/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "bit_vector.h" namespace art { // TODO: profile to make sure this is still a win relative to just using shifted masks. static uint32_t check_masks[32] = { 0x00000001, 0x00000002, 0x00000004, 0x00000008, 0x00000010, 0x00000020, 0x00000040, 0x00000080, 0x00000100, 0x00000200, 0x00000400, 0x00000800, 0x00001000, 0x00002000, 0x00004000, 0x00008000, 0x00010000, 0x00020000, 0x00040000, 0x00080000, 0x00100000, 0x00200000, 0x00400000, 0x00800000, 0x01000000, 0x02000000, 0x04000000, 0x08000000, 0x10000000, 0x20000000, 0x40000000, 0x80000000 }; static inline uint32_t BitsToWords(uint32_t bits) { return (bits + 31) >> 5; } // TODO: replace excessive argument defaulting when we are at gcc 4.7 // or later on host with delegating constructor support. Specifically, // starts_bits and storage_size/storage are mutually exclusive. BitVector::BitVector(uint32_t start_bits, bool expandable, Allocator* allocator, uint32_t storage_size, uint32_t* storage) : allocator_(allocator), expandable_(expandable), storage_size_(storage_size), storage_(storage) { DCHECK_EQ(sizeof(*storage_), 4U); // Assuming 32-bit units. if (storage_ == nullptr) { storage_size_ = BitsToWords(start_bits); storage_ = static_cast(allocator_->Alloc(storage_size_ * sizeof(*storage_))); } } BitVector::~BitVector() { allocator_->Free(storage_); } /* * Determine whether or not the specified bit is set. */ bool BitVector::IsBitSet(uint32_t num) const { // If the index is over the size: if (num >= storage_size_ * sizeof(*storage_) * 8) { // Whether it is expandable or not, this bit does not exist: thus it is not set. return false; } uint32_t val = storage_[num >> 5] & check_masks[num & 0x1f]; return (val != 0); } // Mark all bits bit as "clear". void BitVector::ClearAllBits() { memset(storage_, 0, storage_size_ * sizeof(*storage_)); } // Mark the specified bit as "set". /* * TUNING: this could have pathologically bad growth/expand behavior. Make sure we're * not using it badly or change resize mechanism. */ void BitVector::SetBit(uint32_t num) { if (num >= storage_size_ * sizeof(*storage_) * 8) { DCHECK(expandable_) << "Attempted to expand a non-expandable bitmap to position " << num; /* Round up to word boundaries for "num+1" bits */ uint32_t new_size = BitsToWords(num + 1); DCHECK_GT(new_size, storage_size_); uint32_t *new_storage = static_cast(allocator_->Alloc(new_size * sizeof(*storage_))); memcpy(new_storage, storage_, storage_size_ * sizeof(*storage_)); // Zero out the new storage words. memset(&new_storage[storage_size_], 0, (new_size - storage_size_) * sizeof(*storage_)); // TOTO: collect stats on space wasted because of resize. storage_ = new_storage; storage_size_ = new_size; } storage_[num >> 5] |= check_masks[num & 0x1f]; } // Mark the specified bit as "unset". void BitVector::ClearBit(uint32_t num) { // If the index is over the size, we don't have to do anything, it is cleared. if (num < storage_size_ * sizeof(*storage_) * 8) { // Otherwise, go ahead and clear it. storage_[num >> 5] &= ~check_masks[num & 0x1f]; } } bool BitVector::SameBitsSet(const BitVector *src) { int our_highest = GetHighestBitSet(); int src_highest = src->GetHighestBitSet(); // If the highest bit set is different, we are different. if (our_highest != src_highest) { return true; } // If the highest bit set is -1, both are cleared, we are the same. // If the highest bit set is 0, both have a unique bit set, we are the same. if (our_highest >= 0) { return true; } // Get the highest bit set's cell's index. int our_highest_index = (our_highest >> 5); // This memcmp is enough: we know that the highest bit set is the same for both: // - Therefore, min_size goes up to at least that, we are thus comparing at least what we need to, but not less. // ie. we are comparing all storage cells that could have difference, if both vectors have cells above our_highest_index, // they are automatically at 0. return (memcmp(storage_, src->GetRawStorage(), our_highest_index * sizeof(*storage_)) != 0); } // Intersect with another bit vector. void BitVector::Intersect(const BitVector* src) { uint32_t src_storage_size = src->storage_size_; // Get the minimum size between us and source. uint32_t min_size = (storage_size_ < src_storage_size) ? storage_size_ : src_storage_size; uint32_t idx; for (idx = 0; idx < min_size; idx++) { storage_[idx] &= src->GetRawStorageWord(idx); } // Now, due to this being an intersection, there are two possibilities: // - Either src was larger than us: we don't care, all upper bits would thus be 0. // - Either we are larger than src: we don't care, all upper bits would have been 0 too. // So all we need to do is set all remaining bits to 0. for (; idx < storage_size_; idx++) { storage_[idx] = 0; } } /* * Union with another bit vector. */ void BitVector::Union(const BitVector* src) { uint32_t src_size = src->storage_size_; // Get our size, we use this variable for the last loop of the method: // - It can change in the if block if src is of a different size. uint32_t size = storage_size_; // Is the storage size smaller than src's? if (storage_size_ < src_size) { // Get the highest bit to determine how much we need to expand. int highest_bit = src->GetHighestBitSet(); // If src has no bit set, we are done: there is no need for a union with src. if (highest_bit == -1) { return; } // Set it to reallocate. SetBit(highest_bit); // Paranoid: storage size should be big enough to hold this bit now. DCHECK_LT(static_cast (highest_bit), storage_size_ * sizeof(*(storage_)) * 8); // Update the size, our size can now not be bigger than the src size size = storage_size_; } for (uint32_t idx = 0; idx < size; idx++) { storage_[idx] |= src->GetRawStorageWord(idx); } } void BitVector::Subtract(const BitVector *src) { uint32_t src_size = src->storage_size_; // We only need to operate on bytes up to the smaller of the sizes of the two operands. unsigned int min_size = (storage_size_ > src_size) ? src_size : storage_size_; // Difference until max, we know both accept it: // There is no need to do more: // If we are bigger than src, the upper bits are unchanged. // If we are smaller than src, the non-existant upper bits are 0 and thus can't get subtracted. for (uint32_t idx = 0; idx < min_size; idx++) { storage_[idx] &= (~(src->GetRawStorageWord(idx))); } } // Count the number of bits that are set. uint32_t BitVector::NumSetBits() const { uint32_t count = 0; for (uint32_t word = 0; word < storage_size_; word++) { count += __builtin_popcount(storage_[word]); } return count; } // Count the number of bits that are set up through and including num. uint32_t BitVector::NumSetBits(uint32_t num) const { DCHECK_LT(num, storage_size_ * sizeof(*storage_) * 8); uint32_t last_word = num >> 5; uint32_t partial_word_bits = num & 0x1f; // partial_word_bits | # | | | partial_word_mask // 00000 | 0 | 0xffffffff >> (31 - 0) | (1 << (0 + 1)) - 1 | 0x00000001 // 00001 | 1 | 0xffffffff >> (31 - 1) | (1 << (1 + 1)) - 1 | 0x00000003 // 00010 | 2 | 0xffffffff >> (31 - 2) | (1 << (2 + 1)) - 1 | 0x00000007 // ..... | // 11110 | 30 | 0xffffffff >> (31 - 30) | (1 << (30 + 1)) - 1 | 0x7fffffff // 11111 | 31 | 0xffffffff >> (31 - 31) | last_full_word++ | 0xffffffff uint32_t partial_word_mask = 0xffffffff >> (0x1f - partial_word_bits); uint32_t count = 0; for (uint32_t word = 0; word < last_word; word++) { count += __builtin_popcount(storage_[word]); } count += __builtin_popcount(storage_[last_word] & partial_word_mask); return count; } BitVector::Iterator* BitVector::GetIterator() const { return new (allocator_) Iterator(this); } /* * Mark specified number of bits as "set". Cannot set all bits like ClearAll * since there might be unused bits - setting those to one will confuse the * iterator. */ void BitVector::SetInitialBits(uint32_t num_bits) { // If num_bits is 0, clear everything. if (num_bits == 0) { ClearAllBits(); return; } // Set the highest bit we want to set to get the BitVector allocated if need be. SetBit(num_bits - 1); uint32_t idx; // We can set every storage element with -1. for (idx = 0; idx < (num_bits >> 5); idx++) { storage_[idx] = -1; } // Handle the potentially last few bits. uint32_t rem_num_bits = num_bits & 0x1f; if (rem_num_bits != 0) { storage_[idx] = (1 << rem_num_bits) - 1; } // Now set the upper ones to 0. for (; idx < storage_size_; idx++) { storage_[idx] = 0; } } int BitVector::GetHighestBitSet() const { unsigned int max = storage_size_; for (int idx = max - 1; idx >= 0; idx--) { // If not 0, we have more work: check the bits. uint32_t value = storage_[idx]; if (value != 0) { // Shift right for the counting. value /= 2; int cnt = 0; // Count the bits. while (value > 0) { value /= 2; cnt++; } // Return cnt + how many storage units still remain * the number of bits per unit. int res = cnt + (idx * (sizeof(*storage_) * 8)); return res; } } // All zero, therefore return -1. return -1; } void BitVector::Copy(const BitVector *src) { // Get highest bit set, we only need to copy till then. int highest_bit = src->GetHighestBitSet(); // If nothing is set, clear everything. if (highest_bit == -1) { ClearAllBits(); return; } // Set upper bit to ensure right size before copy. SetBit(highest_bit); // Now set until highest bit's storage. uint32_t size = 1 + (highest_bit / (sizeof(*storage_) * 8)); memcpy(storage_, src->GetRawStorage(), sizeof(*storage_) * size); // Set upper bits to 0. uint32_t left = storage_size_ - size; if (left > 0) { memset(storage_ + size, 0, sizeof(*storage_) * left); } } } // namespace art