/* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_ATOMIC_H_ #define ART_RUNTIME_ATOMIC_H_ #include #include #include "base/macros.h" namespace art { class Mutex; template class Atomic { public: Atomic() : value_(0) { } explicit Atomic(T value) : value_(value) { } Atomic& operator=(T desired) { Store(desired); return *this; } T Load() const { return value_; } operator T() const { return Load(); } T FetchAndAdd(const T value) { return __sync_fetch_and_add(&value_, value); // Return old_value. } T FetchAndSub(const T value) { return __sync_fetch_and_sub(&value_, value); // Return old value. } T operator++() { // Prefix operator. return __sync_add_and_fetch(&value_, 1); // Return new value. } T operator++(int) { // Postfix operator. return __sync_fetch_and_add(&value_, 1); // Return old value. } T operator--() { // Prefix operator. return __sync_sub_and_fetch(&value_, 1); // Return new value. } T operator--(int) { // Postfix operator. return __sync_fetch_and_sub(&value_, 1); // Return old value. } bool CompareAndSwap(T expected_value, T desired_value) { return __sync_bool_compare_and_swap(&value_, expected_value, desired_value); } volatile T* Address() { return &value_; } private: // Unsafe = operator for non atomic operations on the integer. void Store(T desired) { value_ = desired; } volatile T value_; }; typedef Atomic AtomicInteger; // NOTE: Two "quasiatomic" operations on the exact same memory address // are guaranteed to operate atomically with respect to each other, // but no guarantees are made about quasiatomic operations mixed with // non-quasiatomic operations on the same address, nor about // quasiatomic operations that are performed on partially-overlapping // memory. class QuasiAtomic { #if defined(__mips__) && !defined(__LP64__) static constexpr bool kNeedSwapMutexes = true; #else static constexpr bool kNeedSwapMutexes = false; #endif public: static void Startup(); static void Shutdown(); // Reads the 64-bit value at "addr" without tearing. static int64_t Read64(volatile const int64_t* addr) { if (!kNeedSwapMutexes) { return *addr; } else { return SwapMutexRead64(addr); } } // Writes to the 64-bit value at "addr" without tearing. static void Write64(volatile int64_t* addr, int64_t val) { if (!kNeedSwapMutexes) { *addr = val; } else { SwapMutexWrite64(addr, val); } } // Atomically compare the value at "addr" to "old_value", if equal replace it with "new_value" // and return true. Otherwise, don't swap, and return false. static bool Cas64(int64_t old_value, int64_t new_value, volatile int64_t* addr) { if (!kNeedSwapMutexes) { return __sync_bool_compare_and_swap(addr, old_value, new_value); } else { return SwapMutexCas64(old_value, new_value, addr); } } // Does the architecture provide reasonable atomic long operations or do we fall back on mutexes? static bool LongAtomicsUseMutexes() { return !kNeedSwapMutexes; } static void MembarLoadStore() { #if defined(__arm__) || defined(__aarch64__) __asm__ __volatile__("dmb ish" : : : "memory"); #elif defined(__i386__) || defined(__x86_64__) __asm__ __volatile__("" : : : "memory"); #elif defined(__mips__) __asm__ __volatile__("sync" : : : "memory"); #else #error Unexpected architecture #endif } static void MembarLoadLoad() { #if defined(__arm__) || defined(__aarch64__) __asm__ __volatile__("dmb ish" : : : "memory"); #elif defined(__i386__) || defined(__x86_64__) __asm__ __volatile__("" : : : "memory"); #elif defined(__mips__) __asm__ __volatile__("sync" : : : "memory"); #else #error Unexpected architecture #endif } static void MembarStoreStore() { #if defined(__arm__) || defined(__aarch64__) __asm__ __volatile__("dmb ishst" : : : "memory"); #elif defined(__i386__) || defined(__x86_64__) __asm__ __volatile__("" : : : "memory"); #elif defined(__mips__) __asm__ __volatile__("sync" : : : "memory"); #else #error Unexpected architecture #endif } static void MembarStoreLoad() { #if defined(__arm__) || defined(__aarch64__) __asm__ __volatile__("dmb ish" : : : "memory"); #elif defined(__i386__) || defined(__x86_64__) __asm__ __volatile__("mfence" : : : "memory"); #elif defined(__mips__) __asm__ __volatile__("sync" : : : "memory"); #else #error Unexpected architecture #endif } private: static Mutex* GetSwapMutex(const volatile int64_t* addr); static int64_t SwapMutexRead64(volatile const int64_t* addr); static void SwapMutexWrite64(volatile int64_t* addr, int64_t val); static bool SwapMutexCas64(int64_t old_value, int64_t new_value, volatile int64_t* addr); // We stripe across a bunch of different mutexes to reduce contention. static constexpr size_t kSwapMutexCount = 32; static std::vector* gSwapMutexes; DISALLOW_COPY_AND_ASSIGN(QuasiAtomic); }; } // namespace art #endif // ART_RUNTIME_ATOMIC_H_