/* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "fault_handler.h" #include #include "base/macros.h" #include "base/hex_dump.h" #include "globals.h" #include "base/logging.h" #include "base/hex_dump.h" #include "mirror/art_method.h" #include "mirror/art_method-inl.h" #include "thread.h" #include "thread-inl.h" // // ARM specific fault handler functions. // namespace art { extern "C" void art_quick_throw_null_pointer_exception(); extern "C" void art_quick_throw_stack_overflow(void*); extern "C" void art_quick_implicit_suspend(); // Get the size of a thumb2 instruction in bytes. static uint32_t GetInstructionSize(uint8_t* pc) { uint16_t instr = pc[0] | pc[1] << 8; bool is_32bit = ((instr & 0xF000) == 0xF000) || ((instr & 0xF800) == 0xE800); uint32_t instr_size = is_32bit ? 4 : 2; return instr_size; } void FaultManager::GetMethodAndReturnPCAndSP(void* context, mirror::ArtMethod** out_method, uintptr_t* out_return_pc, uintptr_t* out_sp) { struct ucontext *uc = (struct ucontext *)context; struct sigcontext *sc = reinterpret_cast(&uc->uc_mcontext); *out_sp = static_cast(sc->arm_sp); LOG(DEBUG) << "sp: " << *out_sp; if (*out_sp == 0) { return; } // In the case of a stack overflow, the stack is not valid and we can't // get the method from the top of the stack. However it's in r0. uintptr_t* fault_addr = reinterpret_cast(sc->fault_address); uintptr_t* overflow_addr = reinterpret_cast( reinterpret_cast(*out_sp) - Thread::kStackOverflowReservedBytes); if (overflow_addr == fault_addr) { *out_method = reinterpret_cast(sc->arm_r0); } else { // The method is at the top of the stack. *out_method = reinterpret_cast(reinterpret_cast(*out_sp)[0]); } // Work out the return PC. This will be the address of the instruction // following the faulting ldr/str instruction. This is in thumb mode so // the instruction might be a 16 or 32 bit one. Also, the GC map always // has the bottom bit of the PC set so we also need to set that. // Need to work out the size of the instruction that caused the exception. uint8_t* ptr = reinterpret_cast(sc->arm_pc); LOG(DEBUG) << "pc: " << std::hex << static_cast(ptr); uint32_t instr_size = GetInstructionSize(ptr); *out_return_pc = (sc->arm_pc + instr_size) | 1; } bool NullPointerHandler::Action(int sig, siginfo_t* info, void* context) { // The code that looks for the catch location needs to know the value of the // ARM PC at the point of call. For Null checks we insert a GC map that is immediately after // the load/store instruction that might cause the fault. However the mapping table has // the low bits set for thumb mode so we need to set the bottom bit for the LR // register in order to find the mapping. // Need to work out the size of the instruction that caused the exception. struct ucontext *uc = reinterpret_cast(context); struct sigcontext *sc = reinterpret_cast(&uc->uc_mcontext); uint8_t* ptr = reinterpret_cast(sc->arm_pc); uint32_t instr_size = GetInstructionSize(ptr); sc->arm_lr = (sc->arm_pc + instr_size) | 1; // LR needs to point to gc map location sc->arm_pc = reinterpret_cast(art_quick_throw_null_pointer_exception); LOG(DEBUG) << "Generating null pointer exception"; return true; } // A suspend check is done using the following instruction sequence: // 0xf723c0b2: f8d902c0 ldr.w r0, [r9, #704] ; suspend_trigger_ // .. some intervening instruction // 0xf723c0b6: 6800 ldr r0, [r0, #0] // The offset from r9 is Thread::ThreadSuspendTriggerOffset(). // To check for a suspend check, we examine the instructions that caused // the fault (at PC-4 and PC). bool SuspensionHandler::Action(int sig, siginfo_t* info, void* context) { // These are the instructions to check for. The first one is the ldr r0,[r9,#xxx] // where xxx is the offset of the suspend trigger. uint32_t checkinst1 = 0xf8d90000 + Thread::ThreadSuspendTriggerOffset<4>().Int32Value(); uint16_t checkinst2 = 0x6800; struct ucontext *uc = (struct ucontext *)context; struct sigcontext *sc = reinterpret_cast(&uc->uc_mcontext); uint8_t* ptr2 = reinterpret_cast(sc->arm_pc); uint8_t* ptr1 = ptr2 - 4; LOG(DEBUG) << "checking suspend"; uint16_t inst2 = ptr2[0] | ptr2[1] << 8; LOG(DEBUG) << "inst2: " << std::hex << inst2 << " checkinst2: " << checkinst2; if (inst2 != checkinst2) { // Second instruction is not good, not ours. return false; } // The first instruction can a little bit up the stream due to load hoisting // in the compiler. uint8_t* limit = ptr1 - 40; // Compiler will hoist to a max of 20 instructions. bool found = false; while (ptr1 > limit) { uint32_t inst1 = ((ptr1[0] | ptr1[1] << 8) << 16) | (ptr1[2] | ptr1[3] << 8); LOG(DEBUG) << "inst1: " << std::hex << inst1 << " checkinst1: " << checkinst1; if (inst1 == checkinst1) { found = true; break; } ptr1 -= 2; // Min instruction size is 2 bytes. } if (found) { LOG(DEBUG) << "suspend check match"; // This is a suspend check. Arrange for the signal handler to return to // art_quick_implicit_suspend. Also set LR so that after the suspend check it // will resume the instruction (current PC + 2). PC points to the // ldr r0,[r0,#0] instruction (r0 will be 0, set by the trigger). // NB: remember that we need to set the bottom bit of the LR register // to switch to thumb mode. LOG(DEBUG) << "arm lr: " << std::hex << sc->arm_lr; LOG(DEBUG) << "arm pc: " << std::hex << sc->arm_pc; sc->arm_lr = sc->arm_pc + 3; // +2 + 1 (for thumb) sc->arm_pc = reinterpret_cast(art_quick_implicit_suspend); // Now remove the suspend trigger that caused this fault. Thread::Current()->RemoveSuspendTrigger(); LOG(DEBUG) << "removed suspend trigger invoking test suspend"; return true; } return false; } // Stack overflow fault handler. // // This checks that the fault address is equal to the current stack pointer // minus the overflow region size (16K typically). The instruction sequence // that generates this signal is: // // sub r12,sp,#16384 // ldr.w r12,[r12,#0] // // The second instruction will fault if r12 is inside the protected region // on the stack. // // If we determine this is a stack overflow we need to move the stack pointer // to the overflow region below the protected region. Because we now have // a gap in the stack (skips over protected region), we need to arrange // for the rest of the system to be unaware of the new stack arrangement // and behave as if there is a fully valid stack. We do this by placing // a unique address onto the stack followed by // the size of the gap. The stack walker will detect this and skip over the // gap. // NB. We also need to be careful of stack alignment as the ARM EABI specifies that // stack must be 8 byte aligned when making any calls. // NB. The size of the gap is the difference between the previous frame's SP and // the SP at which the size word is pushed. bool StackOverflowHandler::Action(int sig, siginfo_t* info, void* context) { struct ucontext *uc = (struct ucontext *)context; struct sigcontext *sc = reinterpret_cast(&uc->uc_mcontext); LOG(DEBUG) << "stack overflow handler with sp at " << std::hex << &uc; LOG(DEBUG) << "sigcontext: " << std::hex << sc; uint8_t* sp = reinterpret_cast(sc->arm_sp); LOG(DEBUG) << "sp: " << static_cast(sp); uintptr_t* fault_addr = reinterpret_cast(sc->fault_address); LOG(DEBUG) << "fault_addr: " << std::hex << fault_addr; LOG(DEBUG) << "checking for stack overflow, sp: " << std::hex << static_cast(sp) << ", fault_addr: " << fault_addr; uintptr_t* overflow_addr = reinterpret_cast(sp - Thread::kStackOverflowReservedBytes); // Check that the fault address is the value expected for a stack overflow. if (fault_addr != overflow_addr) { LOG(DEBUG) << "Not a stack overflow"; return false; } // We know this is a stack overflow. We need to move the sp to the overflow region // the exists below the protected region. R9 contains the current Thread* so // we can read the stack_end from that and subtract the size of the // protected region. This creates a gap in the stack that needs to be marked. Thread* self = reinterpret_cast(sc->arm_r9); uint8_t* prevsp = sp; sp = self->GetStackEnd() - Thread::kStackOverflowProtectedSize; LOG(DEBUG) << "setting sp to overflow region at " << std::hex << static_cast(sp); // We need to find the previous frame. Remember that // this has not yet been fully constructed because the SP has not been // decremented. So we need to work out the size of the spill portion of the // frame. This consists of something like: // // 0xb6a1d49c: e92d40e0 push {r5, r6, r7, lr} // 0xb6a1d4a0: ed2d8a06 vpush.f32 {s16-s21} // // The first is encoded in the ArtMethod as the spill_mask, the second as the // fp_spill_mask. A population count on each will give the number of registers // in each mask. Each register is 4 bytes on ARM32. mirror::ArtMethod* method = reinterpret_cast(sc->arm_r0); uint32_t spill_mask = method->GetCoreSpillMask(); uint32_t numcores = __builtin_popcount(spill_mask); uint32_t fp_spill_mask = method->GetFpSpillMask(); uint32_t numfps = __builtin_popcount(fp_spill_mask); uint32_t spill_size = (numcores + numfps) * 4; LOG(DEBUG) << "spill size: " << spill_size; uint8_t* prevframe = prevsp + spill_size; LOG(DEBUG) << "previous frame: " << static_cast(prevframe); // NOTE: the ARM EABI needs an 8 byte alignment. In the case of ARM32 a pointer // is 4 bytes so that, together with the offset to the previous frame is 8 // bytes. On other architectures we will need to align the stack. // Push a marker onto the stack to tell the stack walker that there is a stack // overflow and the stack is not contiguous. // First the offset from SP to the previous frame. sp -= sizeof(uint32_t); LOG(DEBUG) << "push gap of " << static_cast(prevframe - sp); *reinterpret_cast(sp) = static_cast(prevframe - sp); // Now the gap marker (pointer sized). sp -= sizeof(mirror::ArtMethod*); *reinterpret_cast(sp) = stack_overflow_gap_marker; // Now establish the stack pointer for the signal return. sc->arm_sp = reinterpret_cast(sp); // Now arrange for the signal handler to return to art_quick_throw_stack_overflow. // We need the LR to point to the GC map just after the fault instruction. uint8_t* ptr = reinterpret_cast(sc->arm_pc); uint32_t instr_size = GetInstructionSize(ptr); sc->arm_lr = (sc->arm_pc + instr_size) | 1; // LR needs to point to gc map location sc->arm_pc = reinterpret_cast(art_quick_throw_stack_overflow); // The kernel will now return to the address in sc->arm_pc. We have arranged the // stack pointer to be in the overflow region. Throwing the exception will perform // a longjmp which will restore the stack pointer to the correct location for the // exception catch. return true; } } // namespace art