/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_BASE_MUTEX_INL_H_ #define ART_RUNTIME_BASE_MUTEX_INL_H_ #include #include "mutex.h" #define ATRACE_TAG ATRACE_TAG_DALVIK #include "cutils/atomic-inline.h" #include "cutils/trace.h" #include "base/stringprintf.h" #include "runtime.h" #include "thread.h" namespace art { #define CHECK_MUTEX_CALL(call, args) CHECK_PTHREAD_CALL(call, args, name_) #if ART_USE_FUTEXES #include "linux/futex.h" #include "sys/syscall.h" #ifndef SYS_futex #define SYS_futex __NR_futex #endif static inline int futex(volatile int *uaddr, int op, int val, const struct timespec *timeout, volatile int *uaddr2, int val3) { return syscall(SYS_futex, uaddr, op, val, timeout, uaddr2, val3); } #endif // ART_USE_FUTEXES class ScopedContentionRecorder { public: ScopedContentionRecorder(BaseMutex* mutex, uint64_t blocked_tid, uint64_t owner_tid) : mutex_(kLogLockContentions ? mutex : NULL), blocked_tid_(kLogLockContentions ? blocked_tid : 0), owner_tid_(kLogLockContentions ? owner_tid : 0), start_nano_time_(kLogLockContentions ? NanoTime() : 0) { std::string msg = StringPrintf("Lock contention on %s (owner tid: %" PRIu64 ")", mutex->GetName(), owner_tid); ATRACE_BEGIN(msg.c_str()); } ~ScopedContentionRecorder() { ATRACE_END(); if (kLogLockContentions) { uint64_t end_nano_time = NanoTime(); mutex_->RecordContention(blocked_tid_, owner_tid_, end_nano_time - start_nano_time_); } } private: BaseMutex* const mutex_; const uint64_t blocked_tid_; const uint64_t owner_tid_; const uint64_t start_nano_time_; }; static inline uint64_t SafeGetTid(const Thread* self) { if (self != NULL) { return static_cast(self->GetTid()); } else { return static_cast(GetTid()); } } static inline void CheckUnattachedThread(LockLevel level) NO_THREAD_SAFETY_ANALYSIS { // The check below enumerates the cases where we expect not to be able to sanity check locks // on a thread. Lock checking is disabled to avoid deadlock when checking shutdown lock. // TODO: tighten this check. if (kDebugLocking) { Runtime* runtime = Runtime::Current(); CHECK(runtime == nullptr || !runtime->IsStarted() || runtime->IsShuttingDownLocked() || // Used during thread creation to avoid races with runtime shutdown. Thread::Current not // yet established. level == kRuntimeShutdownLock || // Thread Ids are allocated/released before threads are established. level == kAllocatedThreadIdsLock || // Thread LDT's are initialized without Thread::Current established. level == kModifyLdtLock || // Threads are unregistered while holding the thread list lock, during this process they // no longer exist and so we expect an unlock with no self. level == kThreadListLock || // Ignore logging which may or may not have set up thread data structures. level == kLoggingLock || // Avoid recursive death. level == kAbortLock) << level; } } inline void BaseMutex::RegisterAsLocked(Thread* self) { if (UNLIKELY(self == NULL)) { CheckUnattachedThread(level_); return; } if (kDebugLocking) { // Check if a bad Mutex of this level or lower is held. bool bad_mutexes_held = false; for (int i = level_; i >= 0; --i) { BaseMutex* held_mutex = self->GetHeldMutex(static_cast(i)); if (UNLIKELY(held_mutex != NULL)) { LOG(ERROR) << "Lock level violation: holding \"" << held_mutex->name_ << "\" " << "(level " << LockLevel(i) << " - " << i << ") while locking \"" << name_ << "\" " << "(level " << level_ << " - " << static_cast(level_) << ")"; if (i > kAbortLock) { // Only abort in the check below if this is more than abort level lock. bad_mutexes_held = true; } } } CHECK(!bad_mutexes_held); } // Don't record monitors as they are outside the scope of analysis. They may be inspected off of // the monitor list. if (level_ != kMonitorLock) { self->SetHeldMutex(level_, this); } } inline void BaseMutex::RegisterAsUnlocked(Thread* self) { if (UNLIKELY(self == NULL)) { CheckUnattachedThread(level_); return; } if (level_ != kMonitorLock) { if (kDebugLocking && !gAborting) { CHECK(self->GetHeldMutex(level_) == this) << "Unlocking on unacquired mutex: " << name_; } self->SetHeldMutex(level_, NULL); } } inline void ReaderWriterMutex::SharedLock(Thread* self) { DCHECK(self == NULL || self == Thread::Current()); #if ART_USE_FUTEXES bool done = false; do { int32_t cur_state = state_; if (LIKELY(cur_state >= 0)) { // Add as an extra reader. done = android_atomic_acquire_cas(cur_state, cur_state + 1, &state_) == 0; } else { // Owner holds it exclusively, hang up. ScopedContentionRecorder scr(this, GetExclusiveOwnerTid(), SafeGetTid(self)); android_atomic_inc(&num_pending_readers_); if (futex(&state_, FUTEX_WAIT, cur_state, NULL, NULL, 0) != 0) { if (errno != EAGAIN) { PLOG(FATAL) << "futex wait failed for " << name_; } } android_atomic_dec(&num_pending_readers_); } } while (!done); #else CHECK_MUTEX_CALL(pthread_rwlock_rdlock, (&rwlock_)); #endif DCHECK(exclusive_owner_ == 0U || exclusive_owner_ == -1U); RegisterAsLocked(self); AssertSharedHeld(self); } inline void ReaderWriterMutex::SharedUnlock(Thread* self) { DCHECK(self == NULL || self == Thread::Current()); DCHECK(exclusive_owner_ == 0U || exclusive_owner_ == -1U); AssertSharedHeld(self); RegisterAsUnlocked(self); #if ART_USE_FUTEXES bool done = false; do { int32_t cur_state = state_; if (LIKELY(cur_state > 0)) { // Reduce state by 1. done = android_atomic_release_cas(cur_state, cur_state - 1, &state_) == 0; if (done && (cur_state - 1) == 0) { // cas may fail due to noise? if (num_pending_writers_.LoadRelaxed() > 0 || num_pending_readers_ > 0) { // Wake any exclusive waiters as there are now no readers. futex(&state_, FUTEX_WAKE, -1, NULL, NULL, 0); } } } else { LOG(FATAL) << "Unexpected state_:" << cur_state << " for " << name_; } } while (!done); #else CHECK_MUTEX_CALL(pthread_rwlock_unlock, (&rwlock_)); #endif } inline bool Mutex::IsExclusiveHeld(const Thread* self) const { DCHECK(self == NULL || self == Thread::Current()); bool result = (GetExclusiveOwnerTid() == SafeGetTid(self)); if (kDebugLocking) { // Sanity debug check that if we think it is locked we have it in our held mutexes. if (result && self != NULL && level_ != kMonitorLock && !gAborting) { CHECK_EQ(self->GetHeldMutex(level_), this); } } return result; } inline uint64_t Mutex::GetExclusiveOwnerTid() const { return exclusive_owner_; } inline bool ReaderWriterMutex::IsExclusiveHeld(const Thread* self) const { DCHECK(self == NULL || self == Thread::Current()); bool result = (GetExclusiveOwnerTid() == SafeGetTid(self)); if (kDebugLocking) { // Sanity that if the pthread thinks we own the lock the Thread agrees. if (self != NULL && result) { CHECK_EQ(self->GetHeldMutex(level_), this); } } return result; } inline uint64_t ReaderWriterMutex::GetExclusiveOwnerTid() const { #if ART_USE_FUTEXES int32_t state = state_; if (state == 0) { return 0; // No owner. } else if (state > 0) { return -1; // Shared. } else { return exclusive_owner_; } #else return exclusive_owner_; #endif } } // namespace art #endif // ART_RUNTIME_BASE_MUTEX_INL_H_