/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_ART_METHOD_H_ #define ART_RUNTIME_ART_METHOD_H_ #include "dex_file.h" #include "gc_root.h" #include "invoke_type.h" #include "method_reference.h" #include "modifiers.h" #include "mirror/object.h" #include "object_callbacks.h" #include "quick/quick_method_frame_info.h" #include "read_barrier_option.h" #include "stack.h" #include "stack_map.h" #include "utils.h" namespace art { union JValue; class ScopedObjectAccessAlreadyRunnable; class StringPiece; class ShadowFrame; namespace mirror { class Array; class Class; class PointerArray; } // namespace mirror typedef void (EntryPointFromInterpreter)(Thread* self, const DexFile::CodeItem* code_item, ShadowFrame* shadow_frame, JValue* result); class ArtMethod FINAL { public: ArtMethod() : access_flags_(0), dex_code_item_offset_(0), dex_method_index_(0), method_index_(0) { } ArtMethod(const ArtMethod& src, size_t image_pointer_size) { CopyFrom(&src, image_pointer_size); } static ArtMethod* FromReflectedMethod(const ScopedObjectAccessAlreadyRunnable& soa, jobject jlr_method) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); ALWAYS_INLINE mirror::Class* GetDeclaringClass() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); ALWAYS_INLINE mirror::Class* GetDeclaringClassNoBarrier() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); ALWAYS_INLINE mirror::Class* GetDeclaringClassUnchecked() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); void SetDeclaringClass(mirror::Class *new_declaring_class) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); static MemberOffset DeclaringClassOffset() { return MemberOffset(OFFSETOF_MEMBER(ArtMethod, declaring_class_)); } ALWAYS_INLINE uint32_t GetAccessFlags() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); void SetAccessFlags(uint32_t new_access_flags) { // Not called within a transaction. access_flags_ = new_access_flags; } // Approximate what kind of method call would be used for this method. InvokeType GetInvokeType() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Returns true if the method is declared public. bool IsPublic() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return (GetAccessFlags() & kAccPublic) != 0; } // Returns true if the method is declared private. bool IsPrivate() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return (GetAccessFlags() & kAccPrivate) != 0; } // Returns true if the method is declared static. bool IsStatic() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return (GetAccessFlags() & kAccStatic) != 0; } // Returns true if the method is a constructor. bool IsConstructor() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return (GetAccessFlags() & kAccConstructor) != 0; } // Returns true if the method is a class initializer. bool IsClassInitializer() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return IsConstructor() && IsStatic(); } // Returns true if the method is static, private, or a constructor. bool IsDirect() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return IsDirect(GetAccessFlags()); } static bool IsDirect(uint32_t access_flags) { return (access_flags & (kAccStatic | kAccPrivate | kAccConstructor)) != 0; } // Returns true if the method is declared synchronized. bool IsSynchronized() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { uint32_t synchonized = kAccSynchronized | kAccDeclaredSynchronized; return (GetAccessFlags() & synchonized) != 0; } bool IsFinal() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return (GetAccessFlags() & kAccFinal) != 0; } bool IsMiranda() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return (GetAccessFlags() & kAccMiranda) != 0; } bool IsNative() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return (GetAccessFlags() & kAccNative) != 0; } bool ShouldNotInline() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return (GetAccessFlags() & kAccDontInline) != 0; } void SetShouldNotInline() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { SetAccessFlags(GetAccessFlags() | kAccDontInline); } bool IsFastNative() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { uint32_t mask = kAccFastNative | kAccNative; return (GetAccessFlags() & mask) == mask; } bool IsAbstract() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return (GetAccessFlags() & kAccAbstract) != 0; } bool IsSynthetic() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return (GetAccessFlags() & kAccSynthetic) != 0; } bool IsProxyMethod() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); bool IsPreverified() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return (GetAccessFlags() & kAccPreverified) != 0; } void SetPreverified() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { DCHECK(!IsPreverified()); SetAccessFlags(GetAccessFlags() | kAccPreverified); } bool IsOptimized(size_t pointer_size) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { // Temporary solution for detecting if a method has been optimized: the compiler // does not create a GC map. Instead, the vmap table contains the stack map // (as in stack_map.h). return !IsNative() && GetEntryPointFromQuickCompiledCodePtrSize(pointer_size) != nullptr && GetQuickOatCodePointer(pointer_size) != nullptr && GetNativeGcMap(pointer_size) == nullptr; } bool CheckIncompatibleClassChange(InvokeType type) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); uint16_t GetMethodIndex() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Doesn't do erroneous / unresolved class checks. uint16_t GetMethodIndexDuringLinking() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); size_t GetVtableIndex() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return GetMethodIndex(); } void SetMethodIndex(uint16_t new_method_index) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { // Not called within a transaction. method_index_ = new_method_index; } static MemberOffset DexMethodIndexOffset() { return OFFSET_OF_OBJECT_MEMBER(ArtMethod, dex_method_index_); } static MemberOffset MethodIndexOffset() { return OFFSET_OF_OBJECT_MEMBER(ArtMethod, method_index_); } uint32_t GetCodeItemOffset() { return dex_code_item_offset_; } void SetCodeItemOffset(uint32_t new_code_off) { // Not called within a transaction. dex_code_item_offset_ = new_code_off; } // Number of 32bit registers that would be required to hold all the arguments static size_t NumArgRegisters(const StringPiece& shorty); ALWAYS_INLINE uint32_t GetDexMethodIndex() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); void SetDexMethodIndex(uint32_t new_idx) { // Not called within a transaction. dex_method_index_ = new_idx; } static MemberOffset DexCacheResolvedMethodsOffset() { return OFFSET_OF_OBJECT_MEMBER(ArtMethod, dex_cache_resolved_methods_); } static MemberOffset DexCacheResolvedTypesOffset() { return OFFSET_OF_OBJECT_MEMBER(ArtMethod, dex_cache_resolved_types_); } ALWAYS_INLINE mirror::PointerArray* GetDexCacheResolvedMethods() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); ALWAYS_INLINE ArtMethod* GetDexCacheResolvedMethod(uint16_t method_idx, size_t ptr_size) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); ALWAYS_INLINE void SetDexCacheResolvedMethod(uint16_t method_idx, ArtMethod* new_method, size_t ptr_size) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); ALWAYS_INLINE void SetDexCacheResolvedMethods(mirror::PointerArray* new_dex_cache_methods) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); bool HasDexCacheResolvedMethods() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); bool HasSameDexCacheResolvedMethods(ArtMethod* other) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); bool HasSameDexCacheResolvedMethods(mirror::PointerArray* other_cache) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); template mirror::Class* GetDexCacheResolvedType(uint32_t type_idx) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); void SetDexCacheResolvedTypes(mirror::ObjectArray* new_dex_cache_types) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); bool HasDexCacheResolvedTypes() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); bool HasSameDexCacheResolvedTypes(ArtMethod* other) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); bool HasSameDexCacheResolvedTypes(mirror::ObjectArray* other_cache) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Get the Class* from the type index into this method's dex cache. mirror::Class* GetClassFromTypeIndex(uint16_t type_idx, bool resolve) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Find the method that this method overrides. ArtMethod* FindOverriddenMethod(size_t pointer_size) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Find the method index for this method within other_dexfile. If this method isn't present then // return DexFile::kDexNoIndex. The name_and_signature_idx MUST refer to a MethodId with the same // name and signature in the other_dexfile, such as the method index used to resolve this method // in the other_dexfile. uint32_t FindDexMethodIndexInOtherDexFile(const DexFile& other_dexfile, uint32_t name_and_signature_idx) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); void Invoke(Thread* self, uint32_t* args, uint32_t args_size, JValue* result, const char* shorty) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); EntryPointFromInterpreter* GetEntryPointFromInterpreter() { return GetEntryPointFromInterpreterPtrSize(sizeof(void*)); } EntryPointFromInterpreter* GetEntryPointFromInterpreterPtrSize(size_t pointer_size) { return GetEntryPoint( EntryPointFromInterpreterOffset(pointer_size), pointer_size); } void SetEntryPointFromInterpreter(EntryPointFromInterpreter* entry_point_from_interpreter) { SetEntryPointFromInterpreterPtrSize(entry_point_from_interpreter, sizeof(void*)); } void SetEntryPointFromInterpreterPtrSize(EntryPointFromInterpreter* entry_point_from_interpreter, size_t pointer_size) { SetEntryPoint(EntryPointFromInterpreterOffset(pointer_size), entry_point_from_interpreter, pointer_size); } const void* GetEntryPointFromQuickCompiledCode() { return GetEntryPointFromQuickCompiledCodePtrSize(sizeof(void*)); } ALWAYS_INLINE const void* GetEntryPointFromQuickCompiledCodePtrSize(size_t pointer_size) { return GetEntryPoint( EntryPointFromQuickCompiledCodeOffset(pointer_size), pointer_size); } void SetEntryPointFromQuickCompiledCode(const void* entry_point_from_quick_compiled_code) { SetEntryPointFromQuickCompiledCodePtrSize(entry_point_from_quick_compiled_code, sizeof(void*)); } ALWAYS_INLINE void SetEntryPointFromQuickCompiledCodePtrSize( const void* entry_point_from_quick_compiled_code, size_t pointer_size) { SetEntryPoint(EntryPointFromQuickCompiledCodeOffset(pointer_size), entry_point_from_quick_compiled_code, pointer_size); } uint32_t GetCodeSize() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Check whether the given PC is within the quick compiled code associated with this method's // quick entrypoint. This code isn't robust for instrumentation, etc. and is only used for // debug purposes. bool PcIsWithinQuickCode(uintptr_t pc) { return PcIsWithinQuickCode( reinterpret_cast(GetEntryPointFromQuickCompiledCode()), pc); } void AssertPcIsWithinQuickCode(uintptr_t pc) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Returns true if the entrypoint points to the interpreter, as // opposed to the compiled code, that is, this method will be // interpretered on invocation. bool IsEntrypointInterpreter() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); uint32_t GetQuickOatCodeOffset(); void SetQuickOatCodeOffset(uint32_t code_offset); ALWAYS_INLINE static const void* EntryPointToCodePointer(const void* entry_point) { uintptr_t code = reinterpret_cast(entry_point); // TODO: Make this Thumb2 specific. It is benign on other architectures as code is always at // least 2 byte aligned. code &= ~0x1; return reinterpret_cast(code); } // Actual entry point pointer to compiled oat code or null. const void* GetQuickOatEntryPoint(size_t pointer_size) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Actual pointer to compiled oat code or null. const void* GetQuickOatCodePointer(size_t pointer_size) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return EntryPointToCodePointer(GetQuickOatEntryPoint(pointer_size)); } // Callers should wrap the uint8_t* in a MappingTable instance for convenient access. const uint8_t* GetMappingTable(size_t pointer_size) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); const uint8_t* GetMappingTable(const void* code_pointer, size_t pointer_size) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Callers should wrap the uint8_t* in a VmapTable instance for convenient access. const uint8_t* GetVmapTable(size_t pointer_size) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); const uint8_t* GetVmapTable(const void* code_pointer, size_t pointer_size) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); CodeInfo GetOptimizedCodeInfo() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Callers should wrap the uint8_t* in a GcMap instance for convenient access. const uint8_t* GetNativeGcMap(size_t pointer_size) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); const uint8_t* GetNativeGcMap(const void* code_pointer, size_t pointer_size) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); template uint32_t GetFrameSizeInBytes() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { uint32_t result = GetQuickFrameInfo().FrameSizeInBytes(); if (kCheckFrameSize) { DCHECK_LE(static_cast(kStackAlignment), result); } return result; } QuickMethodFrameInfo GetQuickFrameInfo() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); QuickMethodFrameInfo GetQuickFrameInfo(const void* code_pointer) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); FrameOffset GetReturnPcOffset() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return GetReturnPcOffset(GetFrameSizeInBytes()); } FrameOffset GetReturnPcOffset(uint32_t frame_size_in_bytes) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { DCHECK_EQ(frame_size_in_bytes, GetFrameSizeInBytes()); return FrameOffset(frame_size_in_bytes - sizeof(void*)); } FrameOffset GetHandleScopeOffset() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { constexpr size_t handle_scope_offset = sizeof(ArtMethod*); DCHECK_LT(handle_scope_offset, GetFrameSizeInBytes()); return FrameOffset(handle_scope_offset); } void RegisterNative(const void* native_method, bool is_fast) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); void UnregisterNative() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); static MemberOffset EntryPointFromInterpreterOffset(size_t pointer_size) { return MemberOffset(PtrSizedFieldsOffset(pointer_size) + OFFSETOF_MEMBER( PtrSizedFields, entry_point_from_interpreter_) / sizeof(void*) * pointer_size); } static MemberOffset EntryPointFromJniOffset(size_t pointer_size) { return MemberOffset(PtrSizedFieldsOffset(pointer_size) + OFFSETOF_MEMBER( PtrSizedFields, entry_point_from_jni_) / sizeof(void*) * pointer_size); } static MemberOffset EntryPointFromQuickCompiledCodeOffset(size_t pointer_size) { return MemberOffset(PtrSizedFieldsOffset(pointer_size) + OFFSETOF_MEMBER( PtrSizedFields, entry_point_from_quick_compiled_code_) / sizeof(void*) * pointer_size); } void* GetEntryPointFromJni() { return GetEntryPointFromJniPtrSize(sizeof(void*)); } ALWAYS_INLINE void* GetEntryPointFromJniPtrSize(size_t pointer_size) { return GetEntryPoint(EntryPointFromJniOffset(pointer_size), pointer_size); } void SetEntryPointFromJni(const void* entrypoint) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { SetEntryPointFromJniPtrSize(entrypoint, sizeof(void*)); } ALWAYS_INLINE void SetEntryPointFromJniPtrSize(const void* entrypoint, size_t pointer_size) { SetEntryPoint(EntryPointFromJniOffset(pointer_size), entrypoint, pointer_size); } // Is this a CalleSaveMethod or ResolutionMethod and therefore doesn't adhere to normal // conventions for a method of managed code. Returns false for Proxy methods. ALWAYS_INLINE bool IsRuntimeMethod(); // Is this a hand crafted method used for something like describing callee saves? bool IsCalleeSaveMethod() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); bool IsResolutionMethod() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); bool IsImtConflictMethod() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); bool IsImtUnimplementedMethod() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); uintptr_t NativeQuickPcOffset(const uintptr_t pc) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); #ifdef NDEBUG uintptr_t NativeQuickPcOffset(const uintptr_t pc, const void* quick_entry_point) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return pc - reinterpret_cast(quick_entry_point); } #else uintptr_t NativeQuickPcOffset(const uintptr_t pc, const void* quick_entry_point) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); #endif // Converts a native PC to a dex PC. uint32_t ToDexPc(const uintptr_t pc, bool abort_on_failure = true) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Converts a dex PC to a native PC. uintptr_t ToNativeQuickPc(const uint32_t dex_pc, bool abort_on_failure = true) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); MethodReference ToMethodReference() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return MethodReference(GetDexFile(), GetDexMethodIndex()); } // Find the catch block for the given exception type and dex_pc. When a catch block is found, // indicates whether the found catch block is responsible for clearing the exception or whether // a move-exception instruction is present. uint32_t FindCatchBlock(Handle exception_type, uint32_t dex_pc, bool* has_no_move_exception) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); template void VisitRoots(RootVisitorType& visitor) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); const DexFile* GetDexFile() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); const char* GetDeclaringClassDescriptor() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); const char* GetShorty() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { uint32_t unused_length; return GetShorty(&unused_length); } const char* GetShorty(uint32_t* out_length) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); const Signature GetSignature() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); ALWAYS_INLINE const char* GetName() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); mirror::String* GetNameAsString(Thread* self) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); const DexFile::CodeItem* GetCodeItem() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); bool IsResolvedTypeIdx(uint16_t type_idx) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); int32_t GetLineNumFromDexPC(uint32_t dex_pc) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); const DexFile::ProtoId& GetPrototype() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); const DexFile::TypeList* GetParameterTypeList() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); const char* GetDeclaringClassSourceFile() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); uint16_t GetClassDefIndex() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); const DexFile::ClassDef& GetClassDef() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); const char* GetReturnTypeDescriptor() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); const char* GetTypeDescriptorFromTypeIdx(uint16_t type_idx) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // May cause thread suspension due to GetClassFromTypeIdx calling ResolveType this caused a large // number of bugs at call sites. mirror::Class* GetReturnType(bool resolve = true) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); mirror::ClassLoader* GetClassLoader() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); mirror::DexCache* GetDexCache() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); ALWAYS_INLINE ArtMethod* GetInterfaceMethodIfProxy(size_t pointer_size) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // May cause thread suspension due to class resolution. bool EqualParameters(Handle> params) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Size of an instance of this object. static size_t ObjectSize(size_t pointer_size) { return RoundUp(OFFSETOF_MEMBER(ArtMethod, ptr_sized_fields_), pointer_size) + (sizeof(PtrSizedFields) / sizeof(void*)) * pointer_size; } void CopyFrom(const ArtMethod* src, size_t image_pointer_size) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); ALWAYS_INLINE mirror::ObjectArray* GetDexCacheResolvedTypes() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); protected: // Field order required by test "ValidateFieldOrderOfJavaCppUnionClasses". // The class we are a part of. GcRoot declaring_class_; // Short cuts to declaring_class_->dex_cache_ member for fast compiled code access. GcRoot dex_cache_resolved_methods_; // Short cuts to declaring_class_->dex_cache_ member for fast compiled code access. GcRoot> dex_cache_resolved_types_; // Access flags; low 16 bits are defined by spec. uint32_t access_flags_; /* Dex file fields. The defining dex file is available via declaring_class_->dex_cache_ */ // Offset to the CodeItem. uint32_t dex_code_item_offset_; // Index into method_ids of the dex file associated with this method. uint32_t dex_method_index_; /* End of dex file fields. */ // Entry within a dispatch table for this method. For static/direct methods the index is into // the declaringClass.directMethods, for virtual methods the vtable and for interface methods the // ifTable. uint32_t method_index_; // Fake padding field gets inserted here. // Must be the last fields in the method. // PACKED(4) is necessary for the correctness of // RoundUp(OFFSETOF_MEMBER(ArtMethod, ptr_sized_fields_), pointer_size). struct PACKED(4) PtrSizedFields { // Method dispatch from the interpreter invokes this pointer which may cause a bridge into // compiled code. void* entry_point_from_interpreter_; // Pointer to JNI function registered to this method, or a function to resolve the JNI function. void* entry_point_from_jni_; // Method dispatch from quick compiled code invokes this pointer which may cause bridging into // the interpreter. void* entry_point_from_quick_compiled_code_; } ptr_sized_fields_; private: static size_t PtrSizedFieldsOffset(size_t pointer_size) { // Round up to pointer size for padding field. return RoundUp(OFFSETOF_MEMBER(ArtMethod, ptr_sized_fields_), pointer_size); } template ALWAYS_INLINE T GetEntryPoint(MemberOffset offset, size_t pointer_size) const { DCHECK(ValidPointerSize(pointer_size)) << pointer_size; const auto addr = reinterpret_cast(this) + offset.Uint32Value(); if (pointer_size == sizeof(uint32_t)) { return reinterpret_cast(*reinterpret_cast(addr)); } else { auto v = *reinterpret_cast(addr); DCHECK_EQ(reinterpret_cast(reinterpret_cast(v)), v) << "Conversion lost bits"; return reinterpret_cast(v); } } template ALWAYS_INLINE void SetEntryPoint(MemberOffset offset, T new_value, size_t pointer_size) { DCHECK(ValidPointerSize(pointer_size)) << pointer_size; const auto addr = reinterpret_cast(this) + offset.Uint32Value(); if (pointer_size == sizeof(uint32_t)) { uintptr_t ptr = reinterpret_cast(new_value); DCHECK_EQ(static_cast(ptr), ptr) << "Conversion lost bits"; *reinterpret_cast(addr) = static_cast(ptr); } else { *reinterpret_cast(addr) = reinterpret_cast(new_value); } } // Code points to the start of the quick code. static uint32_t GetCodeSize(const void* code); static bool PcIsWithinQuickCode(uintptr_t code, uintptr_t pc) { if (code == 0) { return pc == 0; } /* * During a stack walk, a return PC may point past-the-end of the code * in the case that the last instruction is a call that isn't expected to * return. Thus, we check <= code + GetCodeSize(). * * NOTE: For Thumb both pc and code are offset by 1 indicating the Thumb state. */ return code <= pc && pc <= code + GetCodeSize( EntryPointToCodePointer(reinterpret_cast(code))); } DISALLOW_COPY_AND_ASSIGN(ArtMethod); // Need to use CopyFrom to deal with 32 vs 64 bits. }; } // namespace art #endif // ART_RUNTIME_ART_METHOD_H_