction_bytes, gc_map_bytes, pc_mapping_table_bytes); size_t total_size = dex_instruction_bytes + gc_map_bytes + pc_mapping_table_bytes + vmap_table_bytes + oat_code_size + object_bytes; double expansion = static_cast(oat_code_size) / static_cast(dex_instruction_bytes); state->stats_.ComputeOutliers(total_size, expansion, method); } } state->stats_.Update(ClassHelper(obj_class).GetDescriptor(), object_bytes); } std::set already_seen_; // Compute the size of the given data within the oat file and whether this is the first time // this data has been requested size_t ComputeOatSize(const void* oat_data, bool* first_occurrence) { if (already_seen_.count(oat_data) == 0) { *first_occurrence = true; already_seen_.insert(oat_data); } else { *first_occurrence = false; } return oat_dumper_->ComputeSize(oat_data); } public: struct Stats { size_t oat_file_bytes; size_t file_bytes; size_t header_bytes; size_t object_bytes; size_t bitmap_bytes; size_t alignment_bytes; size_t managed_code_bytes; size_t managed_code_bytes_ignoring_deduplication; size_t managed_to_native_code_bytes; size_t native_to_managed_code_bytes; size_t class_initializer_code_bytes; size_t large_initializer_code_bytes; size_t large_method_code_bytes; size_t gc_map_bytes; size_t pc_mapping_table_bytes; size_t vmap_table_bytes; size_t dex_instruction_bytes; std::vector method_outlier; std::vector method_outlier_size; std::vector method_outlier_expansion; std::vector > oat_dex_file_sizes; explicit Stats() : oat_file_bytes(0), file_bytes(0), header_bytes(0), object_bytes(0), bitmap_bytes(0), alignment_bytes(0), managed_code_bytes(0), managed_code_bytes_ignoring_deduplication(0), managed_to_native_code_bytes(0), native_to_managed_code_bytes(0), class_initializer_code_bytes(0), large_initializer_code_bytes(0), large_method_code_bytes(0), gc_map_bytes(0), pc_mapping_table_bytes(0), vmap_table_bytes(0), dex_instruction_bytes(0) {} struct SizeAndCount { SizeAndCount(size_t bytes, size_t count) : bytes(bytes), count(count) {} size_t bytes; size_t count; }; typedef SafeMap SizeAndCountTable; SizeAndCountTable sizes_and_counts; void Update(const char* descriptor, size_t object_bytes) { SizeAndCountTable::iterator it = sizes_and_counts.find(descriptor); if (it != sizes_and_counts.end()) { it->second.bytes += object_bytes; it->second.count += 1; } else { sizes_and_counts.Put(descriptor, SizeAndCount(object_bytes, 1)); } } double PercentOfOatBytes(size_t size) { return (static_cast(size) / static_cast(oat_file_bytes)) * 100; } double PercentOfFileBytes(size_t size) { return (static_cast(size) / static_cast(file_bytes)) * 100; } double PercentOfObjectBytes(size_t size) { return (static_cast(size) / static_cast(object_bytes)) * 100; } void ComputeOutliers(size_t total_size, double expansion, mirror::ArtMethod* method) { method_outlier_size.push_back(total_size); method_outlier_expansion.push_back(expansion); method_outlier.push_back(method); } void DumpOutliers(std::ostream& os) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { size_t sum_of_sizes = 0; size_t sum_of_sizes_squared = 0; size_t sum_of_expansion = 0; size_t sum_of_expansion_squared = 0; size_t n = method_outlier_size.size(); for (size_t i = 0; i < n; i++) { size_t cur_size = method_outlier_size[i]; sum_of_sizes += cur_size; sum_of_sizes_squared += cur_size * cur_size; double cur_expansion = method_outlier_expansion[i]; sum_of_expansion += cur_expansion; sum_of_expansion_squared += cur_expansion * cur_expansion; } size_t size_mean = sum_of_sizes / n; size_t size_variance = (sum_of_sizes_squared - sum_of_sizes * size_mean) / (n - 1); double expansion_mean = sum_of_expansion / n; double expansion_variance = (sum_of_expansion_squared - sum_of_expansion * expansion_mean) / (n - 1); // Dump methods whose size is a certain number of standard deviations from the mean size_t dumped_values = 0; size_t skipped_values = 0; for (size_t i = 100; i > 0; i--) { // i is the current number of standard deviations size_t cur_size_variance = i * i * size_variance; bool first = true; for (size_t j = 0; j < n; j++) { size_t cur_size = method_outlier_size[j]; if (cur_size > size_mean) { size_t cur_var = cur_size - size_mean; cur_var = cur_var * cur_var; if (cur_var > cur_size_variance) { if (dumped_values > 20) { if (i == 1) { skipped_values++; } else { i = 2; // jump to counting for 1 standard deviation break; } } else { if (first) { os << "\nBig methods (size > " << i << " standard deviations the norm):\n"; first = false; } os << PrettyMethod(method_outlier[j]) << " requires storage of " << PrettySize(cur_size) << "\n"; method_outlier_size[j] = 0; // don't consider this method again dumped_values++; } } } } } if (skipped_values > 0) { os << "... skipped " << skipped_values << " methods with size > 1 standard deviation from the norm\n"; } os << std::flush; // Dump methods whose expansion is a certain number of standard deviations from the mean dumped_values = 0; skipped_values = 0; for (size_t i = 10; i > 0; i--) { // i is the current number of standard deviations double cur_expansion_variance = i * i * expansion_variance; bool first = true; for (size_t j = 0; j < n; j++) { double cur_expansion = method_outlier_expansion[j]; if (cur_expansion > expansion_mean) { size_t cur_var = cur_expansion - expansion_mean; cur_var = cur_var * cur_var; if (cur_var > cur_expansion_variance) { if (dumped_values > 20) { if (i == 1) { skipped_values++; } else { i = 2; // jump to counting for 1 standard deviation break; } } else { if (first) { os << "\nLarge expansion methods (size > " << i << " standard deviations the norm):\n"; first = false; } os << PrettyMethod(method_outlier[j]) << " expanded code by " << cur_expansion << "\n"; method_outlier_expansion[j] = 0.0; // don't consider this method again dumped_values++; } } } } } if (skipped_values > 0) { os << "... skipped " << skipped_values << " methods with expansion > 1 standard deviation from the norm\n"; } os << "\n" << std::flush; } void Dump(std::ostream& os) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { { os << "art_file_bytes = " << PrettySize(file_bytes) << "\n\n" << "art_file_bytes = header_bytes + object_bytes + alignment_bytes\n"; Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count); std::ostream indent_os(&indent_filter); indent_os << StringPrintf("header_bytes = %8zd (%2.0f%% of art file bytes)\n" "object_bytes = %8zd (%2.0f%% of art file bytes)\n" "bitmap_bytes = %8zd (%2.0f%% of art file bytes)\n" "alignment_bytes = %8zd (%2.0f%% of art file bytes)\n\n", header_bytes, PercentOfFileBytes(header_bytes), object_bytes, PercentOfFileBytes(object_bytes), bitmap_bytes, PercentOfFileBytes(bitmap_bytes), alignment_bytes, PercentOfFileBytes(alignment_bytes)) << std::flush; CHECK_EQ(file_bytes, bitmap_bytes + header_bytes + object_bytes + alignment_bytes); } os << "object_bytes breakdown:\n"; size_t object_bytes_total = 0; for (const auto& sizes_and_count : sizes_and_counts) { const std::string& descriptor(sizes_and_count.first); double average = static_cast(sizes_and_count.second.bytes) / static_cast(sizes_and_count.second.count); double percent = PercentOfObjectBytes(sizes_and_count.second.bytes); os << StringPrintf("%32s %8zd bytes %6zd instances " "(%4.0f bytes/instance) %2.0f%% of object_bytes\n", descriptor.c_str(), sizes_and_count.second.bytes, sizes_and_count.second.count, average, percent); object_bytes_total += sizes_and_count.second.bytes; } os << "\n" << std::flush; CHECK_EQ(object_bytes, object_bytes_total); os << StringPrintf("oat_file_bytes = %8zd\n" "managed_code_bytes = %8zd (%2.0f%% of oat file bytes)\n" "managed_to_native_code_bytes = %8zd (%2.0f%% of oat file bytes)\n" "native_to_managed_code_bytes = %8zd (%2.0f%% of oat file bytes)\n\n" "class_initializer_code_bytes = %8zd (%2.0f%% of oat file bytes)\n" "large_initializer_code_bytes = %8zd (%2.0f%% of oat file bytes)\n" "large_method_code_bytes = %8zd (%2.0f%% of oat file bytes)\n\n", oat_file_bytes, managed_code_bytes, PercentOfOatBytes(managed_code_bytes), managed_to_native_code_bytes, PercentOfOatBytes(managed_to_native_code_bytes), native_to_managed_code_bytes, PercentOfOatBytes(native_to_managed_code_bytes), class_initializer_code_bytes, PercentOfOatBytes(class_initializer_code_bytes), large_initializer_code_bytes, PercentOfOatBytes(large_initializer_code_bytes), large_method_code_bytes, PercentOfOatBytes(large_method_code_bytes)) << "DexFile sizes:\n"; for (const std::pair& oat_dex_file_size : oat_dex_file_sizes) { os << StringPrintf("%s = %zd (%2.0f%% of oat file bytes)\n", oat_dex_file_size.first.c_str(), oat_dex_file_size.second, PercentOfOatBytes(oat_dex_file_size.second)); } os << "\n" << StringPrintf("gc_map_bytes = %7zd (%2.0f%% of oat file bytes)\n" "pc_mapping_table_bytes = %7zd (%2.0f%% of oat file bytes)\n" "vmap_table_bytes = %7zd (%2.0f%% of oat file bytes)\n\n", gc_map_bytes, PercentOfOatBytes(gc_map_bytes), pc_mapping_table_bytes, PercentOfOatBytes(pc_mapping_table_bytes), vmap_table_bytes, PercentOfOatBytes(vmap_table_bytes)) << std::flush; os << StringPrintf("dex_instruction_bytes = %zd\n", dex_instruction_bytes) << StringPrintf("managed_code_bytes expansion = %.2f (ignoring deduplication %.2f)\n\n", static_cast(managed_code_bytes) / static_cast(dex_instruction_bytes), static_cast(managed_code_bytes_ignoring_deduplication) / static_cast(dex_instruction_bytes)) << std::flush; DumpOutliers(os); } } stats_; private: enum { // Number of bytes for a constructor to be considered large. Based on the 1000 basic block // threshold, we assume 2 bytes per instruction and 2 instructions per block. kLargeConstructorDexBytes = 4000, // Number of bytes for a method to be considered large. Based on the 4000 basic block // threshold, we assume 2 bytes per instruction and 2 instructions per block. kLargeMethodDexBytes = 16000 }; UniquePtr oat_dumper_; std::ostream* os_; const std::string image_filename_; const std::string host_prefix_; gc::space::ImageSpace& image_space_; const ImageHeader& image_header_; DISALLOW_COPY_AND_ASSIGN(ImageDumper); }; static int oatdump(int argc, char** argv) { InitLogging(argv); // Skip over argv[0]. argv++; argc--; if (argc == 0) { fprintf(stderr, "No arguments specified\n"); usage(); } const char* oat_filename = NULL; const char* image_filename = NULL; const char* boot_image_filename = NULL; std::string elf_filename_prefix; UniquePtr host_prefix; std::ostream* os = &std::cout; UniquePtr out; for (int i = 0; i < argc; i++) { const StringPiece option(argv[i]); if (option.starts_with("--oat-file=")) { oat_filename = option.substr(strlen("--oat-file=")).data(); } else if (option.starts_with("--image=")) { image_filename = option.substr(strlen("--image=")).data(); } else if (option.starts_with("--boot-image=")) { boot_image_filename = option.substr(strlen("--boot-image=")).data(); } else if (option.starts_with("--host-prefix=")) { host_prefix.reset(new std::string(option.substr(strlen("--host-prefix=")).data())); } else if (option.starts_with("--output=")) { const char* filename = option.substr(strlen("--output=")).data(); out.reset(new std::ofstream(filename)); if (!out->good()) { fprintf(stderr, "Failed to open output filename %s\n", filename); usage(); } os = out.get(); } else { fprintf(stderr, "Unknown argument %s\n", option.data()); usage(); } } if (image_filename == NULL && oat_filename == NULL) { fprintf(stderr, "Either --image or --oat must be specified\n"); return EXIT_FAILURE; } if (image_filename != NULL && oat_filename != NULL) { fprintf(stderr, "Either --image or --oat must be specified but not both\n"); return EXIT_FAILURE; } if (host_prefix.get() == NULL) { const char* android_product_out = getenv("ANDROID_PRODUCT_OUT"); if (android_product_out != NULL) { host_prefix.reset(new std::string(android_product_out)); } else { host_prefix.reset(new std::string("")); } } if (oat_filename != NULL) { std::string error_msg; OatFile* oat_file = OatFile::Open(oat_filename, oat_filename, NULL, false, &error_msg); if (oat_file == NULL) { fprintf(stderr, "Failed to open oat file from '%s': %s\n", oat_filename, error_msg.c_str()); return EXIT_FAILURE; } OatDumper oat_dumper(*host_prefix.get(), *oat_file); oat_dumper.Dump(*os); return EXIT_SUCCESS; } Runtime::Options options; std::string image_option; std::string oat_option; std::string boot_image_option; std::string boot_oat_option; // We are more like a compiler than a run-time. We don't want to execute code. options.push_back(std::make_pair("compiler", reinterpret_cast(NULL))); if (boot_image_filename != NULL) { boot_image_option += "-Ximage:"; boot_image_option += boot_image_filename; options.push_back(std::make_pair(boot_image_option.c_str(), reinterpret_cast(NULL))); } if (image_filename != NULL) { image_option += "-Ximage:"; image_option += image_filename; options.push_back(std::make_pair(image_option.c_str(), reinterpret_cast(NULL))); } if (!host_prefix->empty()) { options.push_back(std::make_pair("host-prefix", host_prefix->c_str())); } if (!Runtime::Create(options, false)) { fprintf(stderr, "Failed to create runtime\n"); return EXIT_FAILURE; } UniquePtr runtime(Runtime::Current()); // Runtime::Create acquired the mutator_lock_ that is normally given away when we Runtime::Start, // give it away now and then switch to a more managable ScopedObjectAccess. Thread::Current()->TransitionFromRunnableToSuspended(kNative); ScopedObjectAccess soa(Thread::Current()); gc::Heap* heap = Runtime::Current()->GetHeap(); gc::space::ImageSpace* image_space = heap->GetImageSpace(); CHECK(image_space != NULL); const ImageHeader& image_header = image_space->GetImageHeader(); if (!image_header.IsValid()) { fprintf(stderr, "Invalid image header %s\n", image_filename); return EXIT_FAILURE; } ImageDumper image_dumper(os, image_filename, *host_prefix.get(), *image_space, image_header); image_dumper.Dump(); return EXIT_SUCCESS; } } // namespace art int main(int argc, char** argv) { return art::oatdump(argc, argv); }