/* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "debugger.h" #include #include #include "arch/context.h" #include "class_linker.h" #include "class_linker-inl.h" #include "dex_file-inl.h" #include "dex_instruction.h" #include "gc/accounting/card_table-inl.h" #include "gc/space/large_object_space.h" #include "gc/space/space-inl.h" #include "jdwp/object_registry.h" #include "mirror/art_field-inl.h" #include "mirror/art_method-inl.h" #include "mirror/class.h" #include "mirror/class-inl.h" #include "mirror/class_loader.h" #include "mirror/object-inl.h" #include "mirror/object_array-inl.h" #include "mirror/throwable.h" #include "object_utils.h" #include "quick/inline_method_analyser.h" #include "reflection.h" #include "safe_map.h" #include "scoped_thread_state_change.h" #include "ScopedLocalRef.h" #include "ScopedPrimitiveArray.h" #include "sirt_ref.h" #include "stack_indirect_reference_table.h" #include "thread_list.h" #include "throw_location.h" #include "utf.h" #include "verifier/method_verifier-inl.h" #include "well_known_classes.h" #ifdef HAVE_ANDROID_OS #include "cutils/properties.h" #endif namespace art { static const size_t kMaxAllocRecordStackDepth = 16; // Max 255. static const size_t kDefaultNumAllocRecords = 64*1024; // Must be a power of 2. struct AllocRecordStackTraceElement { mirror::ArtMethod* method; uint32_t dex_pc; AllocRecordStackTraceElement() : method(nullptr), dex_pc(0) { } int32_t LineNumber() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return MethodHelper(method).GetLineNumFromDexPC(dex_pc); } }; struct AllocRecord { mirror::Class* type; size_t byte_count; uint16_t thin_lock_id; AllocRecordStackTraceElement stack[kMaxAllocRecordStackDepth]; // Unused entries have NULL method. size_t GetDepth() { size_t depth = 0; while (depth < kMaxAllocRecordStackDepth && stack[depth].method != NULL) { ++depth; } return depth; } void UpdateObjectPointers(IsMarkedCallback* callback, void* arg) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { if (type != nullptr) { type = down_cast(callback(type, arg)); } for (size_t stack_frame = 0; stack_frame < kMaxAllocRecordStackDepth; ++stack_frame) { mirror::ArtMethod*& m = stack[stack_frame].method; if (m == nullptr) { break; } m = down_cast(callback(m, arg)); } } }; struct Breakpoint { // The location of this breakpoint. mirror::ArtMethod* method; uint32_t dex_pc; // Indicates whether breakpoint needs full deoptimization or selective deoptimization. bool need_full_deoptimization; Breakpoint(mirror::ArtMethod* method, uint32_t dex_pc, bool need_full_deoptimization) : method(method), dex_pc(dex_pc), need_full_deoptimization(need_full_deoptimization) {} void VisitRoots(RootCallback* callback, void* arg) { if (method != nullptr) { callback(reinterpret_cast(&method), arg, 0, kRootDebugger); } } }; static std::ostream& operator<<(std::ostream& os, const Breakpoint& rhs) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { os << StringPrintf("Breakpoint[%s @%#x]", PrettyMethod(rhs.method).c_str(), rhs.dex_pc); return os; } class DebugInstrumentationListener FINAL : public instrumentation::InstrumentationListener { public: DebugInstrumentationListener() {} virtual ~DebugInstrumentationListener() {} void MethodEntered(Thread* thread, mirror::Object* this_object, mirror::ArtMethod* method, uint32_t dex_pc) OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { if (method->IsNative()) { // TODO: post location events is a suspension point and native method entry stubs aren't. return; } Dbg::PostLocationEvent(method, 0, this_object, Dbg::kMethodEntry, nullptr); } void MethodExited(Thread* thread, mirror::Object* this_object, mirror::ArtMethod* method, uint32_t dex_pc, const JValue& return_value) OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { if (method->IsNative()) { // TODO: post location events is a suspension point and native method entry stubs aren't. return; } Dbg::PostLocationEvent(method, dex_pc, this_object, Dbg::kMethodExit, &return_value); } void MethodUnwind(Thread* thread, mirror::Object* this_object, mirror::ArtMethod* method, uint32_t dex_pc) OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { // We're not recorded to listen to this kind of event, so complain. LOG(ERROR) << "Unexpected method unwind event in debugger " << PrettyMethod(method) << " " << dex_pc; } void DexPcMoved(Thread* thread, mirror::Object* this_object, mirror::ArtMethod* method, uint32_t new_dex_pc) OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { Dbg::UpdateDebugger(thread, this_object, method, new_dex_pc); } void FieldRead(Thread* thread, mirror::Object* this_object, mirror::ArtMethod* method, uint32_t dex_pc, mirror::ArtField* field) OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { Dbg::PostFieldAccessEvent(method, dex_pc, this_object, field); } void FieldWritten(Thread* thread, mirror::Object* this_object, mirror::ArtMethod* method, uint32_t dex_pc, mirror::ArtField* field, const JValue& field_value) OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { Dbg::PostFieldModificationEvent(method, dex_pc, this_object, field, &field_value); } void ExceptionCaught(Thread* thread, const ThrowLocation& throw_location, mirror::ArtMethod* catch_method, uint32_t catch_dex_pc, mirror::Throwable* exception_object) OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { Dbg::PostException(throw_location, catch_method, catch_dex_pc, exception_object); } private: DISALLOW_COPY_AND_ASSIGN(DebugInstrumentationListener); } gDebugInstrumentationListener; // JDWP is allowed unless the Zygote forbids it. static bool gJdwpAllowed = true; // Was there a -Xrunjdwp or -agentlib:jdwp= argument on the command line? static bool gJdwpConfigured = false; // Broken-down JDWP options. (Only valid if IsJdwpConfigured() is true.) static JDWP::JdwpOptions gJdwpOptions; // Runtime JDWP state. static JDWP::JdwpState* gJdwpState = NULL; static bool gDebuggerConnected; // debugger or DDMS is connected. static bool gDebuggerActive; // debugger is making requests. static bool gDisposed; // debugger called VirtualMachine.Dispose, so we should drop the connection. static bool gDdmThreadNotification = false; // DDMS GC-related settings. static Dbg::HpifWhen gDdmHpifWhen = Dbg::HPIF_WHEN_NEVER; static Dbg::HpsgWhen gDdmHpsgWhen = Dbg::HPSG_WHEN_NEVER; static Dbg::HpsgWhat gDdmHpsgWhat; static Dbg::HpsgWhen gDdmNhsgWhen = Dbg::HPSG_WHEN_NEVER; static Dbg::HpsgWhat gDdmNhsgWhat; static ObjectRegistry* gRegistry = nullptr; // Recent allocation tracking. Mutex* Dbg::alloc_tracker_lock_ = nullptr; AllocRecord* Dbg::recent_allocation_records_ = nullptr; // TODO: CircularBuffer size_t Dbg::alloc_record_max_ = 0; size_t Dbg::alloc_record_head_ = 0; size_t Dbg::alloc_record_count_ = 0; // Deoptimization support. Mutex* Dbg::deoptimization_lock_ = nullptr; std::vector Dbg::deoptimization_requests_; size_t Dbg::full_deoptimization_event_count_ = 0; size_t Dbg::delayed_full_undeoptimization_count_ = 0; // Breakpoints. static std::vector gBreakpoints GUARDED_BY(Locks::breakpoint_lock_); void DebugInvokeReq::VisitRoots(RootCallback* callback, void* arg, uint32_t tid, RootType root_type) { if (receiver != nullptr) { callback(&receiver, arg, tid, root_type); } if (thread != nullptr) { callback(&thread, arg, tid, root_type); } if (klass != nullptr) { callback(reinterpret_cast(&klass), arg, tid, root_type); } if (method != nullptr) { callback(reinterpret_cast(&method), arg, tid, root_type); } } void DebugInvokeReq::Clear() { invoke_needed = false; receiver = nullptr; thread = nullptr; klass = nullptr; method = nullptr; } void SingleStepControl::VisitRoots(RootCallback* callback, void* arg, uint32_t tid, RootType root_type) { if (method != nullptr) { callback(reinterpret_cast(&method), arg, tid, root_type); } } bool SingleStepControl::ContainsDexPc(uint32_t dex_pc) const { return dex_pcs.find(dex_pc) == dex_pcs.end(); } void SingleStepControl::Clear() { is_active = false; method = nullptr; dex_pcs.clear(); } void DeoptimizationRequest::VisitRoots(RootCallback* callback, void* arg) { if (method != nullptr) { callback(reinterpret_cast(&method), arg, 0, kRootDebugger); } } static bool IsBreakpoint(const mirror::ArtMethod* m, uint32_t dex_pc) LOCKS_EXCLUDED(Locks::breakpoint_lock_) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { MutexLock mu(Thread::Current(), *Locks::breakpoint_lock_); for (size_t i = 0, e = gBreakpoints.size(); i < e; ++i) { if (gBreakpoints[i].method == m && gBreakpoints[i].dex_pc == dex_pc) { VLOG(jdwp) << "Hit breakpoint #" << i << ": " << gBreakpoints[i]; return true; } } return false; } static bool IsSuspendedForDebugger(ScopedObjectAccessUnchecked& soa, Thread* thread) LOCKS_EXCLUDED(Locks::thread_suspend_count_lock_) { MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_); // A thread may be suspended for GC; in this code, we really want to know whether // there's a debugger suspension active. return thread->IsSuspended() && thread->GetDebugSuspendCount() > 0; } static mirror::Array* DecodeArray(JDWP::RefTypeId id, JDWP::JdwpError& status) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { mirror::Object* o = gRegistry->Get(id); if (o == NULL || o == ObjectRegistry::kInvalidObject) { status = JDWP::ERR_INVALID_OBJECT; return NULL; } if (!o->IsArrayInstance()) { status = JDWP::ERR_INVALID_ARRAY; return NULL; } status = JDWP::ERR_NONE; return o->AsArray(); } static mirror::Class* DecodeClass(JDWP::RefTypeId id, JDWP::JdwpError& status) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { mirror::Object* o = gRegistry->Get(id); if (o == NULL || o == ObjectRegistry::kInvalidObject) { status = JDWP::ERR_INVALID_OBJECT; return NULL; } if (!o->IsClass()) { status = JDWP::ERR_INVALID_CLASS; return NULL; } status = JDWP::ERR_NONE; return o->AsClass(); } static JDWP::JdwpError DecodeThread(ScopedObjectAccessUnchecked& soa, JDWP::ObjectId thread_id, Thread*& thread) EXCLUSIVE_LOCKS_REQUIRED(Locks::thread_list_lock_) LOCKS_EXCLUDED(Locks::thread_suspend_count_lock_) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { mirror::Object* thread_peer = gRegistry->Get(thread_id); if (thread_peer == NULL || thread_peer == ObjectRegistry::kInvalidObject) { // This isn't even an object. return JDWP::ERR_INVALID_OBJECT; } mirror::Class* java_lang_Thread = soa.Decode(WellKnownClasses::java_lang_Thread); if (!java_lang_Thread->IsAssignableFrom(thread_peer->GetClass())) { // This isn't a thread. return JDWP::ERR_INVALID_THREAD; } thread = Thread::FromManagedThread(soa, thread_peer); if (thread == NULL) { // This is a java.lang.Thread without a Thread*. Must be a zombie. return JDWP::ERR_THREAD_NOT_ALIVE; } return JDWP::ERR_NONE; } static JDWP::JdwpTag BasicTagFromDescriptor(const char* descriptor) { // JDWP deliberately uses the descriptor characters' ASCII values for its enum. // Note that by "basic" we mean that we don't get more specific than JT_OBJECT. return static_cast(descriptor[0]); } static JDWP::JdwpTag TagFromClass(const ScopedObjectAccessUnchecked& soa, mirror::Class* c) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { CHECK(c != NULL); if (c->IsArrayClass()) { return JDWP::JT_ARRAY; } if (c->IsStringClass()) { return JDWP::JT_STRING; } if (c->IsClassClass()) { return JDWP::JT_CLASS_OBJECT; } { mirror::Class* thread_class = soa.Decode(WellKnownClasses::java_lang_Thread); if (thread_class->IsAssignableFrom(c)) { return JDWP::JT_THREAD; } } { mirror::Class* thread_group_class = soa.Decode(WellKnownClasses::java_lang_ThreadGroup); if (thread_group_class->IsAssignableFrom(c)) { return JDWP::JT_THREAD_GROUP; } } { mirror::Class* class_loader_class = soa.Decode(WellKnownClasses::java_lang_ClassLoader); if (class_loader_class->IsAssignableFrom(c)) { return JDWP::JT_CLASS_LOADER; } } return JDWP::JT_OBJECT; } /* * Objects declared to hold Object might actually hold a more specific * type. The debugger may take a special interest in these (e.g. it * wants to display the contents of Strings), so we want to return an * appropriate tag. * * Null objects are tagged JT_OBJECT. */ static JDWP::JdwpTag TagFromObject(const ScopedObjectAccessUnchecked& soa, mirror::Object* o) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return (o == NULL) ? JDWP::JT_OBJECT : TagFromClass(soa, o->GetClass()); } static bool IsPrimitiveTag(JDWP::JdwpTag tag) { switch (tag) { case JDWP::JT_BOOLEAN: case JDWP::JT_BYTE: case JDWP::JT_CHAR: case JDWP::JT_FLOAT: case JDWP::JT_DOUBLE: case JDWP::JT_INT: case JDWP::JT_LONG: case JDWP::JT_SHORT: case JDWP::JT_VOID: return true; default: return false; } } /* * Handle one of the JDWP name/value pairs. * * JDWP options are: * help: if specified, show help message and bail * transport: may be dt_socket or dt_shmem * address: for dt_socket, "host:port", or just "port" when listening * server: if "y", wait for debugger to attach; if "n", attach to debugger * timeout: how long to wait for debugger to connect / listen * * Useful with server=n (these aren't supported yet): * onthrow=: connect to debugger when exception thrown * onuncaught=y|n: connect to debugger when uncaught exception thrown * launch=: launch the debugger itself * * The "transport" option is required, as is "address" if server=n. */ static bool ParseJdwpOption(const std::string& name, const std::string& value) { if (name == "transport") { if (value == "dt_socket") { gJdwpOptions.transport = JDWP::kJdwpTransportSocket; } else if (value == "dt_android_adb") { gJdwpOptions.transport = JDWP::kJdwpTransportAndroidAdb; } else { LOG(ERROR) << "JDWP transport not supported: " << value; return false; } } else if (name == "server") { if (value == "n") { gJdwpOptions.server = false; } else if (value == "y") { gJdwpOptions.server = true; } else { LOG(ERROR) << "JDWP option 'server' must be 'y' or 'n'"; return false; } } else if (name == "suspend") { if (value == "n") { gJdwpOptions.suspend = false; } else if (value == "y") { gJdwpOptions.suspend = true; } else { LOG(ERROR) << "JDWP option 'suspend' must be 'y' or 'n'"; return false; } } else if (name == "address") { /* this is either or : */ std::string port_string; gJdwpOptions.host.clear(); std::string::size_type colon = value.find(':'); if (colon != std::string::npos) { gJdwpOptions.host = value.substr(0, colon); port_string = value.substr(colon + 1); } else { port_string = value; } if (port_string.empty()) { LOG(ERROR) << "JDWP address missing port: " << value; return false; } char* end; uint64_t port = strtoul(port_string.c_str(), &end, 10); if (*end != '\0' || port > 0xffff) { LOG(ERROR) << "JDWP address has junk in port field: " << value; return false; } gJdwpOptions.port = port; } else if (name == "launch" || name == "onthrow" || name == "oncaught" || name == "timeout") { /* valid but unsupported */ LOG(INFO) << "Ignoring JDWP option '" << name << "'='" << value << "'"; } else { LOG(INFO) << "Ignoring unrecognized JDWP option '" << name << "'='" << value << "'"; } return true; } /* * Parse the latter half of a -Xrunjdwp/-agentlib:jdwp= string, e.g.: * "transport=dt_socket,address=8000,server=y,suspend=n" */ bool Dbg::ParseJdwpOptions(const std::string& options) { VLOG(jdwp) << "ParseJdwpOptions: " << options; std::vector pairs; Split(options, ',', pairs); for (size_t i = 0; i < pairs.size(); ++i) { std::string::size_type equals = pairs[i].find('='); if (equals == std::string::npos) { LOG(ERROR) << "Can't parse JDWP option '" << pairs[i] << "' in '" << options << "'"; return false; } ParseJdwpOption(pairs[i].substr(0, equals), pairs[i].substr(equals + 1)); } if (gJdwpOptions.transport == JDWP::kJdwpTransportUnknown) { LOG(ERROR) << "Must specify JDWP transport: " << options; } if (!gJdwpOptions.server && (gJdwpOptions.host.empty() || gJdwpOptions.port == 0)) { LOG(ERROR) << "Must specify JDWP host and port when server=n: " << options; return false; } gJdwpConfigured = true; return true; } void Dbg::StartJdwp() { if (!gJdwpAllowed || !IsJdwpConfigured()) { // No JDWP for you! return; } CHECK(gRegistry == nullptr); gRegistry = new ObjectRegistry; alloc_tracker_lock_ = new Mutex("AllocTracker lock"); deoptimization_lock_ = new Mutex("deoptimization lock", kDeoptimizationLock); // Init JDWP if the debugger is enabled. This may connect out to a // debugger, passively listen for a debugger, or block waiting for a // debugger. gJdwpState = JDWP::JdwpState::Create(&gJdwpOptions); if (gJdwpState == NULL) { // We probably failed because some other process has the port already, which means that // if we don't abort the user is likely to think they're talking to us when they're actually // talking to that other process. LOG(FATAL) << "Debugger thread failed to initialize"; } // If a debugger has already attached, send the "welcome" message. // This may cause us to suspend all threads. if (gJdwpState->IsActive()) { ScopedObjectAccess soa(Thread::Current()); if (!gJdwpState->PostVMStart()) { LOG(WARNING) << "Failed to post 'start' message to debugger"; } } } void Dbg::VisitRoots(RootCallback* callback, void* arg) { { MutexLock mu(Thread::Current(), *Locks::breakpoint_lock_); for (Breakpoint& bp : gBreakpoints) { bp.VisitRoots(callback, arg); } } if (deoptimization_lock_ != nullptr) { // only true if the debugger is started. MutexLock mu(Thread::Current(), *deoptimization_lock_); for (DeoptimizationRequest& req : deoptimization_requests_) { req.VisitRoots(callback, arg); } } } void Dbg::StopJdwp() { // Prevent the JDWP thread from processing JDWP incoming packets after we close the connection. Disposed(); delete gJdwpState; gJdwpState = nullptr; delete gRegistry; gRegistry = nullptr; delete alloc_tracker_lock_; alloc_tracker_lock_ = nullptr; delete deoptimization_lock_; deoptimization_lock_ = nullptr; } void Dbg::GcDidFinish() { if (gDdmHpifWhen != HPIF_WHEN_NEVER) { ScopedObjectAccess soa(Thread::Current()); LOG(DEBUG) << "Sending heap info to DDM"; DdmSendHeapInfo(gDdmHpifWhen); } if (gDdmHpsgWhen != HPSG_WHEN_NEVER) { ScopedObjectAccess soa(Thread::Current()); LOG(DEBUG) << "Dumping heap to DDM"; DdmSendHeapSegments(false); } if (gDdmNhsgWhen != HPSG_WHEN_NEVER) { ScopedObjectAccess soa(Thread::Current()); LOG(DEBUG) << "Dumping native heap to DDM"; DdmSendHeapSegments(true); } } void Dbg::SetJdwpAllowed(bool allowed) { gJdwpAllowed = allowed; } DebugInvokeReq* Dbg::GetInvokeReq() { return Thread::Current()->GetInvokeReq(); } Thread* Dbg::GetDebugThread() { return (gJdwpState != NULL) ? gJdwpState->GetDebugThread() : NULL; } void Dbg::ClearWaitForEventThread() { gJdwpState->ClearWaitForEventThread(); } void Dbg::Connected() { CHECK(!gDebuggerConnected); VLOG(jdwp) << "JDWP has attached"; gDebuggerConnected = true; gDisposed = false; } void Dbg::Disposed() { gDisposed = true; } bool Dbg::IsDisposed() { return gDisposed; } // All the instrumentation events the debugger is registered for. static constexpr uint32_t kListenerEvents = instrumentation::Instrumentation::kMethodEntered | instrumentation::Instrumentation::kMethodExited | instrumentation::Instrumentation::kDexPcMoved | instrumentation::Instrumentation::kFieldRead | instrumentation::Instrumentation::kFieldWritten | instrumentation::Instrumentation::kExceptionCaught; void Dbg::GoActive() { // Enable all debugging features, including scans for breakpoints. // This is a no-op if we're already active. // Only called from the JDWP handler thread. if (gDebuggerActive) { return; } { // TODO: dalvik only warned if there were breakpoints left over. clear in Dbg::Disconnected? MutexLock mu(Thread::Current(), *Locks::breakpoint_lock_); CHECK_EQ(gBreakpoints.size(), 0U); } { MutexLock mu(Thread::Current(), *deoptimization_lock_); CHECK_EQ(deoptimization_requests_.size(), 0U); CHECK_EQ(full_deoptimization_event_count_, 0U); CHECK_EQ(delayed_full_undeoptimization_count_, 0U); } Runtime* runtime = Runtime::Current(); runtime->GetThreadList()->SuspendAll(); Thread* self = Thread::Current(); ThreadState old_state = self->SetStateUnsafe(kRunnable); CHECK_NE(old_state, kRunnable); runtime->GetInstrumentation()->EnableDeoptimization(); runtime->GetInstrumentation()->AddListener(&gDebugInstrumentationListener, kListenerEvents); gDebuggerActive = true; CHECK_EQ(self->SetStateUnsafe(old_state), kRunnable); runtime->GetThreadList()->ResumeAll(); LOG(INFO) << "Debugger is active"; } void Dbg::Disconnected() { CHECK(gDebuggerConnected); LOG(INFO) << "Debugger is no longer active"; // Suspend all threads and exclusively acquire the mutator lock. Set the state of the thread // to kRunnable to avoid scoped object access transitions. Remove the debugger as a listener // and clear the object registry. Runtime* runtime = Runtime::Current(); runtime->GetThreadList()->SuspendAll(); Thread* self = Thread::Current(); ThreadState old_state = self->SetStateUnsafe(kRunnable); // Debugger may not be active at this point. if (gDebuggerActive) { { // Since we're going to disable deoptimization, we clear the deoptimization requests queue. // This prevents us from having any pending deoptimization request when the debugger attaches // to us again while no event has been requested yet. MutexLock mu(Thread::Current(), *deoptimization_lock_); deoptimization_requests_.clear(); full_deoptimization_event_count_ = 0U; delayed_full_undeoptimization_count_ = 0U; } runtime->GetInstrumentation()->RemoveListener(&gDebugInstrumentationListener, kListenerEvents); runtime->GetInstrumentation()->DisableDeoptimization(); gDebuggerActive = false; } gRegistry->Clear(); gDebuggerConnected = false; CHECK_EQ(self->SetStateUnsafe(old_state), kRunnable); runtime->GetThreadList()->ResumeAll(); } bool Dbg::IsDebuggerActive() { return gDebuggerActive; } bool Dbg::IsJdwpConfigured() { return gJdwpConfigured; } int64_t Dbg::LastDebuggerActivity() { return gJdwpState->LastDebuggerActivity(); } void Dbg::UndoDebuggerSuspensions() { Runtime::Current()->GetThreadList()->UndoDebuggerSuspensions(); } std::string Dbg::GetClassName(JDWP::RefTypeId class_id) { mirror::Object* o = gRegistry->Get(class_id); if (o == NULL) { return "NULL"; } if (o == ObjectRegistry::kInvalidObject) { return StringPrintf("invalid object %p", reinterpret_cast(class_id)); } if (!o->IsClass()) { return StringPrintf("non-class %p", o); // This is only used for debugging output anyway. } return DescriptorToName(ClassHelper(o->AsClass()).GetDescriptor()); } JDWP::JdwpError Dbg::GetClassObject(JDWP::RefTypeId id, JDWP::ObjectId& class_object_id) { JDWP::JdwpError status; mirror::Class* c = DecodeClass(id, status); if (c == NULL) { return status; } class_object_id = gRegistry->Add(c); return JDWP::ERR_NONE; } JDWP::JdwpError Dbg::GetSuperclass(JDWP::RefTypeId id, JDWP::RefTypeId& superclass_id) { JDWP::JdwpError status; mirror::Class* c = DecodeClass(id, status); if (c == NULL) { return status; } if (c->IsInterface()) { // http://code.google.com/p/android/issues/detail?id=20856 superclass_id = 0; } else { superclass_id = gRegistry->Add(c->GetSuperClass()); } return JDWP::ERR_NONE; } JDWP::JdwpError Dbg::GetClassLoader(JDWP::RefTypeId id, JDWP::ExpandBuf* pReply) { mirror::Object* o = gRegistry->Get(id); if (o == NULL || o == ObjectRegistry::kInvalidObject) { return JDWP::ERR_INVALID_OBJECT; } expandBufAddObjectId(pReply, gRegistry->Add(o->GetClass()->GetClassLoader())); return JDWP::ERR_NONE; } JDWP::JdwpError Dbg::GetModifiers(JDWP::RefTypeId id, JDWP::ExpandBuf* pReply) { JDWP::JdwpError status; mirror::Class* c = DecodeClass(id, status); if (c == NULL) { return status; } uint32_t access_flags = c->GetAccessFlags() & kAccJavaFlagsMask; // Set ACC_SUPER. Dex files don't contain this flag but only classes are supposed to have it set, // not interfaces. // Class.getModifiers doesn't return it, but JDWP does, so we set it here. if ((access_flags & kAccInterface) == 0) { access_flags |= kAccSuper; } expandBufAdd4BE(pReply, access_flags); return JDWP::ERR_NONE; } JDWP::JdwpError Dbg::GetMonitorInfo(JDWP::ObjectId object_id, JDWP::ExpandBuf* reply) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { mirror::Object* o = gRegistry->Get(object_id); if (o == NULL || o == ObjectRegistry::kInvalidObject) { return JDWP::ERR_INVALID_OBJECT; } // Ensure all threads are suspended while we read objects' lock words. Thread* self = Thread::Current(); CHECK_EQ(self->GetState(), kRunnable); self->TransitionFromRunnableToSuspended(kSuspended); Runtime::Current()->GetThreadList()->SuspendAll(); MonitorInfo monitor_info(o); Runtime::Current()->GetThreadList()->ResumeAll(); self->TransitionFromSuspendedToRunnable(); if (monitor_info.owner_ != NULL) { expandBufAddObjectId(reply, gRegistry->Add(monitor_info.owner_->GetPeer())); } else { expandBufAddObjectId(reply, gRegistry->Add(NULL)); } expandBufAdd4BE(reply, monitor_info.entry_count_); expandBufAdd4BE(reply, monitor_info.waiters_.size()); for (size_t i = 0; i < monitor_info.waiters_.size(); ++i) { expandBufAddObjectId(reply, gRegistry->Add(monitor_info.waiters_[i]->GetPeer())); } return JDWP::ERR_NONE; } JDWP::JdwpError Dbg::GetOwnedMonitors(JDWP::ObjectId thread_id, std::vector& monitors, std::vector& stack_depths) { ScopedObjectAccessUnchecked soa(Thread::Current()); MutexLock mu(soa.Self(), *Locks::thread_list_lock_); Thread* thread; JDWP::JdwpError error = DecodeThread(soa, thread_id, thread); if (error != JDWP::ERR_NONE) { return error; } if (!IsSuspendedForDebugger(soa, thread)) { return JDWP::ERR_THREAD_NOT_SUSPENDED; } struct OwnedMonitorVisitor : public StackVisitor { OwnedMonitorVisitor(Thread* thread, Context* context) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) : StackVisitor(thread, context), current_stack_depth(0) {} // TODO: Enable annotalysis. We know lock is held in constructor, but abstraction confuses // annotalysis. bool VisitFrame() NO_THREAD_SAFETY_ANALYSIS { if (!GetMethod()->IsRuntimeMethod()) { Monitor::VisitLocks(this, AppendOwnedMonitors, this); ++current_stack_depth; } return true; } static void AppendOwnedMonitors(mirror::Object* owned_monitor, void* arg) { OwnedMonitorVisitor* visitor = reinterpret_cast(arg); visitor->monitors.push_back(owned_monitor); visitor->stack_depths.push_back(visitor->current_stack_depth); } size_t current_stack_depth; std::vector monitors; std::vector stack_depths; }; UniquePtr context(Context::Create()); OwnedMonitorVisitor visitor(thread, context.get()); visitor.WalkStack(); for (size_t i = 0; i < visitor.monitors.size(); ++i) { monitors.push_back(gRegistry->Add(visitor.monitors[i])); stack_depths.push_back(visitor.stack_depths[i]); } return JDWP::ERR_NONE; } JDWP::JdwpError Dbg::GetContendedMonitor(JDWP::ObjectId thread_id, JDWP::ObjectId& contended_monitor) { ScopedObjectAccessUnchecked soa(Thread::Current()); MutexLock mu(soa.Self(), *Locks::thread_list_lock_); Thread* thread; JDWP::JdwpError error = DecodeThread(soa, thread_id, thread); if (error != JDWP::ERR_NONE) { return error; } if (!IsSuspendedForDebugger(soa, thread)) { return JDWP::ERR_THREAD_NOT_SUSPENDED; } contended_monitor = gRegistry->Add(Monitor::GetContendedMonitor(thread)); return JDWP::ERR_NONE; } JDWP::JdwpError Dbg::GetInstanceCounts(const std::vector& class_ids, std::vector& counts) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { gc::Heap* heap = Runtime::Current()->GetHeap(); heap->CollectGarbage(false); std::vector classes; counts.clear(); for (size_t i = 0; i < class_ids.size(); ++i) { JDWP::JdwpError status; mirror::Class* c = DecodeClass(class_ids[i], status); if (c == NULL) { return status; } classes.push_back(c); counts.push_back(0); } heap->CountInstances(classes, false, &counts[0]); return JDWP::ERR_NONE; } JDWP::JdwpError Dbg::GetInstances(JDWP::RefTypeId class_id, int32_t max_count, std::vector& instances) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { gc::Heap* heap = Runtime::Current()->GetHeap(); // We only want reachable instances, so do a GC. heap->CollectGarbage(false); JDWP::JdwpError status; mirror::Class* c = DecodeClass(class_id, status); if (c == nullptr) { return status; } std::vector raw_instances; Runtime::Current()->GetHeap()->GetInstances(c, max_count, raw_instances); for (size_t i = 0; i < raw_instances.size(); ++i) { instances.push_back(gRegistry->Add(raw_instances[i])); } return JDWP::ERR_NONE; } JDWP::JdwpError Dbg::GetReferringObjects(JDWP::ObjectId object_id, int32_t max_count, std::vector& referring_objects) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { gc::Heap* heap = Runtime::Current()->GetHeap(); heap->CollectGarbage(false); mirror::Object* o = gRegistry->Get(object_id); if (o == NULL || o == ObjectRegistry::kInvalidObject) { return JDWP::ERR_INVALID_OBJECT; } std::vector raw_instances; heap->GetReferringObjects(o, max_count, raw_instances); for (size_t i = 0; i < raw_instances.size(); ++i) { referring_objects.push_back(gRegistry->Add(raw_instances[i])); } return JDWP::ERR_NONE; } JDWP::JdwpError Dbg::DisableCollection(JDWP::ObjectId object_id) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { mirror::Object* o = gRegistry->Get(object_id); if (o == NULL || o == ObjectRegistry::kInvalidObject) { return JDWP::ERR_INVALID_OBJECT; } gRegistry->DisableCollection(object_id); return JDWP::ERR_NONE; } JDWP::JdwpError Dbg::EnableCollection(JDWP::ObjectId object_id) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { mirror::Object* o = gRegistry->Get(object_id); // Unlike DisableCollection, JDWP specs do not state an invalid object causes an error. The RI // also ignores these cases and never return an error. However it's not obvious why this command // should behave differently from DisableCollection and IsCollected commands. So let's be more // strict and return an error if this happens. if (o == NULL || o == ObjectRegistry::kInvalidObject) { return JDWP::ERR_INVALID_OBJECT; } gRegistry->EnableCollection(object_id); return JDWP::ERR_NONE; } JDWP::JdwpError Dbg::IsCollected(JDWP::ObjectId object_id, bool& is_collected) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { if (object_id == 0) { // Null object id is invalid. return JDWP::ERR_INVALID_OBJECT; } // JDWP specs state an INVALID_OBJECT error is returned if the object ID is not valid. However // the RI seems to ignore this and assume object has been collected. mirror::Object* o = gRegistry->Get(object_id); if (o == NULL || o == ObjectRegistry::kInvalidObject) { is_collected = true; } else { is_collected = gRegistry->IsCollected(object_id); } return JDWP::ERR_NONE; } void Dbg::DisposeObject(JDWP::ObjectId object_id, uint32_t reference_count) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { gRegistry->DisposeObject(object_id, reference_count); } static JDWP::JdwpTypeTag GetTypeTag(mirror::Class* klass) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { DCHECK(klass != nullptr); if (klass->IsArrayClass()) { return JDWP::TT_ARRAY; } else if (klass->IsInterface()) { return JDWP::TT_INTERFACE; } else { return JDWP::TT_CLASS; } } JDWP::JdwpError Dbg::GetReflectedType(JDWP::RefTypeId class_id, JDWP::ExpandBuf* pReply) { JDWP::JdwpError status; mirror::Class* c = DecodeClass(class_id, status); if (c == NULL) { return status; } JDWP::JdwpTypeTag type_tag = GetTypeTag(c); expandBufAdd1(pReply, type_tag); expandBufAddRefTypeId(pReply, class_id); return JDWP::ERR_NONE; } void Dbg::GetClassList(std::vector& classes) { // Get the complete list of reference classes (i.e. all classes except // the primitive types). // Returns a newly-allocated buffer full of RefTypeId values. struct ClassListCreator { explicit ClassListCreator(std::vector& classes) : classes(classes) { } static bool Visit(mirror::Class* c, void* arg) { return reinterpret_cast(arg)->Visit(c); } // TODO: Enable annotalysis. We know lock is held in constructor, but abstraction confuses // annotalysis. bool Visit(mirror::Class* c) NO_THREAD_SAFETY_ANALYSIS { if (!c->IsPrimitive()) { classes.push_back(gRegistry->AddRefType(c)); } return true; } std::vector& classes; }; ClassListCreator clc(classes); Runtime::Current()->GetClassLinker()->VisitClasses(ClassListCreator::Visit, &clc); } JDWP::JdwpError Dbg::GetClassInfo(JDWP::RefTypeId class_id, JDWP::JdwpTypeTag* pTypeTag, uint32_t* pStatus, std::string* pDescriptor) { JDWP::JdwpError status; mirror::Class* c = DecodeClass(class_id, status); if (c == NULL) { return status; } if (c->IsArrayClass()) { *pStatus = JDWP::CS_VERIFIED | JDWP::CS_PREPARED; *pTypeTag = JDWP::TT_ARRAY; } else { if (c->IsErroneous()) { *pStatus = JDWP::CS_ERROR; } else { *pStatus = JDWP::CS_VERIFIED | JDWP::CS_PREPARED | JDWP::CS_INITIALIZED; } *pTypeTag = c->IsInterface() ? JDWP::TT_INTERFACE : JDWP::TT_CLASS; } if (pDescriptor != NULL) { *pDescriptor = ClassHelper(c).GetDescriptor(); } return JDWP::ERR_NONE; } void Dbg::FindLoadedClassBySignature(const char* descriptor, std::vector& ids) { std::vector classes; Runtime::Current()->GetClassLinker()->LookupClasses(descriptor, classes); ids.clear(); for (size_t i = 0; i < classes.size(); ++i) { ids.push_back(gRegistry->Add(classes[i])); } } JDWP::JdwpError Dbg::GetReferenceType(JDWP::ObjectId object_id, JDWP::ExpandBuf* pReply) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { mirror::Object* o = gRegistry->Get(object_id); if (o == NULL || o == ObjectRegistry::kInvalidObject) { return JDWP::ERR_INVALID_OBJECT; } JDWP::JdwpTypeTag type_tag = GetTypeTag(o->GetClass()); JDWP::RefTypeId type_id = gRegistry->AddRefType(o->GetClass()); expandBufAdd1(pReply, type_tag); expandBufAddRefTypeId(pReply, type_id); return JDWP::ERR_NONE; } JDWP::JdwpError Dbg::GetSignature(JDWP::RefTypeId class_id, std::string* signature) { JDWP::JdwpError status; mirror::Class* c = DecodeClass(class_id, status); if (c == NULL) { return status; } *signature = ClassHelper(c).GetDescriptor(); return JDWP::ERR_NONE; } JDWP::JdwpError Dbg::GetSourceFile(JDWP::RefTypeId class_id, std::string& result) { JDWP::JdwpError status; mirror::Class* c = DecodeClass(class_id, status); if (c == NULL) { return status; } if (c->IsProxyClass()) { return JDWP::ERR_ABSENT_INFORMATION; } result = ClassHelper(c).GetSourceFile(); return JDWP::ERR_NONE; } JDWP::JdwpError Dbg::GetObjectTag(JDWP::ObjectId object_id, uint8_t& tag) { ScopedObjectAccessUnchecked soa(Thread::Current()); mirror::Object* o = gRegistry->Get(object_id); if (o == ObjectRegistry::kInvalidObject) { return JDWP::ERR_INVALID_OBJECT; } tag = TagFromObject(soa, o); return JDWP::ERR_NONE; } size_t Dbg::GetTagWidth(JDWP::JdwpTag tag) { switch (tag) { case JDWP::JT_VOID: return 0; case JDWP::JT_BYTE: case JDWP::JT_BOOLEAN: return 1; case JDWP::JT_CHAR: case JDWP::JT_SHORT: return 2; case JDWP::JT_FLOAT: case JDWP::JT_INT: return 4; case JDWP::JT_ARRAY: case JDWP::JT_OBJECT: case JDWP::JT_STRING: case JDWP::JT_THREAD: case JDWP::JT_THREAD_GROUP: case JDWP::JT_CLASS_LOADER: case JDWP::JT_CLASS_OBJECT: return sizeof(JDWP::ObjectId); case JDWP::JT_DOUBLE: case JDWP::JT_LONG: return 8; default: LOG(FATAL) << "Unknown tag " << tag; return -1; } } JDWP::JdwpError Dbg::GetArrayLength(JDWP::ObjectId array_id, int& length) { JDWP::JdwpError status; mirror::Array* a = DecodeArray(array_id, status); if (a == NULL) { return status; } length = a->GetLength(); return JDWP::ERR_NONE; } JDWP::JdwpError Dbg::OutputArray(JDWP::ObjectId array_id, int offset, int count, JDWP::ExpandBuf* pReply) { JDWP::JdwpError status; mirror::Array* a = DecodeArray(array_id, status); if (a == nullptr) { return status; } if (offset < 0 || count < 0 || offset > a->GetLength() || a->GetLength() - offset < count) { LOG(WARNING) << __FUNCTION__ << " access out of bounds: offset=" << offset << "; count=" << count; return JDWP::ERR_INVALID_LENGTH; } std::string descriptor(ClassHelper(a->GetClass()).GetDescriptor()); JDWP::JdwpTag tag = BasicTagFromDescriptor(descriptor.c_str() + 1); expandBufAdd1(pReply, tag); expandBufAdd4BE(pReply, count); if (IsPrimitiveTag(tag)) { size_t width = GetTagWidth(tag); uint8_t* dst = expandBufAddSpace(pReply, count * width); if (width == 8) { const uint64_t* src8 = reinterpret_cast(a->GetRawData(sizeof(uint64_t), 0)); for (int i = 0; i < count; ++i) JDWP::Write8BE(&dst, src8[offset + i]); } else if (width == 4) { const uint32_t* src4 = reinterpret_cast(a->GetRawData(sizeof(uint32_t), 0)); for (int i = 0; i < count; ++i) JDWP::Write4BE(&dst, src4[offset + i]); } else if (width == 2) { const uint16_t* src2 = reinterpret_cast(a->GetRawData(sizeof(uint16_t), 0)); for (int i = 0; i < count; ++i) JDWP::Write2BE(&dst, src2[offset + i]); } else { const uint8_t* src = reinterpret_cast(a->GetRawData(sizeof(uint8_t), 0)); memcpy(dst, &src[offset * width], count * width); } } else { ScopedObjectAccessUnchecked soa(Thread::Current()); mirror::ObjectArray* oa = a->AsObjectArray(); for (int i = 0; i < count; ++i) { mirror::Object* element = oa->Get(offset + i); JDWP::JdwpTag specific_tag = (element != nullptr) ? TagFromObject(soa, element) : tag; expandBufAdd1(pReply, specific_tag); expandBufAddObjectId(pReply, gRegistry->Add(element)); } } return JDWP::ERR_NONE; } template static void CopyArrayData(mirror::Array* a, JDWP::Request& src, int offset, int count) NO_THREAD_SAFETY_ANALYSIS { // TODO: fix when annotalysis correctly handles non-member functions. DCHECK(a->GetClass()->IsPrimitiveArray()); T* dst = reinterpret_cast(a->GetRawData(sizeof(T), offset)); for (int i = 0; i < count; ++i) { *dst++ = src.ReadValue(sizeof(T)); } } JDWP::JdwpError Dbg::SetArrayElements(JDWP::ObjectId array_id, int offset, int count, JDWP::Request& request) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { JDWP::JdwpError status; mirror::Array* dst = DecodeArray(array_id, status); if (dst == NULL) { return status; } if (offset < 0 || count < 0 || offset > dst->GetLength() || dst->GetLength() - offset < count) { LOG(WARNING) << __FUNCTION__ << " access out of bounds: offset=" << offset << "; count=" << count; return JDWP::ERR_INVALID_LENGTH; } ClassHelper ch(dst->GetClass()); const char* descriptor = ch.GetDescriptor(); JDWP::JdwpTag tag = BasicTagFromDescriptor(descriptor + 1); if (IsPrimitiveTag(tag)) { size_t width = GetTagWidth(tag); if (width == 8) { CopyArrayData(dst, request, offset, count); } else if (width == 4) { CopyArrayData(dst, request, offset, count); } else if (width == 2) { CopyArrayData(dst, request, offset, count); } else { CopyArrayData(dst, request, offset, count); } } else { mirror::ObjectArray* oa = dst->AsObjectArray(); for (int i = 0; i < count; ++i) { JDWP::ObjectId id = request.ReadObjectId(); mirror::Object* o = gRegistry->Get(id); if (o == ObjectRegistry::kInvalidObject) { return JDWP::ERR_INVALID_OBJECT; } oa->Set(offset + i, o); } } return JDWP::ERR_NONE; } JDWP::ObjectId Dbg::CreateString(const std::string& str) { return gRegistry->Add(mirror::String::AllocFromModifiedUtf8(Thread::Current(), str.c_str())); } JDWP::JdwpError Dbg::CreateObject(JDWP::RefTypeId class_id, JDWP::ObjectId& new_object) { JDWP::JdwpError status; mirror::Class* c = DecodeClass(class_id, status); if (c == NULL) { return status; } new_object = gRegistry->Add(c->AllocObject(Thread::Current())); return JDWP::ERR_NONE; } /* * Used by Eclipse's "Display" view to evaluate "new byte[5]" to get "(byte[]) [0, 0, 0, 0, 0]". */ JDWP::JdwpError Dbg::CreateArrayObject(JDWP::RefTypeId array_class_id, uint32_t length, JDWP::ObjectId& new_array) { JDWP::JdwpError status; mirror::Class* c = DecodeClass(array_class_id, status); if (c == NULL) { return status; } new_array = gRegistry->Add(mirror::Array::Alloc(Thread::Current(), c, length, c->GetComponentSize(), Runtime::Current()->GetHeap()->GetCurrentAllocator())); return JDWP::ERR_NONE; } bool Dbg::MatchType(JDWP::RefTypeId instance_class_id, JDWP::RefTypeId class_id) { JDWP::JdwpError status; mirror::Class* c1 = DecodeClass(instance_class_id, status); CHECK(c1 != NULL); mirror::Class* c2 = DecodeClass(class_id, status); CHECK(c2 != NULL); return c2->IsAssignableFrom(c1); } static JDWP::FieldId ToFieldId(const mirror::ArtField* f) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { CHECK(!kMovingFields); return static_cast(reinterpret_cast(f)); } static JDWP::MethodId ToMethodId(const mirror::ArtMethod* m) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { CHECK(!kMovingMethods); return static_cast(reinterpret_cast(m)); } static mirror::ArtField* FromFieldId(JDWP::FieldId fid) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { CHECK(!kMovingFields); return reinterpret_cast(static_cast(fid)); } static mirror::ArtMethod* FromMethodId(JDWP::MethodId mid) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { CHECK(!kMovingMethods); return reinterpret_cast(static_cast(mid)); } static void SetLocation(JDWP::JdwpLocation& location, mirror::ArtMethod* m, uint32_t dex_pc) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { if (m == NULL) { memset(&location, 0, sizeof(location)); } else { mirror::Class* c = m->GetDeclaringClass(); location.type_tag = GetTypeTag(c); location.class_id = gRegistry->AddRefType(c); location.method_id = ToMethodId(m); location.dex_pc = (m->IsNative() || m->IsProxyMethod()) ? static_cast(-1) : dex_pc; } } std::string Dbg::GetMethodName(JDWP::MethodId method_id) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { mirror::ArtMethod* m = FromMethodId(method_id); return MethodHelper(m).GetName(); } std::string Dbg::GetFieldName(JDWP::FieldId field_id) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { mirror::ArtField* f = FromFieldId(field_id); return FieldHelper(f).GetName(); } /* * Augment the access flags for synthetic methods and fields by setting * the (as described by the spec) "0xf0000000 bit". Also, strip out any * flags not specified by the Java programming language. */ static uint32_t MangleAccessFlags(uint32_t accessFlags) { accessFlags &= kAccJavaFlagsMask; if ((accessFlags & kAccSynthetic) != 0) { accessFlags |= 0xf0000000; } return accessFlags; } /* * Circularly shifts registers so that arguments come first. Debuggers * expect slots to begin with arguments, but dex code places them at * the end. */ static uint16_t MangleSlot(uint16_t slot, mirror::ArtMethod* m) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { const DexFile::CodeItem* code_item = MethodHelper(m).GetCodeItem(); if (code_item == nullptr) { // We should not get here for a method without code (native, proxy or abstract). Log it and // return the slot as is since all registers are arguments. LOG(WARNING) << "Trying to mangle slot for method without code " << PrettyMethod(m); return slot; } uint16_t ins_size = code_item->ins_size_; uint16_t locals_size = code_item->registers_size_ - ins_size; if (slot >= locals_size) { return slot - locals_size; } else { return slot + ins_size; } } /* * Circularly shifts registers so that arguments come last. Reverts * slots to dex style argument placement. */ static uint16_t DemangleSlot(uint16_t slot, mirror::ArtMethod* m) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { const DexFile::CodeItem* code_item = MethodHelper(m).GetCodeItem(); if (code_item == nullptr) { // We should not get here for a method without code (native, proxy or abstract). Log it and // return the slot as is since all registers are arguments. LOG(WARNING) << "Trying to demangle slot for method without code " << PrettyMethod(m); return slot; } uint16_t ins_size = code_item->ins_size_; uint16_t locals_size = code_item->registers_size_ - ins_size; if (slot < ins_size) { return slot + locals_size; } else { return slot - ins_size; } } JDWP::JdwpError Dbg::OutputDeclaredFields(JDWP::RefTypeId class_id, bool with_generic, JDWP::ExpandBuf* pReply) { JDWP::JdwpError status; mirror::Class* c = DecodeClass(class_id, status); if (c == NULL) { return status; } size_t instance_field_count = c->NumInstanceFields(); size_t static_field_count = c->NumStaticFields(); expandBufAdd4BE(pReply, instance_field_count + static_field_count); for (size_t i = 0; i < instance_field_count + static_field_count; ++i) { mirror::ArtField* f = (i < instance_field_count) ? c->GetInstanceField(i) : c->GetStaticField(i - instance_field_count); FieldHelper fh(f); expandBufAddFieldId(pReply, ToFieldId(f)); expandBufAddUtf8String(pReply, fh.GetName()); expandBufAddUtf8String(pReply, fh.GetTypeDescriptor()); if (with_generic) { static const char genericSignature[1] = ""; expandBufAddUtf8String(pReply, genericSignature); } expandBufAdd4BE(pReply, MangleAccessFlags(f->GetAccessFlags())); } return JDWP::ERR_NONE; } JDWP::JdwpError Dbg::OutputDeclaredMethods(JDWP::RefTypeId class_id, bool with_generic, JDWP::ExpandBuf* pReply) { JDWP::JdwpError status; mirror::Class* c = DecodeClass(class_id, status); if (c == NULL) { return status; } size_t direct_method_count = c->NumDirectMethods(); size_t virtual_method_count = c->NumVirtualMethods(); expandBufAdd4BE(pReply, direct_method_count + virtual_method_count); for (size_t i = 0; i < direct_method_count + virtual_method_count; ++i) { mirror::ArtMethod* m = (i < direct_method_count) ? c->GetDirectMethod(i) : c->GetVirtualMethod(i - direct_method_count); MethodHelper mh(m); expandBufAddMethodId(pReply, ToMethodId(m)); expandBufAddUtf8String(pReply, mh.GetName()); expandBufAddUtf8String(pReply, mh.GetSignature().ToString()); if (with_generic) { static const char genericSignature[1] = ""; expandBufAddUtf8String(pReply, genericSignature); } expandBufAdd4BE(pReply, MangleAccessFlags(m->GetAccessFlags())); } return JDWP::ERR_NONE; } JDWP::JdwpError Dbg::OutputDeclaredInterfaces(JDWP::RefTypeId class_id, JDWP::ExpandBuf* pReply) { JDWP::JdwpError status; mirror::Class* c = DecodeClass(class_id, status); if (c == NULL) { return status; } ClassHelper kh(c); size_t interface_count = kh.NumDirectInterfaces(); expandBufAdd4BE(pReply, interface_count); for (size_t i = 0; i < interface_count; ++i) { expandBufAddRefTypeId(pReply, gRegistry->AddRefType(kh.GetDirectInterface(i))); } return JDWP::ERR_NONE; } void Dbg::OutputLineTable(JDWP::RefTypeId, JDWP::MethodId method_id, JDWP::ExpandBuf* pReply) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { struct DebugCallbackContext { int numItems; JDWP::ExpandBuf* pReply; static bool Callback(void* context, uint32_t address, uint32_t line_number) { DebugCallbackContext* pContext = reinterpret_cast(context); expandBufAdd8BE(pContext->pReply, address); expandBufAdd4BE(pContext->pReply, line_number); pContext->numItems++; return false; } }; mirror::ArtMethod* m = FromMethodId(method_id); MethodHelper mh(m); const DexFile::CodeItem* code_item = mh.GetCodeItem(); uint64_t start, end; if (code_item == nullptr) { DCHECK(m->IsNative() || m->IsProxyMethod()); start = -1; end = -1; } else { start = 0; // Return the index of the last instruction end = code_item->insns_size_in_code_units_ - 1; } expandBufAdd8BE(pReply, start); expandBufAdd8BE(pReply, end); // Add numLines later size_t numLinesOffset = expandBufGetLength(pReply); expandBufAdd4BE(pReply, 0); DebugCallbackContext context; context.numItems = 0; context.pReply = pReply; if (code_item != nullptr) { mh.GetDexFile().DecodeDebugInfo(code_item, m->IsStatic(), m->GetDexMethodIndex(), DebugCallbackContext::Callback, NULL, &context); } JDWP::Set4BE(expandBufGetBuffer(pReply) + numLinesOffset, context.numItems); } void Dbg::OutputVariableTable(JDWP::RefTypeId, JDWP::MethodId method_id, bool with_generic, JDWP::ExpandBuf* pReply) { struct DebugCallbackContext { mirror::ArtMethod* method; JDWP::ExpandBuf* pReply; size_t variable_count; bool with_generic; static void Callback(void* context, uint16_t slot, uint32_t startAddress, uint32_t endAddress, const char* name, const char* descriptor, const char* signature) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { DebugCallbackContext* pContext = reinterpret_cast(context); VLOG(jdwp) << StringPrintf(" %2zd: %d(%d) '%s' '%s' '%s' actual slot=%d mangled slot=%d", pContext->variable_count, startAddress, endAddress - startAddress, name, descriptor, signature, slot, MangleSlot(slot, pContext->method)); slot = MangleSlot(slot, pContext->method); expandBufAdd8BE(pContext->pReply, startAddress); expandBufAddUtf8String(pContext->pReply, name); expandBufAddUtf8String(pContext->pReply, descriptor); if (pContext->with_generic) { expandBufAddUtf8String(pContext->pReply, signature); } expandBufAdd4BE(pContext->pReply, endAddress - startAddress); expandBufAdd4BE(pContext->pReply, slot); ++pContext->variable_count; } }; mirror::ArtMethod* m = FromMethodId(method_id); MethodHelper mh(m); // arg_count considers doubles and longs to take 2 units. // variable_count considers everything to take 1 unit. std::string shorty(mh.GetShorty()); expandBufAdd4BE(pReply, mirror::ArtMethod::NumArgRegisters(shorty)); // We don't know the total number of variables yet, so leave a blank and update it later. size_t variable_count_offset = expandBufGetLength(pReply); expandBufAdd4BE(pReply, 0); DebugCallbackContext context; context.method = m; context.pReply = pReply; context.variable_count = 0; context.with_generic = with_generic; const DexFile::CodeItem* code_item = mh.GetCodeItem(); if (code_item != nullptr) { mh.GetDexFile().DecodeDebugInfo(code_item, m->IsStatic(), m->GetDexMethodIndex(), NULL, DebugCallbackContext::Callback, &context); } JDWP::Set4BE(expandBufGetBuffer(pReply) + variable_count_offset, context.variable_count); } void Dbg::OutputMethodReturnValue(JDWP::MethodId method_id, const JValue* return_value, JDWP::ExpandBuf* pReply) { mirror::ArtMethod* m = FromMethodId(method_id); JDWP::JdwpTag tag = BasicTagFromDescriptor(MethodHelper(m).GetShorty()); OutputJValue(tag, return_value, pReply); } void Dbg::OutputFieldValue(JDWP::FieldId field_id, const JValue* field_value, JDWP::ExpandBuf* pReply) { mirror::ArtField* f = FromFieldId(field_id); JDWP::JdwpTag tag = BasicTagFromDescriptor(FieldHelper(f).GetTypeDescriptor()); OutputJValue(tag, field_value, pReply); } JDWP::JdwpError Dbg::GetBytecodes(JDWP::RefTypeId, JDWP::MethodId method_id, std::vector& bytecodes) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { mirror::ArtMethod* m = FromMethodId(method_id); if (m == NULL) { return JDWP::ERR_INVALID_METHODID; } MethodHelper mh(m); const DexFile::CodeItem* code_item = mh.GetCodeItem(); size_t byte_count = code_item->insns_size_in_code_units_ * 2; const uint8_t* begin = reinterpret_cast(code_item->insns_); const uint8_t* end = begin + byte_count; for (const uint8_t* p = begin; p != end; ++p) { bytecodes.push_back(*p); } return JDWP::ERR_NONE; } JDWP::JdwpTag Dbg::GetFieldBasicTag(JDWP::FieldId field_id) { return BasicTagFromDescriptor(FieldHelper(FromFieldId(field_id)).GetTypeDescriptor()); } JDWP::JdwpTag Dbg::GetStaticFieldBasicTag(JDWP::FieldId field_id) { return BasicTagFromDescriptor(FieldHelper(FromFieldId(field_id)).GetTypeDescriptor()); } static JDWP::JdwpError GetFieldValueImpl(JDWP::RefTypeId ref_type_id, JDWP::ObjectId object_id, JDWP::FieldId field_id, JDWP::ExpandBuf* pReply, bool is_static) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { JDWP::JdwpError status; mirror::Class* c = DecodeClass(ref_type_id, status); if (ref_type_id != 0 && c == NULL) { return status; } mirror::Object* o = gRegistry->Get(object_id); if ((!is_static && o == NULL) || o == ObjectRegistry::kInvalidObject) { return JDWP::ERR_INVALID_OBJECT; } mirror::ArtField* f = FromFieldId(field_id); mirror::Class* receiver_class = c; if (receiver_class == NULL && o != NULL) { receiver_class = o->GetClass(); } // TODO: should we give up now if receiver_class is NULL? if (receiver_class != NULL && !f->GetDeclaringClass()->IsAssignableFrom(receiver_class)) { LOG(INFO) << "ERR_INVALID_FIELDID: " << PrettyField(f) << " " << PrettyClass(receiver_class); return JDWP::ERR_INVALID_FIELDID; } // The RI only enforces the static/non-static mismatch in one direction. // TODO: should we change the tests and check both? if (is_static) { if (!f->IsStatic()) { return JDWP::ERR_INVALID_FIELDID; } } else { if (f->IsStatic()) { LOG(WARNING) << "Ignoring non-NULL receiver for ObjectReference.SetValues on static field " << PrettyField(f); } } if (f->IsStatic()) { o = f->GetDeclaringClass(); } JDWP::JdwpTag tag = BasicTagFromDescriptor(FieldHelper(f).GetTypeDescriptor()); JValue field_value; if (tag == JDWP::JT_VOID) { LOG(FATAL) << "Unknown tag: " << tag; } else if (!IsPrimitiveTag(tag)) { field_value.SetL(f->GetObject(o)); } else if (tag == JDWP::JT_DOUBLE || tag == JDWP::JT_LONG) { field_value.SetJ(f->Get64(o)); } else { field_value.SetI(f->Get32(o)); } Dbg::OutputJValue(tag, &field_value, pReply); return JDWP::ERR_NONE; } JDWP::JdwpError Dbg::GetFieldValue(JDWP::ObjectId object_id, JDWP::FieldId field_id, JDWP::ExpandBuf* pReply) { return GetFieldValueImpl(0, object_id, field_id, pReply, false); } JDWP::JdwpError Dbg::GetStaticFieldValue(JDWP::RefTypeId ref_type_id, JDWP::FieldId field_id, JDWP::ExpandBuf* pReply) { return GetFieldValueImpl(ref_type_id, 0, field_id, pReply, true); } static JDWP::JdwpError SetFieldValueImpl(JDWP::ObjectId object_id, JDWP::FieldId field_id, uint64_t value, int width, bool is_static) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { mirror::Object* o = gRegistry->Get(object_id); if ((!is_static && o == NULL) || o == ObjectRegistry::kInvalidObject) { return JDWP::ERR_INVALID_OBJECT; } mirror::ArtField* f = FromFieldId(field_id); // The RI only enforces the static/non-static mismatch in one direction. // TODO: should we change the tests and check both? if (is_static) { if (!f->IsStatic()) { return JDWP::ERR_INVALID_FIELDID; } } else { if (f->IsStatic()) { LOG(WARNING) << "Ignoring non-NULL receiver for ObjectReference.SetValues on static field " << PrettyField(f); } } if (f->IsStatic()) { o = f->GetDeclaringClass(); } JDWP::JdwpTag tag = BasicTagFromDescriptor(FieldHelper(f).GetTypeDescriptor()); if (IsPrimitiveTag(tag)) { if (tag == JDWP::JT_DOUBLE || tag == JDWP::JT_LONG) { CHECK_EQ(width, 8); // Debugging can't use transactional mode (runtime only). f->Set64(o, value); } else { CHECK_LE(width, 4); // Debugging can't use transactional mode (runtime only). f->Set32(o, value); } } else { mirror::Object* v = gRegistry->Get(value); if (v == ObjectRegistry::kInvalidObject) { return JDWP::ERR_INVALID_OBJECT; } if (v != NULL) { mirror::Class* field_type = FieldHelper(f).GetType(); if (!field_type->IsAssignableFrom(v->GetClass())) { return JDWP::ERR_INVALID_OBJECT; } } // Debugging can't use transactional mode (runtime only). f->SetObject(o, v); } return JDWP::ERR_NONE; } JDWP::JdwpError Dbg::SetFieldValue(JDWP::ObjectId object_id, JDWP::FieldId field_id, uint64_t value, int width) { return SetFieldValueImpl(object_id, field_id, value, width, false); } JDWP::JdwpError Dbg::SetStaticFieldValue(JDWP::FieldId field_id, uint64_t value, int width) { return SetFieldValueImpl(0, field_id, value, width, true); } std::string Dbg::StringToUtf8(JDWP::ObjectId string_id) { mirror::String* s = gRegistry->Get(string_id); return s->ToModifiedUtf8(); } void Dbg::OutputJValue(JDWP::JdwpTag tag, const JValue* return_value, JDWP::ExpandBuf* pReply) { if (IsPrimitiveTag(tag)) { expandBufAdd1(pReply, tag); if (tag == JDWP::JT_BOOLEAN || tag == JDWP::JT_BYTE) { expandBufAdd1(pReply, return_value->GetI()); } else if (tag == JDWP::JT_CHAR || tag == JDWP::JT_SHORT) { expandBufAdd2BE(pReply, return_value->GetI()); } else if (tag == JDWP::JT_FLOAT || tag == JDWP::JT_INT) { expandBufAdd4BE(pReply, return_value->GetI()); } else if (tag == JDWP::JT_DOUBLE || tag == JDWP::JT_LONG) { expandBufAdd8BE(pReply, return_value->GetJ()); } else { CHECK_EQ(tag, JDWP::JT_VOID); } } else { ScopedObjectAccessUnchecked soa(Thread::Current()); mirror::Object* value = return_value->GetL(); expandBufAdd1(pReply, TagFromObject(soa, value)); expandBufAddObjectId(pReply, gRegistry->Add(value)); } } JDWP::JdwpError Dbg::GetThreadName(JDWP::ObjectId thread_id, std::string& name) { ScopedObjectAccessUnchecked soa(Thread::Current()); MutexLock mu(soa.Self(), *Locks::thread_list_lock_); Thread* thread; JDWP::JdwpError error = DecodeThread(soa, thread_id, thread); if (error != JDWP::ERR_NONE && error != JDWP::ERR_THREAD_NOT_ALIVE) { return error; } // We still need to report the zombie threads' names, so we can't just call Thread::GetThreadName. mirror::Object* thread_object = gRegistry->Get(thread_id); mirror::ArtField* java_lang_Thread_name_field = soa.DecodeField(WellKnownClasses::java_lang_Thread_name); mirror::String* s = reinterpret_cast(java_lang_Thread_name_field->GetObject(thread_object)); if (s != NULL) { name = s->ToModifiedUtf8(); } return JDWP::ERR_NONE; } JDWP::JdwpError Dbg::GetThreadGroup(JDWP::ObjectId thread_id, JDWP::ExpandBuf* pReply) { ScopedObjectAccess soa(Thread::Current()); mirror::Object* thread_object = gRegistry->Get(thread_id); if (thread_object == ObjectRegistry::kInvalidObject) { return JDWP::ERR_INVALID_OBJECT; } const char* old_cause = soa.Self()->StartAssertNoThreadSuspension("Debugger: GetThreadGroup"); // Okay, so it's an object, but is it actually a thread? MutexLock mu(soa.Self(), *Locks::thread_list_lock_); Thread* thread; JDWP::JdwpError error = DecodeThread(soa, thread_id, thread); if (error == JDWP::ERR_THREAD_NOT_ALIVE) { // Zombie threads are in the null group. expandBufAddObjectId(pReply, JDWP::ObjectId(0)); error = JDWP::ERR_NONE; } else if (error == JDWP::ERR_NONE) { mirror::Class* c = soa.Decode(WellKnownClasses::java_lang_Thread); CHECK(c != nullptr); mirror::ArtField* f = c->FindInstanceField("group", "Ljava/lang/ThreadGroup;"); CHECK(f != NULL); mirror::Object* group = f->GetObject(thread_object); CHECK(group != NULL); JDWP::ObjectId thread_group_id = gRegistry->Add(group); expandBufAddObjectId(pReply, thread_group_id); } soa.Self()->EndAssertNoThreadSuspension(old_cause); return error; } std::string Dbg::GetThreadGroupName(JDWP::ObjectId thread_group_id) { ScopedObjectAccess soa(Thread::Current()); mirror::Object* thread_group = gRegistry->Get(thread_group_id); CHECK(thread_group != nullptr); const char* old_cause = soa.Self()->StartAssertNoThreadSuspension("Debugger: GetThreadGroupName"); mirror::Class* c = soa.Decode(WellKnownClasses::java_lang_ThreadGroup); CHECK(c != nullptr); mirror::ArtField* f = c->FindInstanceField("name", "Ljava/lang/String;"); CHECK(f != NULL); mirror::String* s = reinterpret_cast(f->GetObject(thread_group)); soa.Self()->EndAssertNoThreadSuspension(old_cause); return s->ToModifiedUtf8(); } JDWP::ObjectId Dbg::GetThreadGroupParent(JDWP::ObjectId thread_group_id) { ScopedObjectAccessUnchecked soa(Thread::Current()); mirror::Object* thread_group = gRegistry->Get(thread_group_id); CHECK(thread_group != nullptr); const char* old_cause = soa.Self()->StartAssertNoThreadSuspension("Debugger: GetThreadGroupParent"); mirror::Class* c = soa.Decode(WellKnownClasses::java_lang_ThreadGroup); CHECK(c != nullptr); mirror::ArtField* f = c->FindInstanceField("parent", "Ljava/lang/ThreadGroup;"); CHECK(f != NULL); mirror::Object* parent = f->GetObject(thread_group); soa.Self()->EndAssertNoThreadSuspension(old_cause); return gRegistry->Add(parent); } JDWP::ObjectId Dbg::GetSystemThreadGroupId() { ScopedObjectAccessUnchecked soa(Thread::Current()); mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_ThreadGroup_systemThreadGroup); mirror::Object* group = f->GetObject(f->GetDeclaringClass()); return gRegistry->Add(group); } JDWP::ObjectId Dbg::GetMainThreadGroupId() { ScopedObjectAccess soa(Thread::Current()); mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_ThreadGroup_mainThreadGroup); mirror::Object* group = f->GetObject(f->GetDeclaringClass()); return gRegistry->Add(group); } JDWP::JdwpThreadStatus Dbg::ToJdwpThreadStatus(ThreadState state) { switch (state) { case kBlocked: return JDWP::TS_MONITOR; case kNative: case kRunnable: case kSuspended: return JDWP::TS_RUNNING; case kSleeping: return JDWP::TS_SLEEPING; case kStarting: case kTerminated: return JDWP::TS_ZOMBIE; case kTimedWaiting: case kWaitingForDebuggerSend: case kWaitingForDebuggerSuspension: case kWaitingForDebuggerToAttach: case kWaitingForDeoptimization: case kWaitingForGcToComplete: case kWaitingForCheckPointsToRun: case kWaitingForJniOnLoad: case kWaitingForSignalCatcherOutput: case kWaitingInMainDebuggerLoop: case kWaitingInMainSignalCatcherLoop: case kWaitingPerformingGc: case kWaiting: return JDWP::TS_WAIT; // Don't add a 'default' here so the compiler can spot incompatible enum changes. } LOG(FATAL) << "Unknown thread state: " << state; return JDWP::TS_ZOMBIE; } JDWP::JdwpError Dbg::GetThreadStatus(JDWP::ObjectId thread_id, JDWP::JdwpThreadStatus* pThreadStatus, JDWP::JdwpSuspendStatus* pSuspendStatus) { ScopedObjectAccess soa(Thread::Current()); *pSuspendStatus = JDWP::SUSPEND_STATUS_NOT_SUSPENDED; MutexLock mu(soa.Self(), *Locks::thread_list_lock_); Thread* thread; JDWP::JdwpError error = DecodeThread(soa, thread_id, thread); if (error != JDWP::ERR_NONE) { if (error == JDWP::ERR_THREAD_NOT_ALIVE) { *pThreadStatus = JDWP::TS_ZOMBIE; return JDWP::ERR_NONE; } return error; } if (IsSuspendedForDebugger(soa, thread)) { *pSuspendStatus = JDWP::SUSPEND_STATUS_SUSPENDED; } *pThreadStatus = ToJdwpThreadStatus(thread->GetState()); return JDWP::ERR_NONE; } JDWP::JdwpError Dbg::GetThreadDebugSuspendCount(JDWP::ObjectId thread_id, JDWP::ExpandBuf* pReply) { ScopedObjectAccess soa(Thread::Current()); MutexLock mu(soa.Self(), *Locks::thread_list_lock_); Thread* thread; JDWP::JdwpError error = DecodeThread(soa, thread_id, thread); if (error != JDWP::ERR_NONE) { return error; } MutexLock mu2(soa.Self(), *Locks::thread_suspend_count_lock_); expandBufAdd4BE(pReply, thread->GetDebugSuspendCount()); return JDWP::ERR_NONE; } JDWP::JdwpError Dbg::Interrupt(JDWP::ObjectId thread_id) { ScopedObjectAccess soa(Thread::Current()); MutexLock mu(soa.Self(), *Locks::thread_list_lock_); Thread* thread; JDWP::JdwpError error = DecodeThread(soa, thread_id, thread); if (error != JDWP::ERR_NONE) { return error; } thread->Interrupt(soa.Self()); return JDWP::ERR_NONE; } void Dbg::GetThreads(JDWP::ObjectId thread_group_id, std::vector& thread_ids) { class ThreadListVisitor { public: ThreadListVisitor(const ScopedObjectAccessUnchecked& soa, mirror::Object* desired_thread_group, std::vector& thread_ids) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) : soa_(soa), desired_thread_group_(desired_thread_group), thread_ids_(thread_ids) {} static void Visit(Thread* t, void* arg) { reinterpret_cast(arg)->Visit(t); } // TODO: Enable annotalysis. We know lock is held in constructor, but abstraction confuses // annotalysis. void Visit(Thread* t) NO_THREAD_SAFETY_ANALYSIS { if (t == Dbg::GetDebugThread()) { // Skip the JDWP thread. Some debuggers get bent out of shape when they can't suspend and // query all threads, so it's easier if we just don't tell them about this thread. return; } mirror::Object* peer = t->GetPeer(); if (IsInDesiredThreadGroup(peer)) { thread_ids_.push_back(gRegistry->Add(peer)); } } private: bool IsInDesiredThreadGroup(mirror::Object* peer) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { // peer might be NULL if the thread is still starting up. if (peer == NULL) { // We can't tell the debugger about this thread yet. // TODO: if we identified threads to the debugger by their Thread* // rather than their peer's mirror::Object*, we could fix this. // Doing so might help us report ZOMBIE threads too. return false; } // Do we want threads from all thread groups? if (desired_thread_group_ == NULL) { return true; } mirror::Object* group = soa_.DecodeField(WellKnownClasses::java_lang_Thread_group)->GetObject(peer); return (group == desired_thread_group_); } const ScopedObjectAccessUnchecked& soa_; mirror::Object* const desired_thread_group_; std::vector& thread_ids_; }; ScopedObjectAccessUnchecked soa(Thread::Current()); mirror::Object* thread_group = gRegistry->Get(thread_group_id); ThreadListVisitor tlv(soa, thread_group, thread_ids); MutexLock mu(soa.Self(), *Locks::thread_list_lock_); Runtime::Current()->GetThreadList()->ForEach(ThreadListVisitor::Visit, &tlv); } void Dbg::GetChildThreadGroups(JDWP::ObjectId thread_group_id, std::vector& child_thread_group_ids) { ScopedObjectAccess soa(Thread::Current()); mirror::Object* thread_group = gRegistry->Get(thread_group_id); // Get the ArrayList "groups" out of this thread group... mirror::ArtField* groups_field = thread_group->GetClass()->FindInstanceField("groups", "Ljava/util/List;"); mirror::Object* groups_array_list = groups_field->GetObject(thread_group); // Get the array and size out of the ArrayList... mirror::ArtField* array_field = groups_array_list->GetClass()->FindInstanceField("array", "[Ljava/lang/Object;"); mirror::ArtField* size_field = groups_array_list->GetClass()->FindInstanceField("size", "I"); mirror::ObjectArray* groups_array = array_field->GetObject(groups_array_list)->AsObjectArray(); const int32_t size = size_field->GetInt(groups_array_list); // Copy the first 'size' elements out of the array into the result. for (int32_t i = 0; i < size; ++i) { child_thread_group_ids.push_back(gRegistry->Add(groups_array->Get(i))); } } static int GetStackDepth(Thread* thread) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { struct CountStackDepthVisitor : public StackVisitor { explicit CountStackDepthVisitor(Thread* thread) : StackVisitor(thread, NULL), depth(0) {} // TODO: Enable annotalysis. We know lock is held in constructor, but abstraction confuses // annotalysis. bool VisitFrame() NO_THREAD_SAFETY_ANALYSIS { if (!GetMethod()->IsRuntimeMethod()) { ++depth; } return true; } size_t depth; }; CountStackDepthVisitor visitor(thread); visitor.WalkStack(); return visitor.depth; } JDWP::JdwpError Dbg::GetThreadFrameCount(JDWP::ObjectId thread_id, size_t& result) { ScopedObjectAccess soa(Thread::Current()); MutexLock mu(soa.Self(), *Locks::thread_list_lock_); Thread* thread; JDWP::JdwpError error = DecodeThread(soa, thread_id, thread); if (error != JDWP::ERR_NONE) { return error; } if (!IsSuspendedForDebugger(soa, thread)) { return JDWP::ERR_THREAD_NOT_SUSPENDED; } result = GetStackDepth(thread); return JDWP::ERR_NONE; } JDWP::JdwpError Dbg::GetThreadFrames(JDWP::ObjectId thread_id, size_t start_frame, size_t frame_count, JDWP::ExpandBuf* buf) { class GetFrameVisitor : public StackVisitor { public: GetFrameVisitor(Thread* thread, size_t start_frame, size_t frame_count, JDWP::ExpandBuf* buf) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) : StackVisitor(thread, NULL), depth_(0), start_frame_(start_frame), frame_count_(frame_count), buf_(buf) { expandBufAdd4BE(buf_, frame_count_); } // TODO: Enable annotalysis. We know lock is held in constructor, but abstraction confuses // annotalysis. virtual bool VisitFrame() NO_THREAD_SAFETY_ANALYSIS { if (GetMethod()->IsRuntimeMethod()) { return true; // The debugger can't do anything useful with a frame that has no Method*. } if (depth_ >= start_frame_ + frame_count_) { return false; } if (depth_ >= start_frame_) { JDWP::FrameId frame_id(GetFrameId()); JDWP::JdwpLocation location; SetLocation(location, GetMethod(), GetDexPc()); VLOG(jdwp) << StringPrintf(" Frame %3zd: id=%3" PRIu64 " ", depth_, frame_id) << location; expandBufAdd8BE(buf_, frame_id); expandBufAddLocation(buf_, location); } ++depth_; return true; } private: size_t depth_; const size_t start_frame_; const size_t frame_count_; JDWP::ExpandBuf* buf_; }; ScopedObjectAccessUnchecked soa(Thread::Current()); MutexLock mu(soa.Self(), *Locks::thread_list_lock_); Thread* thread; JDWP::JdwpError error = DecodeThread(soa, thread_id, thread); if (error != JDWP::ERR_NONE) { return error; } if (!IsSuspendedForDebugger(soa, thread)) { return JDWP::ERR_THREAD_NOT_SUSPENDED; } GetFrameVisitor visitor(thread, start_frame, frame_count, buf); visitor.WalkStack(); return JDWP::ERR_NONE; } JDWP::ObjectId Dbg::GetThreadSelfId() { ScopedObjectAccessUnchecked soa(Thread::Current()); return gRegistry->Add(soa.Self()->GetPeer()); } void Dbg::SuspendVM() { Runtime::Current()->GetThreadList()->SuspendAllForDebugger(); } void Dbg::ResumeVM() { Runtime::Current()->GetThreadList()->UndoDebuggerSuspensions(); } JDWP::JdwpError Dbg::SuspendThread(JDWP::ObjectId thread_id, bool request_suspension) { ScopedLocalRef peer(Thread::Current()->GetJniEnv(), NULL); { ScopedObjectAccess soa(Thread::Current()); peer.reset(soa.AddLocalReference(gRegistry->Get(thread_id))); } if (peer.get() == NULL) { return JDWP::ERR_THREAD_NOT_ALIVE; } // Suspend thread to build stack trace. bool timed_out; Thread* thread = ThreadList::SuspendThreadByPeer(peer.get(), request_suspension, true, &timed_out); if (thread != NULL) { return JDWP::ERR_NONE; } else if (timed_out) { return JDWP::ERR_INTERNAL; } else { return JDWP::ERR_THREAD_NOT_ALIVE; } } void Dbg::ResumeThread(JDWP::ObjectId thread_id) { ScopedObjectAccessUnchecked soa(Thread::Current()); mirror::Object* peer = gRegistry->Get(thread_id); Thread* thread; { MutexLock mu(soa.Self(), *Locks::thread_list_lock_); thread = Thread::FromManagedThread(soa, peer); } if (thread == NULL) { LOG(WARNING) << "No such thread for resume: " << peer; return; } bool needs_resume; { MutexLock mu2(soa.Self(), *Locks::thread_suspend_count_lock_); needs_resume = thread->GetSuspendCount() > 0; } if (needs_resume) { Runtime::Current()->GetThreadList()->Resume(thread, true); } } void Dbg::SuspendSelf() { Runtime::Current()->GetThreadList()->SuspendSelfForDebugger(); } struct GetThisVisitor : public StackVisitor { GetThisVisitor(Thread* thread, Context* context, JDWP::FrameId frame_id) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) : StackVisitor(thread, context), this_object(NULL), frame_id(frame_id) {} // TODO: Enable annotalysis. We know lock is held in constructor, but abstraction confuses // annotalysis. virtual bool VisitFrame() NO_THREAD_SAFETY_ANALYSIS { if (frame_id != GetFrameId()) { return true; // continue } else { this_object = GetThisObject(); return false; } } mirror::Object* this_object; JDWP::FrameId frame_id; }; JDWP::JdwpError Dbg::GetThisObject(JDWP::ObjectId thread_id, JDWP::FrameId frame_id, JDWP::ObjectId* result) { ScopedObjectAccessUnchecked soa(Thread::Current()); Thread* thread; { MutexLock mu(soa.Self(), *Locks::thread_list_lock_); JDWP::JdwpError error = DecodeThread(soa, thread_id, thread); if (error != JDWP::ERR_NONE) { return error; } if (!IsSuspendedForDebugger(soa, thread)) { return JDWP::ERR_THREAD_NOT_SUSPENDED; } } UniquePtr context(Context::Create()); GetThisVisitor visitor(thread, context.get(), frame_id); visitor.WalkStack(); *result = gRegistry->Add(visitor.this_object); return JDWP::ERR_NONE; } JDWP::JdwpError Dbg::GetLocalValue(JDWP::ObjectId thread_id, JDWP::FrameId frame_id, int slot, JDWP::JdwpTag tag, uint8_t* buf, size_t width) { struct GetLocalVisitor : public StackVisitor { GetLocalVisitor(const ScopedObjectAccessUnchecked& soa, Thread* thread, Context* context, JDWP::FrameId frame_id, int slot, JDWP::JdwpTag tag, uint8_t* buf, size_t width) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) : StackVisitor(thread, context), soa_(soa), frame_id_(frame_id), slot_(slot), tag_(tag), buf_(buf), width_(width), error_(JDWP::ERR_NONE) {} // TODO: Enable annotalysis. We know lock is held in constructor, but abstraction confuses // annotalysis. bool VisitFrame() NO_THREAD_SAFETY_ANALYSIS { if (GetFrameId() != frame_id_) { return true; // Not our frame, carry on. } // TODO: check that the tag is compatible with the actual type of the slot! // TODO: check slot is valid for this method or return INVALID_SLOT error. mirror::ArtMethod* m = GetMethod(); if (m->IsNative()) { // We can't read local value from native method. error_ = JDWP::ERR_OPAQUE_FRAME; return false; } uint16_t reg = DemangleSlot(slot_, m); switch (tag_) { case JDWP::JT_BOOLEAN: { CHECK_EQ(width_, 1U); uint32_t intVal = GetVReg(m, reg, kIntVReg); VLOG(jdwp) << "get boolean local " << reg << " = " << intVal; JDWP::Set1(buf_+1, intVal != 0); } break; case JDWP::JT_BYTE: { CHECK_EQ(width_, 1U); uint32_t intVal = GetVReg(m, reg, kIntVReg); VLOG(jdwp) << "get byte local " << reg << " = " << intVal; JDWP::Set1(buf_+1, intVal); } break; case JDWP::JT_SHORT: case JDWP::JT_CHAR: { CHECK_EQ(width_, 2U); uint32_t intVal = GetVReg(m, reg, kIntVReg); VLOG(jdwp) << "get short/char local " << reg << " = " << intVal; JDWP::Set2BE(buf_+1, intVal); } break; case JDWP::JT_INT: { CHECK_EQ(width_, 4U); uint32_t intVal = GetVReg(m, reg, kIntVReg); VLOG(jdwp) << "get int local " << reg << " = " << intVal; JDWP::Set4BE(buf_+1, intVal); } break; case JDWP::JT_FLOAT: { CHECK_EQ(width_, 4U); uint32_t intVal = GetVReg(m, reg, kFloatVReg); VLOG(jdwp) << "get int/float local " << reg << " = " << intVal; JDWP::Set4BE(buf_+1, intVal); } break; case JDWP::JT_ARRAY: { CHECK_EQ(width_, sizeof(JDWP::ObjectId)); mirror::Object* o = reinterpret_cast(GetVReg(m, reg, kReferenceVReg)); VLOG(jdwp) << "get array local " << reg << " = " << o; if (!Runtime::Current()->GetHeap()->IsValidObjectAddress(o)) { LOG(FATAL) << "Register " << reg << " expected to hold array: " << o; } JDWP::SetObjectId(buf_+1, gRegistry->Add(o)); } break; case JDWP::JT_CLASS_LOADER: case JDWP::JT_CLASS_OBJECT: case JDWP::JT_OBJECT: case JDWP::JT_STRING: case JDWP::JT_THREAD: case JDWP::JT_THREAD_GROUP: { CHECK_EQ(width_, sizeof(JDWP::ObjectId)); mirror::Object* o = reinterpret_cast(GetVReg(m, reg, kReferenceVReg)); VLOG(jdwp) << "get object local " << reg << " = " << o; if (!Runtime::Current()->GetHeap()->IsValidObjectAddress(o)) { LOG(FATAL) << "Register " << reg << " expected to hold object: " << o; } tag_ = TagFromObject(soa_, o); JDWP::SetObjectId(buf_+1, gRegistry->Add(o)); } break; case JDWP::JT_DOUBLE: { CHECK_EQ(width_, 8U); uint32_t lo = GetVReg(m, reg, kDoubleLoVReg); uint64_t hi = GetVReg(m, reg + 1, kDoubleHiVReg); uint64_t longVal = (hi << 32) | lo; VLOG(jdwp) << "get double/long local " << hi << ":" << lo << " = " << longVal; JDWP::Set8BE(buf_+1, longVal); } break; case JDWP::JT_LONG: { CHECK_EQ(width_, 8U); uint32_t lo = GetVReg(m, reg, kLongLoVReg); uint64_t hi = GetVReg(m, reg + 1, kLongHiVReg); uint64_t longVal = (hi << 32) | lo; VLOG(jdwp) << "get double/long local " << hi << ":" << lo << " = " << longVal; JDWP::Set8BE(buf_+1, longVal); } break; default: LOG(FATAL) << "Unknown tag " << tag_; break; } // Prepend tag, which may have been updated. JDWP::Set1(buf_, tag_); return false; } const ScopedObjectAccessUnchecked& soa_; const JDWP::FrameId frame_id_; const int slot_; JDWP::JdwpTag tag_; uint8_t* const buf_; const size_t width_; JDWP::JdwpError error_; }; ScopedObjectAccessUnchecked soa(Thread::Current()); MutexLock mu(soa.Self(), *Locks::thread_list_lock_); Thread* thread; JDWP::JdwpError error = DecodeThread(soa, thread_id, thread); if (error != JDWP::ERR_NONE) { return error; } // TODO check thread is suspended by the debugger ? UniquePtr context(Context::Create()); GetLocalVisitor visitor(soa, thread, context.get(), frame_id, slot, tag, buf, width); visitor.WalkStack(); return visitor.error_; } JDWP::JdwpError Dbg::SetLocalValue(JDWP::ObjectId thread_id, JDWP::FrameId frame_id, int slot, JDWP::JdwpTag tag, uint64_t value, size_t width) { struct SetLocalVisitor : public StackVisitor { SetLocalVisitor(Thread* thread, Context* context, JDWP::FrameId frame_id, int slot, JDWP::JdwpTag tag, uint64_t value, size_t width) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) : StackVisitor(thread, context), frame_id_(frame_id), slot_(slot), tag_(tag), value_(value), width_(width), error_(JDWP::ERR_NONE) {} // TODO: Enable annotalysis. We know lock is held in constructor, but abstraction confuses // annotalysis. bool VisitFrame() NO_THREAD_SAFETY_ANALYSIS { if (GetFrameId() != frame_id_) { return true; // Not our frame, carry on. } // TODO: check that the tag is compatible with the actual type of the slot! // TODO: check slot is valid for this method or return INVALID_SLOT error. mirror::ArtMethod* m = GetMethod(); if (m->IsNative()) { // We can't read local value from native method. error_ = JDWP::ERR_OPAQUE_FRAME; return false; } uint16_t reg = DemangleSlot(slot_, m); switch (tag_) { case JDWP::JT_BOOLEAN: case JDWP::JT_BYTE: CHECK_EQ(width_, 1U); SetVReg(m, reg, static_cast(value_), kIntVReg); break; case JDWP::JT_SHORT: case JDWP::JT_CHAR: CHECK_EQ(width_, 2U); SetVReg(m, reg, static_cast(value_), kIntVReg); break; case JDWP::JT_INT: CHECK_EQ(width_, 4U); SetVReg(m, reg, static_cast(value_), kIntVReg); break; case JDWP::JT_FLOAT: CHECK_EQ(width_, 4U); SetVReg(m, reg, static_cast(value_), kFloatVReg); break; case JDWP::JT_ARRAY: case JDWP::JT_OBJECT: case JDWP::JT_STRING: { CHECK_EQ(width_, sizeof(JDWP::ObjectId)); mirror::Object* o = gRegistry->Get(static_cast(value_)); if (o == ObjectRegistry::kInvalidObject) { UNIMPLEMENTED(FATAL) << "return an error code when given an invalid object to store"; } SetVReg(m, reg, static_cast(reinterpret_cast(o)), kReferenceVReg); } break; case JDWP::JT_DOUBLE: CHECK_EQ(width_, 8U); SetVReg(m, reg, static_cast(value_), kDoubleLoVReg); SetVReg(m, reg + 1, static_cast(value_ >> 32), kDoubleHiVReg); break; case JDWP::JT_LONG: CHECK_EQ(width_, 8U); SetVReg(m, reg, static_cast(value_), kLongLoVReg); SetVReg(m, reg + 1, static_cast(value_ >> 32), kLongHiVReg); break; default: LOG(FATAL) << "Unknown tag " << tag_; break; } return false; } const JDWP::FrameId frame_id_; const int slot_; const JDWP::JdwpTag tag_; const uint64_t value_; const size_t width_; JDWP::JdwpError error_; }; ScopedObjectAccessUnchecked soa(Thread::Current()); MutexLock mu(soa.Self(), *Locks::thread_list_lock_); Thread* thread; JDWP::JdwpError error = DecodeThread(soa, thread_id, thread); if (error != JDWP::ERR_NONE) { return error; } // TODO check thread is suspended by the debugger ? UniquePtr context(Context::Create()); SetLocalVisitor visitor(thread, context.get(), frame_id, slot, tag, value, width); visitor.WalkStack(); return visitor.error_; } JDWP::ObjectId Dbg::GetThisObjectIdForEvent(mirror::Object* this_object) { // If 'this_object' isn't already in the registry, we know that we're not looking for it, so // there's no point adding it to the registry and burning through ids. // When registering an event request with an instance filter, we've been given an existing object // id so it must already be present in the registry when the event fires. JDWP::ObjectId this_id = 0; if (this_object != nullptr && gRegistry->Contains(this_object)) { this_id = gRegistry->Add(this_object); } return this_id; } void Dbg::PostLocationEvent(mirror::ArtMethod* m, int dex_pc, mirror::Object* this_object, int event_flags, const JValue* return_value) { if (!IsDebuggerActive()) { return; } DCHECK(m != nullptr); DCHECK_EQ(m->IsStatic(), this_object == nullptr); JDWP::JdwpLocation location; SetLocation(location, m, dex_pc); // We need 'this' for InstanceOnly filters only. JDWP::ObjectId this_id = GetThisObjectIdForEvent(this_object); gJdwpState->PostLocationEvent(&location, this_id, event_flags, return_value); } void Dbg::PostFieldAccessEvent(mirror::ArtMethod* m, int dex_pc, mirror::Object* this_object, mirror::ArtField* f) { if (!IsDebuggerActive()) { return; } DCHECK(m != nullptr); DCHECK(f != nullptr); JDWP::JdwpLocation location; SetLocation(location, m, dex_pc); JDWP::RefTypeId type_id = gRegistry->AddRefType(f->GetDeclaringClass()); JDWP::FieldId field_id = ToFieldId(f); JDWP::ObjectId this_id = gRegistry->Add(this_object); gJdwpState->PostFieldEvent(&location, type_id, field_id, this_id, nullptr, false); } void Dbg::PostFieldModificationEvent(mirror::ArtMethod* m, int dex_pc, mirror::Object* this_object, mirror::ArtField* f, const JValue* field_value) { if (!IsDebuggerActive()) { return; } DCHECK(m != nullptr); DCHECK(f != nullptr); DCHECK(field_value != nullptr); JDWP::JdwpLocation location; SetLocation(location, m, dex_pc); JDWP::RefTypeId type_id = gRegistry->AddRefType(f->GetDeclaringClass()); JDWP::FieldId field_id = ToFieldId(f); JDWP::ObjectId this_id = gRegistry->Add(this_object); gJdwpState->PostFieldEvent(&location, type_id, field_id, this_id, field_value, true); } void Dbg::PostException(const ThrowLocation& throw_location, mirror::ArtMethod* catch_method, uint32_t catch_dex_pc, mirror::Throwable* exception_object) { if (!IsDebuggerActive()) { return; } JDWP::JdwpLocation jdwp_throw_location; SetLocation(jdwp_throw_location, throw_location.GetMethod(), throw_location.GetDexPc()); JDWP::JdwpLocation catch_location; SetLocation(catch_location, catch_method, catch_dex_pc); // We need 'this' for InstanceOnly filters only. JDWP::ObjectId this_id = GetThisObjectIdForEvent(throw_location.GetThis()); JDWP::ObjectId exception_id = gRegistry->Add(exception_object); JDWP::RefTypeId exception_class_id = gRegistry->AddRefType(exception_object->GetClass()); gJdwpState->PostException(&jdwp_throw_location, exception_id, exception_class_id, &catch_location, this_id); } void Dbg::PostClassPrepare(mirror::Class* c) { if (!IsDebuggerActive()) { return; } // OLD-TODO - we currently always send both "verified" and "prepared" since // debuggers seem to like that. There might be some advantage to honesty, // since the class may not yet be verified. int state = JDWP::CS_VERIFIED | JDWP::CS_PREPARED; JDWP::JdwpTypeTag tag = GetTypeTag(c); gJdwpState->PostClassPrepare(tag, gRegistry->Add(c), ClassHelper(c).GetDescriptor(), state); } void Dbg::UpdateDebugger(Thread* thread, mirror::Object* this_object, mirror::ArtMethod* m, uint32_t dex_pc) { if (!IsDebuggerActive() || dex_pc == static_cast(-2) /* fake method exit */) { return; } int event_flags = 0; if (IsBreakpoint(m, dex_pc)) { event_flags |= kBreakpoint; } // If the debugger is single-stepping one of our threads, check to // see if we're that thread and we've reached a step point. const SingleStepControl* single_step_control = thread->GetSingleStepControl(); DCHECK(single_step_control != nullptr); if (single_step_control->is_active) { CHECK(!m->IsNative()); if (single_step_control->step_depth == JDWP::SD_INTO) { // Step into method calls. We break when the line number // or method pointer changes. If we're in SS_MIN mode, we // always stop. if (single_step_control->method != m) { event_flags |= kSingleStep; VLOG(jdwp) << "SS new method"; } else if (single_step_control->step_size == JDWP::SS_MIN) { event_flags |= kSingleStep; VLOG(jdwp) << "SS new instruction"; } else if (single_step_control->ContainsDexPc(dex_pc)) { event_flags |= kSingleStep; VLOG(jdwp) << "SS new line"; } } else if (single_step_control->step_depth == JDWP::SD_OVER) { // Step over method calls. We break when the line number is // different and the frame depth is <= the original frame // depth. (We can't just compare on the method, because we // might get unrolled past it by an exception, and it's tricky // to identify recursion.) int stack_depth = GetStackDepth(thread); if (stack_depth < single_step_control->stack_depth) { // Popped up one or more frames, always trigger. event_flags |= kSingleStep; VLOG(jdwp) << "SS method pop"; } else if (stack_depth == single_step_control->stack_depth) { // Same depth, see if we moved. if (single_step_control->step_size == JDWP::SS_MIN) { event_flags |= kSingleStep; VLOG(jdwp) << "SS new instruction"; } else if (single_step_control->ContainsDexPc(dex_pc)) { event_flags |= kSingleStep; VLOG(jdwp) << "SS new line"; } } } else { CHECK_EQ(single_step_control->step_depth, JDWP::SD_OUT); // Return from the current method. We break when the frame // depth pops up. // This differs from the "method exit" break in that it stops // with the PC at the next instruction in the returned-to // function, rather than the end of the returning function. int stack_depth = GetStackDepth(thread); if (stack_depth < single_step_control->stack_depth) { event_flags |= kSingleStep; VLOG(jdwp) << "SS method pop"; } } } // If there's something interesting going on, see if it matches one // of the debugger filters. if (event_flags != 0) { Dbg::PostLocationEvent(m, dex_pc, this_object, event_flags, nullptr); } } // Process request while all mutator threads are suspended. void Dbg::ProcessDeoptimizationRequest(const DeoptimizationRequest& request) { instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation(); switch (request.kind) { case DeoptimizationRequest::kNothing: LOG(WARNING) << "Ignoring empty deoptimization request."; break; case DeoptimizationRequest::kFullDeoptimization: VLOG(jdwp) << "Deoptimize the world ..."; instrumentation->DeoptimizeEverything(); VLOG(jdwp) << "Deoptimize the world DONE"; break; case DeoptimizationRequest::kFullUndeoptimization: VLOG(jdwp) << "Undeoptimize the world ..."; instrumentation->UndeoptimizeEverything(); VLOG(jdwp) << "Undeoptimize the world DONE"; break; case DeoptimizationRequest::kSelectiveDeoptimization: VLOG(jdwp) << "Deoptimize method " << PrettyMethod(request.method) << " ..."; instrumentation->Deoptimize(request.method); VLOG(jdwp) << "Deoptimize method " << PrettyMethod(request.method) << " DONE"; break; case DeoptimizationRequest::kSelectiveUndeoptimization: VLOG(jdwp) << "Undeoptimize method " << PrettyMethod(request.method) << " ..."; instrumentation->Undeoptimize(request.method); VLOG(jdwp) << "Undeoptimize method " << PrettyMethod(request.method) << " DONE"; break; default: LOG(FATAL) << "Unsupported deoptimization request kind " << request.kind; break; } } void Dbg::DelayFullUndeoptimization() { MutexLock mu(Thread::Current(), *deoptimization_lock_); ++delayed_full_undeoptimization_count_; DCHECK_LE(delayed_full_undeoptimization_count_, full_deoptimization_event_count_); } void Dbg::ProcessDelayedFullUndeoptimizations() { // TODO: avoid taking the lock twice (once here and once in ManageDeoptimization). { MutexLock mu(Thread::Current(), *deoptimization_lock_); while (delayed_full_undeoptimization_count_ > 0) { DeoptimizationRequest req; req.kind = DeoptimizationRequest::kFullUndeoptimization; req.method = nullptr; RequestDeoptimizationLocked(req); --delayed_full_undeoptimization_count_; } } ManageDeoptimization(); } void Dbg::RequestDeoptimization(const DeoptimizationRequest& req) { if (req.kind == DeoptimizationRequest::kNothing) { // Nothing to do. return; } MutexLock mu(Thread::Current(), *deoptimization_lock_); RequestDeoptimizationLocked(req); } void Dbg::RequestDeoptimizationLocked(const DeoptimizationRequest& req) { switch (req.kind) { case DeoptimizationRequest::kFullDeoptimization: { DCHECK(req.method == nullptr); if (full_deoptimization_event_count_ == 0) { VLOG(jdwp) << "Queue request #" << deoptimization_requests_.size() << " for full deoptimization"; deoptimization_requests_.push_back(req); } ++full_deoptimization_event_count_; break; } case DeoptimizationRequest::kFullUndeoptimization: { DCHECK(req.method == nullptr); DCHECK_GT(full_deoptimization_event_count_, 0U); --full_deoptimization_event_count_; if (full_deoptimization_event_count_ == 0) { VLOG(jdwp) << "Queue request #" << deoptimization_requests_.size() << " for full undeoptimization"; deoptimization_requests_.push_back(req); } break; } case DeoptimizationRequest::kSelectiveDeoptimization: { DCHECK(req.method != nullptr); VLOG(jdwp) << "Queue request #" << deoptimization_requests_.size() << " for deoptimization of " << PrettyMethod(req.method); deoptimization_requests_.push_back(req); break; } case DeoptimizationRequest::kSelectiveUndeoptimization: { DCHECK(req.method != nullptr); VLOG(jdwp) << "Queue request #" << deoptimization_requests_.size() << " for undeoptimization of " << PrettyMethod(req.method); deoptimization_requests_.push_back(req); break; } default: { LOG(FATAL) << "Unknown deoptimization request kind " << req.kind; break; } } } void Dbg::ManageDeoptimization() { Thread* const self = Thread::Current(); { // Avoid suspend/resume if there is no pending request. MutexLock mu(self, *deoptimization_lock_); if (deoptimization_requests_.empty()) { return; } } CHECK_EQ(self->GetState(), kRunnable); self->TransitionFromRunnableToSuspended(kWaitingForDeoptimization); // We need to suspend mutator threads first. Runtime* const runtime = Runtime::Current(); runtime->GetThreadList()->SuspendAll(); const ThreadState old_state = self->SetStateUnsafe(kRunnable); { MutexLock mu(self, *deoptimization_lock_); size_t req_index = 0; for (const DeoptimizationRequest& request : deoptimization_requests_) { VLOG(jdwp) << "Process deoptimization request #" << req_index++; ProcessDeoptimizationRequest(request); } deoptimization_requests_.clear(); } CHECK_EQ(self->SetStateUnsafe(old_state), kRunnable); runtime->GetThreadList()->ResumeAll(); self->TransitionFromSuspendedToRunnable(); } static bool IsMethodPossiblyInlined(Thread* self, mirror::ArtMethod* m) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { MethodHelper mh(m); const DexFile::CodeItem* code_item = mh.GetCodeItem(); if (code_item == nullptr) { // TODO We should not be asked to watch location in a native or abstract method so the code item // should never be null. We could just check we never encounter this case. return false; } SirtRef dex_cache(self, mh.GetDexCache()); SirtRef class_loader(self, mh.GetClassLoader()); verifier::MethodVerifier verifier(&mh.GetDexFile(), &dex_cache, &class_loader, &mh.GetClassDef(), code_item, m->GetDexMethodIndex(), m, m->GetAccessFlags(), false, true); // Note: we don't need to verify the method. return InlineMethodAnalyser::AnalyseMethodCode(&verifier, nullptr); } static const Breakpoint* FindFirstBreakpointForMethod(mirror::ArtMethod* m) EXCLUSIVE_LOCKS_REQUIRED(Locks::breakpoint_lock_) { for (const Breakpoint& breakpoint : gBreakpoints) { if (breakpoint.method == m) { return &breakpoint; } } return nullptr; } // Sanity checks all existing breakpoints on the same method. static void SanityCheckExistingBreakpoints(mirror::ArtMethod* m, bool need_full_deoptimization) EXCLUSIVE_LOCKS_REQUIRED(Locks::breakpoint_lock_) { if (kIsDebugBuild) { for (const Breakpoint& breakpoint : gBreakpoints) { CHECK_EQ(need_full_deoptimization, breakpoint.need_full_deoptimization); } if (need_full_deoptimization) { // We should have deoptimized everything but not "selectively" deoptimized this method. CHECK(Runtime::Current()->GetInstrumentation()->AreAllMethodsDeoptimized()); CHECK(!Runtime::Current()->GetInstrumentation()->IsDeoptimized(m)); } else { // We should have "selectively" deoptimized this method. // Note: while we have not deoptimized everything for this method, we may have done it for // another event. CHECK(Runtime::Current()->GetInstrumentation()->IsDeoptimized(m)); } } } // Installs a breakpoint at the specified location. Also indicates through the deoptimization // request if we need to deoptimize. void Dbg::WatchLocation(const JDWP::JdwpLocation* location, DeoptimizationRequest* req) { Thread* const self = Thread::Current(); mirror::ArtMethod* m = FromMethodId(location->method_id); DCHECK(m != nullptr) << "No method for method id " << location->method_id; MutexLock mu(self, *Locks::breakpoint_lock_); const Breakpoint* const existing_breakpoint = FindFirstBreakpointForMethod(m); bool need_full_deoptimization; if (existing_breakpoint == nullptr) { // There is no breakpoint on this method yet: we need to deoptimize. If this method may be // inlined, we deoptimize everything; otherwise we deoptimize only this method. need_full_deoptimization = IsMethodPossiblyInlined(self, m); if (need_full_deoptimization) { req->kind = DeoptimizationRequest::kFullDeoptimization; req->method = nullptr; } else { req->kind = DeoptimizationRequest::kSelectiveDeoptimization; req->method = m; } } else { // There is at least one breakpoint for this method: we don't need to deoptimize. req->kind = DeoptimizationRequest::kNothing; req->method = nullptr; need_full_deoptimization = existing_breakpoint->need_full_deoptimization; SanityCheckExistingBreakpoints(m, need_full_deoptimization); } gBreakpoints.push_back(Breakpoint(m, location->dex_pc, need_full_deoptimization)); VLOG(jdwp) << "Set breakpoint #" << (gBreakpoints.size() - 1) << ": " << gBreakpoints[gBreakpoints.size() - 1]; } // Uninstalls a breakpoint at the specified location. Also indicates through the deoptimization // request if we need to undeoptimize. void Dbg::UnwatchLocation(const JDWP::JdwpLocation* location, DeoptimizationRequest* req) { mirror::ArtMethod* m = FromMethodId(location->method_id); DCHECK(m != nullptr) << "No method for method id " << location->method_id; MutexLock mu(Thread::Current(), *Locks::breakpoint_lock_); bool need_full_deoptimization = false; for (size_t i = 0, e = gBreakpoints.size(); i < e; ++i) { if (gBreakpoints[i].method == m && gBreakpoints[i].dex_pc == location->dex_pc) { VLOG(jdwp) << "Removed breakpoint #" << i << ": " << gBreakpoints[i]; need_full_deoptimization = gBreakpoints[i].need_full_deoptimization; DCHECK_NE(need_full_deoptimization, Runtime::Current()->GetInstrumentation()->IsDeoptimized(m)); gBreakpoints.erase(gBreakpoints.begin() + i); break; } } const Breakpoint* const existing_breakpoint = FindFirstBreakpointForMethod(m); if (existing_breakpoint == nullptr) { // There is no more breakpoint on this method: we need to undeoptimize. if (need_full_deoptimization) { // This method required full deoptimization: we need to undeoptimize everything. req->kind = DeoptimizationRequest::kFullUndeoptimization; req->method = nullptr; } else { // This method required selective deoptimization: we need to undeoptimize only that method. req->kind = DeoptimizationRequest::kSelectiveUndeoptimization; req->method = m; } } else { // There is at least one breakpoint for this method: we don't need to undeoptimize. req->kind = DeoptimizationRequest::kNothing; req->method = nullptr; SanityCheckExistingBreakpoints(m, need_full_deoptimization); } } // Scoped utility class to suspend a thread so that we may do tasks such as walk its stack. Doesn't // cause suspension if the thread is the current thread. class ScopedThreadSuspension { public: ScopedThreadSuspension(Thread* self, JDWP::ObjectId thread_id) LOCKS_EXCLUDED(Locks::thread_list_lock_) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) : thread_(NULL), error_(JDWP::ERR_NONE), self_suspend_(false), other_suspend_(false) { ScopedObjectAccessUnchecked soa(self); { MutexLock mu(soa.Self(), *Locks::thread_list_lock_); error_ = DecodeThread(soa, thread_id, thread_); } if (error_ == JDWP::ERR_NONE) { if (thread_ == soa.Self()) { self_suspend_ = true; } else { soa.Self()->TransitionFromRunnableToSuspended(kWaitingForDebuggerSuspension); jobject thread_peer = gRegistry->GetJObject(thread_id); bool timed_out; Thread* suspended_thread = ThreadList::SuspendThreadByPeer(thread_peer, true, true, &timed_out); CHECK_EQ(soa.Self()->TransitionFromSuspendedToRunnable(), kWaitingForDebuggerSuspension); if (suspended_thread == NULL) { // Thread terminated from under us while suspending. error_ = JDWP::ERR_INVALID_THREAD; } else { CHECK_EQ(suspended_thread, thread_); other_suspend_ = true; } } } } Thread* GetThread() const { return thread_; } JDWP::JdwpError GetError() const { return error_; } ~ScopedThreadSuspension() { if (other_suspend_) { Runtime::Current()->GetThreadList()->Resume(thread_, true); } } private: Thread* thread_; JDWP::JdwpError error_; bool self_suspend_; bool other_suspend_; }; JDWP::JdwpError Dbg::ConfigureStep(JDWP::ObjectId thread_id, JDWP::JdwpStepSize step_size, JDWP::JdwpStepDepth step_depth) { Thread* self = Thread::Current(); ScopedThreadSuspension sts(self, thread_id); if (sts.GetError() != JDWP::ERR_NONE) { return sts.GetError(); } // // Work out what Method* we're in, the current line number, and how deep the stack currently // is for step-out. // struct SingleStepStackVisitor : public StackVisitor { explicit SingleStepStackVisitor(Thread* thread, SingleStepControl* single_step_control, int32_t* line_number) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) : StackVisitor(thread, NULL), single_step_control_(single_step_control), line_number_(line_number) { DCHECK_EQ(single_step_control_, thread->GetSingleStepControl()); single_step_control_->method = NULL; single_step_control_->stack_depth = 0; } // TODO: Enable annotalysis. We know lock is held in constructor, but abstraction confuses // annotalysis. bool VisitFrame() NO_THREAD_SAFETY_ANALYSIS { mirror::ArtMethod* m = GetMethod(); if (!m->IsRuntimeMethod()) { ++single_step_control_->stack_depth; if (single_step_control_->method == NULL) { mirror::DexCache* dex_cache = m->GetDeclaringClass()->GetDexCache(); single_step_control_->method = m; *line_number_ = -1; if (dex_cache != NULL) { const DexFile& dex_file = *dex_cache->GetDexFile(); *line_number_ = dex_file.GetLineNumFromPC(m, GetDexPc()); } } } return true; } SingleStepControl* const single_step_control_; int32_t* const line_number_; }; Thread* const thread = sts.GetThread(); SingleStepControl* const single_step_control = thread->GetSingleStepControl(); DCHECK(single_step_control != nullptr); int32_t line_number = -1; SingleStepStackVisitor visitor(thread, single_step_control, &line_number); visitor.WalkStack(); // // Find the dex_pc values that correspond to the current line, for line-based single-stepping. // struct DebugCallbackContext { explicit DebugCallbackContext(SingleStepControl* single_step_control, int32_t line_number, const DexFile::CodeItem* code_item) : single_step_control_(single_step_control), line_number_(line_number), code_item_(code_item), last_pc_valid(false), last_pc(0) { } static bool Callback(void* raw_context, uint32_t address, uint32_t line_number) { DebugCallbackContext* context = reinterpret_cast(raw_context); if (static_cast(line_number) == context->line_number_) { if (!context->last_pc_valid) { // Everything from this address until the next line change is ours. context->last_pc = address; context->last_pc_valid = true; } // Otherwise, if we're already in a valid range for this line, // just keep going (shouldn't really happen)... } else if (context->last_pc_valid) { // and the line number is new // Add everything from the last entry up until here to the set for (uint32_t dex_pc = context->last_pc; dex_pc < address; ++dex_pc) { context->single_step_control_->dex_pcs.insert(dex_pc); } context->last_pc_valid = false; } return false; // There may be multiple entries for any given line. } ~DebugCallbackContext() { // If the line number was the last in the position table... if (last_pc_valid) { size_t end = code_item_->insns_size_in_code_units_; for (uint32_t dex_pc = last_pc; dex_pc < end; ++dex_pc) { single_step_control_->dex_pcs.insert(dex_pc); } } } SingleStepControl* const single_step_control_; const int32_t line_number_; const DexFile::CodeItem* const code_item_; bool last_pc_valid; uint32_t last_pc; }; single_step_control->dex_pcs.clear(); mirror::ArtMethod* m = single_step_control->method; if (!m->IsNative()) { MethodHelper mh(m); const DexFile::CodeItem* const code_item = mh.GetCodeItem(); DebugCallbackContext context(single_step_control, line_number, code_item); mh.GetDexFile().DecodeDebugInfo(code_item, m->IsStatic(), m->GetDexMethodIndex(), DebugCallbackContext::Callback, NULL, &context); } // // Everything else... // single_step_control->step_size = step_size; single_step_control->step_depth = step_depth; single_step_control->is_active = true; if (VLOG_IS_ON(jdwp)) { VLOG(jdwp) << "Single-step thread: " << *thread; VLOG(jdwp) << "Single-step step size: " << single_step_control->step_size; VLOG(jdwp) << "Single-step step depth: " << single_step_control->step_depth; VLOG(jdwp) << "Single-step current method: " << PrettyMethod(single_step_control->method); VLOG(jdwp) << "Single-step current line: " << line_number; VLOG(jdwp) << "Single-step current stack depth: " << single_step_control->stack_depth; VLOG(jdwp) << "Single-step dex_pc values:"; for (uint32_t dex_pc : single_step_control->dex_pcs) { VLOG(jdwp) << StringPrintf(" %#x", dex_pc); } } return JDWP::ERR_NONE; } void Dbg::UnconfigureStep(JDWP::ObjectId thread_id) { ScopedObjectAccessUnchecked soa(Thread::Current()); MutexLock mu(soa.Self(), *Locks::thread_list_lock_); Thread* thread; JDWP::JdwpError error = DecodeThread(soa, thread_id, thread); if (error == JDWP::ERR_NONE) { SingleStepControl* single_step_control = thread->GetSingleStepControl(); DCHECK(single_step_control != nullptr); single_step_control->Clear(); } } static char JdwpTagToShortyChar(JDWP::JdwpTag tag) { switch (tag) { default: LOG(FATAL) << "unknown JDWP tag: " << PrintableChar(tag); // Primitives. case JDWP::JT_BYTE: return 'B'; case JDWP::JT_CHAR: return 'C'; case JDWP::JT_FLOAT: return 'F'; case JDWP::JT_DOUBLE: return 'D'; case JDWP::JT_INT: return 'I'; case JDWP::JT_LONG: return 'J'; case JDWP::JT_SHORT: return 'S'; case JDWP::JT_VOID: return 'V'; case JDWP::JT_BOOLEAN: return 'Z'; // Reference types. case JDWP::JT_ARRAY: case JDWP::JT_OBJECT: case JDWP::JT_STRING: case JDWP::JT_THREAD: case JDWP::JT_THREAD_GROUP: case JDWP::JT_CLASS_LOADER: case JDWP::JT_CLASS_OBJECT: return 'L'; } } JDWP::JdwpError Dbg::InvokeMethod(JDWP::ObjectId thread_id, JDWP::ObjectId object_id, JDWP::RefTypeId class_id, JDWP::MethodId method_id, uint32_t arg_count, uint64_t* arg_values, JDWP::JdwpTag* arg_types, uint32_t options, JDWP::JdwpTag* pResultTag, uint64_t* pResultValue, JDWP::ObjectId* pExceptionId) { ThreadList* thread_list = Runtime::Current()->GetThreadList(); Thread* targetThread = NULL; DebugInvokeReq* req = NULL; Thread* self = Thread::Current(); { ScopedObjectAccessUnchecked soa(self); MutexLock mu(soa.Self(), *Locks::thread_list_lock_); JDWP::JdwpError error = DecodeThread(soa, thread_id, targetThread); if (error != JDWP::ERR_NONE) { LOG(ERROR) << "InvokeMethod request for invalid thread id " << thread_id; return error; } req = targetThread->GetInvokeReq(); if (!req->ready) { LOG(ERROR) << "InvokeMethod request for thread not stopped by event: " << *targetThread; return JDWP::ERR_INVALID_THREAD; } /* * We currently have a bug where we don't successfully resume the * target thread if the suspend count is too deep. We're expected to * require one "resume" for each "suspend", but when asked to execute * a method we have to resume fully and then re-suspend it back to the * same level. (The easiest way to cause this is to type "suspend" * multiple times in jdb.) * * It's unclear what this means when the event specifies "resume all" * and some threads are suspended more deeply than others. This is * a rare problem, so for now we just prevent it from hanging forever * by rejecting the method invocation request. Without this, we will * be stuck waiting on a suspended thread. */ int suspend_count; { MutexLock mu2(soa.Self(), *Locks::thread_suspend_count_lock_); suspend_count = targetThread->GetSuspendCount(); } if (suspend_count > 1) { LOG(ERROR) << *targetThread << " suspend count too deep for method invocation: " << suspend_count; return JDWP::ERR_THREAD_SUSPENDED; // Probably not expected here. } JDWP::JdwpError status; mirror::Object* receiver = gRegistry->Get(object_id); if (receiver == ObjectRegistry::kInvalidObject) { return JDWP::ERR_INVALID_OBJECT; } mirror::Object* thread = gRegistry->Get(thread_id); if (thread == ObjectRegistry::kInvalidObject) { return JDWP::ERR_INVALID_OBJECT; } // TODO: check that 'thread' is actually a java.lang.Thread! mirror::Class* c = DecodeClass(class_id, status); if (c == NULL) { return status; } mirror::ArtMethod* m = FromMethodId(method_id); if (m->IsStatic() != (receiver == NULL)) { return JDWP::ERR_INVALID_METHODID; } if (m->IsStatic()) { if (m->GetDeclaringClass() != c) { return JDWP::ERR_INVALID_METHODID; } } else { if (!m->GetDeclaringClass()->IsAssignableFrom(c)) { return JDWP::ERR_INVALID_METHODID; } } // Check the argument list matches the method. MethodHelper mh(m); if (mh.GetShortyLength() - 1 != arg_count) { return JDWP::ERR_ILLEGAL_ARGUMENT; } const char* shorty = mh.GetShorty(); const DexFile::TypeList* types = mh.GetParameterTypeList(); for (size_t i = 0; i < arg_count; ++i) { if (shorty[i + 1] != JdwpTagToShortyChar(arg_types[i])) { return JDWP::ERR_ILLEGAL_ARGUMENT; } if (shorty[i + 1] == 'L') { // Did we really get an argument of an appropriate reference type? mirror::Class* parameter_type = mh.GetClassFromTypeIdx(types->GetTypeItem(i).type_idx_); mirror::Object* argument = gRegistry->Get(arg_values[i]); if (argument == ObjectRegistry::kInvalidObject) { return JDWP::ERR_INVALID_OBJECT; } if (argument != NULL && !argument->InstanceOf(parameter_type)) { return JDWP::ERR_ILLEGAL_ARGUMENT; } // Turn the on-the-wire ObjectId into a jobject. jvalue& v = reinterpret_cast(arg_values[i]); v.l = gRegistry->GetJObject(arg_values[i]); } } req->receiver = receiver; req->thread = thread; req->klass = c; req->method = m; req->arg_count = arg_count; req->arg_values = arg_values; req->options = options; req->invoke_needed = true; } // The fact that we've released the thread list lock is a bit risky --- if the thread goes // away we're sitting high and dry -- but we must release this before the ResumeAllThreads // call, and it's unwise to hold it during WaitForSuspend. { /* * We change our (JDWP thread) status, which should be THREAD_RUNNING, * so we can suspend for a GC if the invoke request causes us to * run out of memory. It's also a good idea to change it before locking * the invokeReq mutex, although that should never be held for long. */ self->TransitionFromRunnableToSuspended(kWaitingForDebuggerSend); VLOG(jdwp) << " Transferring control to event thread"; { MutexLock mu(self, req->lock); if ((options & JDWP::INVOKE_SINGLE_THREADED) == 0) { VLOG(jdwp) << " Resuming all threads"; thread_list->UndoDebuggerSuspensions(); } else { VLOG(jdwp) << " Resuming event thread only"; thread_list->Resume(targetThread, true); } // Wait for the request to finish executing. while (req->invoke_needed) { req->cond.Wait(self); } } VLOG(jdwp) << " Control has returned from event thread"; /* wait for thread to re-suspend itself */ SuspendThread(thread_id, false /* request_suspension */); self->TransitionFromSuspendedToRunnable(); } /* * Suspend the threads. We waited for the target thread to suspend * itself, so all we need to do is suspend the others. * * The suspendAllThreads() call will double-suspend the event thread, * so we want to resume the target thread once to keep the books straight. */ if ((options & JDWP::INVOKE_SINGLE_THREADED) == 0) { self->TransitionFromRunnableToSuspended(kWaitingForDebuggerSuspension); VLOG(jdwp) << " Suspending all threads"; thread_list->SuspendAllForDebugger(); self->TransitionFromSuspendedToRunnable(); VLOG(jdwp) << " Resuming event thread to balance the count"; thread_list->Resume(targetThread, true); } // Copy the result. *pResultTag = req->result_tag; if (IsPrimitiveTag(req->result_tag)) { *pResultValue = req->result_value.GetJ(); } else { *pResultValue = gRegistry->Add(req->result_value.GetL()); } *pExceptionId = req->exception; return req->error; } void Dbg::ExecuteMethod(DebugInvokeReq* pReq) { ScopedObjectAccess soa(Thread::Current()); // We can be called while an exception is pending. We need // to preserve that across the method invocation. SirtRef old_throw_this_object(soa.Self(), NULL); SirtRef old_throw_method(soa.Self(), NULL); SirtRef old_exception(soa.Self(), NULL); uint32_t old_throw_dex_pc; { ThrowLocation old_throw_location; mirror::Throwable* old_exception_obj = soa.Self()->GetException(&old_throw_location); old_throw_this_object.reset(old_throw_location.GetThis()); old_throw_method.reset(old_throw_location.GetMethod()); old_exception.reset(old_exception_obj); old_throw_dex_pc = old_throw_location.GetDexPc(); soa.Self()->ClearException(); } // Translate the method through the vtable, unless the debugger wants to suppress it. SirtRef m(soa.Self(), pReq->method); if ((pReq->options & JDWP::INVOKE_NONVIRTUAL) == 0 && pReq->receiver != NULL) { mirror::ArtMethod* actual_method = pReq->klass->FindVirtualMethodForVirtualOrInterface(m.get()); if (actual_method != m.get()) { VLOG(jdwp) << "ExecuteMethod translated " << PrettyMethod(m.get()) << " to " << PrettyMethod(actual_method); m.reset(actual_method); } } VLOG(jdwp) << "ExecuteMethod " << PrettyMethod(m.get()) << " receiver=" << pReq->receiver << " arg_count=" << pReq->arg_count; CHECK(m.get() != nullptr); CHECK_EQ(sizeof(jvalue), sizeof(uint64_t)); pReq->result_value = InvokeWithJValues(soa, pReq->receiver, soa.EncodeMethod(m.get()), reinterpret_cast(pReq->arg_values)); mirror::Throwable* exception = soa.Self()->GetException(NULL); soa.Self()->ClearException(); pReq->exception = gRegistry->Add(exception); pReq->result_tag = BasicTagFromDescriptor(MethodHelper(m.get()).GetShorty()); if (pReq->exception != 0) { VLOG(jdwp) << " JDWP invocation returning with exception=" << exception << " " << exception->Dump(); pReq->result_value.SetJ(0); } else if (pReq->result_tag == JDWP::JT_OBJECT) { /* if no exception thrown, examine object result more closely */ JDWP::JdwpTag new_tag = TagFromObject(soa, pReq->result_value.GetL()); if (new_tag != pReq->result_tag) { VLOG(jdwp) << " JDWP promoted result from " << pReq->result_tag << " to " << new_tag; pReq->result_tag = new_tag; } /* * Register the object. We don't actually need an ObjectId yet, * but we do need to be sure that the GC won't move or discard the * object when we switch out of RUNNING. The ObjectId conversion * will add the object to the "do not touch" list. * * We can't use the "tracked allocation" mechanism here because * the object is going to be handed off to a different thread. */ gRegistry->Add(pReq->result_value.GetL()); } if (old_exception.get() != NULL) { ThrowLocation gc_safe_throw_location(old_throw_this_object.get(), old_throw_method.get(), old_throw_dex_pc); soa.Self()->SetException(gc_safe_throw_location, old_exception.get()); } } /* * "request" contains a full JDWP packet, possibly with multiple chunks. We * need to process each, accumulate the replies, and ship the whole thing * back. * * Returns "true" if we have a reply. The reply buffer is newly allocated, * and includes the chunk type/length, followed by the data. * * OLD-TODO: we currently assume that the request and reply include a single * chunk. If this becomes inconvenient we will need to adapt. */ bool Dbg::DdmHandlePacket(JDWP::Request& request, uint8_t** pReplyBuf, int* pReplyLen) { Thread* self = Thread::Current(); JNIEnv* env = self->GetJniEnv(); uint32_t type = request.ReadUnsigned32("type"); uint32_t length = request.ReadUnsigned32("length"); // Create a byte[] corresponding to 'request'. size_t request_length = request.size(); ScopedLocalRef dataArray(env, env->NewByteArray(request_length)); if (dataArray.get() == NULL) { LOG(WARNING) << "byte[] allocation failed: " << request_length; env->ExceptionClear(); return false; } env->SetByteArrayRegion(dataArray.get(), 0, request_length, reinterpret_cast(request.data())); request.Skip(request_length); // Run through and find all chunks. [Currently just find the first.] ScopedByteArrayRO contents(env, dataArray.get()); if (length != request_length) { LOG(WARNING) << StringPrintf("bad chunk found (len=%u pktLen=%zd)", length, request_length); return false; } // Call "private static Chunk dispatch(int type, byte[] data, int offset, int length)". ScopedLocalRef chunk(env, env->CallStaticObjectMethod(WellKnownClasses::org_apache_harmony_dalvik_ddmc_DdmServer, WellKnownClasses::org_apache_harmony_dalvik_ddmc_DdmServer_dispatch, type, dataArray.get(), 0, length)); if (env->ExceptionCheck()) { LOG(INFO) << StringPrintf("Exception thrown by dispatcher for 0x%08x", type); env->ExceptionDescribe(); env->ExceptionClear(); return false; } if (chunk.get() == NULL) { return false; } /* * Pull the pieces out of the chunk. We copy the results into a * newly-allocated buffer that the caller can free. We don't want to * continue using the Chunk object because nothing has a reference to it. * * We could avoid this by returning type/data/offset/length and having * the caller be aware of the object lifetime issues, but that * integrates the JDWP code more tightly into the rest of the runtime, and doesn't work * if we have responses for multiple chunks. * * So we're pretty much stuck with copying data around multiple times. */ ScopedLocalRef replyData(env, reinterpret_cast(env->GetObjectField(chunk.get(), WellKnownClasses::org_apache_harmony_dalvik_ddmc_Chunk_data))); jint offset = env->GetIntField(chunk.get(), WellKnownClasses::org_apache_harmony_dalvik_ddmc_Chunk_offset); length = env->GetIntField(chunk.get(), WellKnownClasses::org_apache_harmony_dalvik_ddmc_Chunk_length); type = env->GetIntField(chunk.get(), WellKnownClasses::org_apache_harmony_dalvik_ddmc_Chunk_type); VLOG(jdwp) << StringPrintf("DDM reply: type=0x%08x data=%p offset=%d length=%d", type, replyData.get(), offset, length); if (length == 0 || replyData.get() == NULL) { return false; } const int kChunkHdrLen = 8; uint8_t* reply = new uint8_t[length + kChunkHdrLen]; if (reply == NULL) { LOG(WARNING) << "malloc failed: " << (length + kChunkHdrLen); return false; } JDWP::Set4BE(reply + 0, type); JDWP::Set4BE(reply + 4, length); env->GetByteArrayRegion(replyData.get(), offset, length, reinterpret_cast(reply + kChunkHdrLen)); *pReplyBuf = reply; *pReplyLen = length + kChunkHdrLen; VLOG(jdwp) << StringPrintf("dvmHandleDdm returning type=%.4s %p len=%d", reinterpret_cast(reply), reply, length); return true; } void Dbg::DdmBroadcast(bool connect) { VLOG(jdwp) << "Broadcasting DDM " << (connect ? "connect" : "disconnect") << "..."; Thread* self = Thread::Current(); if (self->GetState() != kRunnable) { LOG(ERROR) << "DDM broadcast in thread state " << self->GetState(); /* try anyway? */ } JNIEnv* env = self->GetJniEnv(); jint event = connect ? 1 /*DdmServer.CONNECTED*/ : 2 /*DdmServer.DISCONNECTED*/; env->CallStaticVoidMethod(WellKnownClasses::org_apache_harmony_dalvik_ddmc_DdmServer, WellKnownClasses::org_apache_harmony_dalvik_ddmc_DdmServer_broadcast, event); if (env->ExceptionCheck()) { LOG(ERROR) << "DdmServer.broadcast " << event << " failed"; env->ExceptionDescribe(); env->ExceptionClear(); } } void Dbg::DdmConnected() { Dbg::DdmBroadcast(true); } void Dbg::DdmDisconnected() { Dbg::DdmBroadcast(false); gDdmThreadNotification = false; } /* * Send a notification when a thread starts, stops, or changes its name. * * Because we broadcast the full set of threads when the notifications are * first enabled, it's possible for "thread" to be actively executing. */ void Dbg::DdmSendThreadNotification(Thread* t, uint32_t type) { if (!gDdmThreadNotification) { return; } if (type == CHUNK_TYPE("THDE")) { uint8_t buf[4]; JDWP::Set4BE(&buf[0], t->GetThreadId()); Dbg::DdmSendChunk(CHUNK_TYPE("THDE"), 4, buf); } else { CHECK(type == CHUNK_TYPE("THCR") || type == CHUNK_TYPE("THNM")) << type; ScopedObjectAccessUnchecked soa(Thread::Current()); SirtRef name(soa.Self(), t->GetThreadName(soa)); size_t char_count = (name.get() != NULL) ? name->GetLength() : 0; const jchar* chars = (name.get() != NULL) ? name->GetCharArray()->GetData() : NULL; std::vector bytes; JDWP::Append4BE(bytes, t->GetThreadId()); JDWP::AppendUtf16BE(bytes, chars, char_count); CHECK_EQ(bytes.size(), char_count*2 + sizeof(uint32_t)*2); Dbg::DdmSendChunk(type, bytes); } } void Dbg::DdmSetThreadNotification(bool enable) { // Enable/disable thread notifications. gDdmThreadNotification = enable; if (enable) { // Suspend the VM then post thread start notifications for all threads. Threads attaching will // see a suspension in progress and block until that ends. They then post their own start // notification. SuspendVM(); std::list threads; Thread* self = Thread::Current(); { MutexLock mu(self, *Locks::thread_list_lock_); threads = Runtime::Current()->GetThreadList()->GetList(); } { ScopedObjectAccess soa(self); for (Thread* thread : threads) { Dbg::DdmSendThreadNotification(thread, CHUNK_TYPE("THCR")); } } ResumeVM(); } } void Dbg::PostThreadStartOrStop(Thread* t, uint32_t type) { if (IsDebuggerActive()) { ScopedObjectAccessUnchecked soa(Thread::Current()); JDWP::ObjectId id = gRegistry->Add(t->GetPeer()); gJdwpState->PostThreadChange(id, type == CHUNK_TYPE("THCR")); } Dbg::DdmSendThreadNotification(t, type); } void Dbg::PostThreadStart(Thread* t) { Dbg::PostThreadStartOrStop(t, CHUNK_TYPE("THCR")); } void Dbg::PostThreadDeath(Thread* t) { Dbg::PostThreadStartOrStop(t, CHUNK_TYPE("THDE")); } void Dbg::DdmSendChunk(uint32_t type, size_t byte_count, const uint8_t* buf) { CHECK(buf != NULL); iovec vec[1]; vec[0].iov_base = reinterpret_cast(const_cast(buf)); vec[0].iov_len = byte_count; Dbg::DdmSendChunkV(type, vec, 1); } void Dbg::DdmSendChunk(uint32_t type, const std::vector& bytes) { DdmSendChunk(type, bytes.size(), &bytes[0]); } void Dbg::DdmSendChunkV(uint32_t type, const iovec* iov, int iov_count) { if (gJdwpState == NULL) { VLOG(jdwp) << "Debugger thread not active, ignoring DDM send: " << type; } else { gJdwpState->DdmSendChunkV(type, iov, iov_count); } } int Dbg::DdmHandleHpifChunk(HpifWhen when) { if (when == HPIF_WHEN_NOW) { DdmSendHeapInfo(when); return true; } if (when != HPIF_WHEN_NEVER && when != HPIF_WHEN_NEXT_GC && when != HPIF_WHEN_EVERY_GC) { LOG(ERROR) << "invalid HpifWhen value: " << static_cast(when); return false; } gDdmHpifWhen = when; return true; } bool Dbg::DdmHandleHpsgNhsgChunk(Dbg::HpsgWhen when, Dbg::HpsgWhat what, bool native) { if (when != HPSG_WHEN_NEVER && when != HPSG_WHEN_EVERY_GC) { LOG(ERROR) << "invalid HpsgWhen value: " << static_cast(when); return false; } if (what != HPSG_WHAT_MERGED_OBJECTS && what != HPSG_WHAT_DISTINCT_OBJECTS) { LOG(ERROR) << "invalid HpsgWhat value: " << static_cast(what); return false; } if (native) { gDdmNhsgWhen = when; gDdmNhsgWhat = what; } else { gDdmHpsgWhen = when; gDdmHpsgWhat = what; } return true; } void Dbg::DdmSendHeapInfo(HpifWhen reason) { // If there's a one-shot 'when', reset it. if (reason == gDdmHpifWhen) { if (gDdmHpifWhen == HPIF_WHEN_NEXT_GC) { gDdmHpifWhen = HPIF_WHEN_NEVER; } } /* * Chunk HPIF (client --> server) * * Heap Info. General information about the heap, * suitable for a summary display. * * [u4]: number of heaps * * For each heap: * [u4]: heap ID * [u8]: timestamp in ms since Unix epoch * [u1]: capture reason (same as 'when' value from server) * [u4]: max heap size in bytes (-Xmx) * [u4]: current heap size in bytes * [u4]: current number of bytes allocated * [u4]: current number of objects allocated */ uint8_t heap_count = 1; gc::Heap* heap = Runtime::Current()->GetHeap(); std::vector bytes; JDWP::Append4BE(bytes, heap_count); JDWP::Append4BE(bytes, 1); // Heap id (bogus; we only have one heap). JDWP::Append8BE(bytes, MilliTime()); JDWP::Append1BE(bytes, reason); JDWP::Append4BE(bytes, heap->GetMaxMemory()); // Max allowed heap size in bytes. JDWP::Append4BE(bytes, heap->GetTotalMemory()); // Current heap size in bytes. JDWP::Append4BE(bytes, heap->GetBytesAllocated()); JDWP::Append4BE(bytes, heap->GetObjectsAllocated()); CHECK_EQ(bytes.size(), 4U + (heap_count * (4 + 8 + 1 + 4 + 4 + 4 + 4))); Dbg::DdmSendChunk(CHUNK_TYPE("HPIF"), bytes); } enum HpsgSolidity { SOLIDITY_FREE = 0, SOLIDITY_HARD = 1, SOLIDITY_SOFT = 2, SOLIDITY_WEAK = 3, SOLIDITY_PHANTOM = 4, SOLIDITY_FINALIZABLE = 5, SOLIDITY_SWEEP = 6, }; enum HpsgKind { KIND_OBJECT = 0, KIND_CLASS_OBJECT = 1, KIND_ARRAY_1 = 2, KIND_ARRAY_2 = 3, KIND_ARRAY_4 = 4, KIND_ARRAY_8 = 5, KIND_UNKNOWN = 6, KIND_NATIVE = 7, }; #define HPSG_PARTIAL (1<<7) #define HPSG_STATE(solidity, kind) ((uint8_t)((((kind) & 0x7) << 3) | ((solidity) & 0x7))) class HeapChunkContext { public: // Maximum chunk size. Obtain this from the formula: // (((maximum_heap_size / ALLOCATION_UNIT_SIZE) + 255) / 256) * 2 HeapChunkContext(bool merge, bool native) : buf_(16384 - 16), type_(0), merge_(merge) { Reset(); if (native) { type_ = CHUNK_TYPE("NHSG"); } else { type_ = merge ? CHUNK_TYPE("HPSG") : CHUNK_TYPE("HPSO"); } } ~HeapChunkContext() { if (p_ > &buf_[0]) { Flush(); } } void EnsureHeader(const void* chunk_ptr) { if (!needHeader_) { return; } // Start a new HPSx chunk. JDWP::Write4BE(&p_, 1); // Heap id (bogus; we only have one heap). JDWP::Write1BE(&p_, 8); // Size of allocation unit, in bytes. JDWP::Write4BE(&p_, reinterpret_cast(chunk_ptr)); // virtual address of segment start. JDWP::Write4BE(&p_, 0); // offset of this piece (relative to the virtual address). // [u4]: length of piece, in allocation units // We won't know this until we're done, so save the offset and stuff in a dummy value. pieceLenField_ = p_; JDWP::Write4BE(&p_, 0x55555555); needHeader_ = false; } void Flush() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { if (pieceLenField_ == NULL) { // Flush immediately post Reset (maybe back-to-back Flush). Ignore. CHECK(needHeader_); return; } // Patch the "length of piece" field. CHECK_LE(&buf_[0], pieceLenField_); CHECK_LE(pieceLenField_, p_); JDWP::Set4BE(pieceLenField_, totalAllocationUnits_); Dbg::DdmSendChunk(type_, p_ - &buf_[0], &buf_[0]); Reset(); } static void HeapChunkCallback(void* start, void* end, size_t used_bytes, void* arg) SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_) { reinterpret_cast(arg)->HeapChunkCallback(start, end, used_bytes); } private: enum { ALLOCATION_UNIT_SIZE = 8 }; void Reset() { p_ = &buf_[0]; startOfNextMemoryChunk_ = NULL; totalAllocationUnits_ = 0; needHeader_ = true; pieceLenField_ = NULL; } void HeapChunkCallback(void* start, void* /*end*/, size_t used_bytes) SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_) { // Note: heap call backs cannot manipulate the heap upon which they are crawling, care is taken // in the following code not to allocate memory, by ensuring buf_ is of the correct size if (used_bytes == 0) { if (start == NULL) { // Reset for start of new heap. startOfNextMemoryChunk_ = NULL; Flush(); } // Only process in use memory so that free region information // also includes dlmalloc book keeping. return; } /* If we're looking at the native heap, we'll just return * (SOLIDITY_HARD, KIND_NATIVE) for all allocated chunks */ bool native = type_ == CHUNK_TYPE("NHSG"); if (startOfNextMemoryChunk_ != NULL) { // Transmit any pending free memory. Native free memory of // over kMaxFreeLen could be because of the use of mmaps, so // don't report. If not free memory then start a new segment. bool flush = true; if (start > startOfNextMemoryChunk_) { const size_t kMaxFreeLen = 2 * kPageSize; void* freeStart = startOfNextMemoryChunk_; void* freeEnd = start; size_t freeLen = reinterpret_cast(freeEnd) - reinterpret_cast(freeStart); if (!native || freeLen < kMaxFreeLen) { AppendChunk(HPSG_STATE(SOLIDITY_FREE, 0), freeStart, freeLen); flush = false; } } if (flush) { startOfNextMemoryChunk_ = NULL; Flush(); } } mirror::Object* obj = reinterpret_cast(start); // Determine the type of this chunk. // OLD-TODO: if context.merge, see if this chunk is different from the last chunk. // If it's the same, we should combine them. uint8_t state = ExamineObject(obj, native); // dlmalloc's chunk header is 2 * sizeof(size_t), but if the previous chunk is in use for an // allocation then the first sizeof(size_t) may belong to it. const size_t dlMallocOverhead = sizeof(size_t); AppendChunk(state, start, used_bytes + dlMallocOverhead); startOfNextMemoryChunk_ = reinterpret_cast(start) + used_bytes + dlMallocOverhead; } void AppendChunk(uint8_t state, void* ptr, size_t length) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { // Make sure there's enough room left in the buffer. // We need to use two bytes for every fractional 256 allocation units used by the chunk plus // 17 bytes for any header. size_t needed = (((length/ALLOCATION_UNIT_SIZE + 255) / 256) * 2) + 17; size_t bytesLeft = buf_.size() - (size_t)(p_ - &buf_[0]); if (bytesLeft < needed) { Flush(); } bytesLeft = buf_.size() - (size_t)(p_ - &buf_[0]); if (bytesLeft < needed) { LOG(WARNING) << "Chunk is too big to transmit (chunk_len=" << length << ", " << needed << " bytes)"; return; } EnsureHeader(ptr); // Write out the chunk description. length /= ALLOCATION_UNIT_SIZE; // Convert to allocation units. totalAllocationUnits_ += length; while (length > 256) { *p_++ = state | HPSG_PARTIAL; *p_++ = 255; // length - 1 length -= 256; } *p_++ = state; *p_++ = length - 1; } uint8_t ExamineObject(mirror::Object* o, bool is_native_heap) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) { if (o == NULL) { return HPSG_STATE(SOLIDITY_FREE, 0); } // It's an allocated chunk. Figure out what it is. // If we're looking at the native heap, we'll just return // (SOLIDITY_HARD, KIND_NATIVE) for all allocated chunks. if (is_native_heap) { return HPSG_STATE(SOLIDITY_HARD, KIND_NATIVE); } if (!Runtime::Current()->GetHeap()->IsLiveObjectLocked(o)) { return HPSG_STATE(SOLIDITY_HARD, KIND_NATIVE); } mirror::Class* c = o->GetClass(); if (c == NULL) { // The object was probably just created but hasn't been initialized yet. return HPSG_STATE(SOLIDITY_HARD, KIND_OBJECT); } if (!Runtime::Current()->GetHeap()->IsValidObjectAddress(c)) { LOG(ERROR) << "Invalid class for managed heap object: " << o << " " << c; return HPSG_STATE(SOLIDITY_HARD, KIND_UNKNOWN); } if (c->IsClassClass()) { return HPSG_STATE(SOLIDITY_HARD, KIND_CLASS_OBJECT); } if (c->IsArrayClass()) { if (o->IsObjectArray()) { return HPSG_STATE(SOLIDITY_HARD, KIND_ARRAY_4); } switch (c->GetComponentSize()) { case 1: return HPSG_STATE(SOLIDITY_HARD, KIND_ARRAY_1); case 2: return HPSG_STATE(SOLIDITY_HARD, KIND_ARRAY_2); case 4: return HPSG_STATE(SOLIDITY_HARD, KIND_ARRAY_4); case 8: return HPSG_STATE(SOLIDITY_HARD, KIND_ARRAY_8); } } return HPSG_STATE(SOLIDITY_HARD, KIND_OBJECT); } std::vector buf_; uint8_t* p_; uint8_t* pieceLenField_; void* startOfNextMemoryChunk_; size_t totalAllocationUnits_; uint32_t type_; bool merge_; bool needHeader_; DISALLOW_COPY_AND_ASSIGN(HeapChunkContext); }; void Dbg::DdmSendHeapSegments(bool native) { Dbg::HpsgWhen when; Dbg::HpsgWhat what; if (!native) { when = gDdmHpsgWhen; what = gDdmHpsgWhat; } else { when = gDdmNhsgWhen; what = gDdmNhsgWhat; } if (when == HPSG_WHEN_NEVER) { return; } // Figure out what kind of chunks we'll be sending. CHECK(what == HPSG_WHAT_MERGED_OBJECTS || what == HPSG_WHAT_DISTINCT_OBJECTS) << static_cast(what); // First, send a heap start chunk. uint8_t heap_id[4]; JDWP::Set4BE(&heap_id[0], 1); // Heap id (bogus; we only have one heap). Dbg::DdmSendChunk(native ? CHUNK_TYPE("NHST") : CHUNK_TYPE("HPST"), sizeof(heap_id), heap_id); Thread* self = Thread::Current(); // To allow the Walk/InspectAll() below to exclusively-lock the // mutator lock, temporarily release the shared access to the // mutator lock here by transitioning to the suspended state. Locks::mutator_lock_->AssertSharedHeld(self); self->TransitionFromRunnableToSuspended(kSuspended); // Send a series of heap segment chunks. HeapChunkContext context((what == HPSG_WHAT_MERGED_OBJECTS), native); if (native) { dlmalloc_inspect_all(HeapChunkContext::HeapChunkCallback, &context); } else { gc::Heap* heap = Runtime::Current()->GetHeap(); const std::vector& spaces = heap->GetContinuousSpaces(); typedef std::vector::const_iterator It; for (It cur = spaces.begin(), end = spaces.end(); cur != end; ++cur) { if ((*cur)->IsMallocSpace()) { (*cur)->AsMallocSpace()->Walk(HeapChunkContext::HeapChunkCallback, &context); } } // Walk the large objects, these are not in the AllocSpace. heap->GetLargeObjectsSpace()->Walk(HeapChunkContext::HeapChunkCallback, &context); } // Shared-lock the mutator lock back. self->TransitionFromSuspendedToRunnable(); Locks::mutator_lock_->AssertSharedHeld(self); // Finally, send a heap end chunk. Dbg::DdmSendChunk(native ? CHUNK_TYPE("NHEN") : CHUNK_TYPE("HPEN"), sizeof(heap_id), heap_id); } static size_t GetAllocTrackerMax() { #ifdef HAVE_ANDROID_OS // Check whether there's a system property overriding the number of records. const char* propertyName = "dalvik.vm.allocTrackerMax"; char allocRecordMaxString[PROPERTY_VALUE_MAX]; if (property_get(propertyName, allocRecordMaxString, "") > 0) { char* end; size_t value = strtoul(allocRecordMaxString, &end, 10); if (*end != '\0') { LOG(ERROR) << "Ignoring " << propertyName << " '" << allocRecordMaxString << "' --- invalid"; return kDefaultNumAllocRecords; } if (!IsPowerOfTwo(value)) { LOG(ERROR) << "Ignoring " << propertyName << " '" << allocRecordMaxString << "' --- not power of two"; return kDefaultNumAllocRecords; } return value; } #endif return kDefaultNumAllocRecords; } void Dbg::SetAllocTrackingEnabled(bool enabled) { if (enabled) { { MutexLock mu(Thread::Current(), *alloc_tracker_lock_); if (recent_allocation_records_ == NULL) { alloc_record_max_ = GetAllocTrackerMax(); LOG(INFO) << "Enabling alloc tracker (" << alloc_record_max_ << " entries of " << kMaxAllocRecordStackDepth << " frames, taking " << PrettySize(sizeof(AllocRecord) * alloc_record_max_) << ")"; alloc_record_head_ = alloc_record_count_ = 0; recent_allocation_records_ = new AllocRecord[alloc_record_max_]; CHECK(recent_allocation_records_ != NULL); } } Runtime::Current()->GetInstrumentation()->InstrumentQuickAllocEntryPoints(); } else { Runtime::Current()->GetInstrumentation()->UninstrumentQuickAllocEntryPoints(); { MutexLock mu(Thread::Current(), *alloc_tracker_lock_); delete[] recent_allocation_records_; recent_allocation_records_ = NULL; } } } struct AllocRecordStackVisitor : public StackVisitor { AllocRecordStackVisitor(Thread* thread, AllocRecord* record) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) : StackVisitor(thread, NULL), record(record), depth(0) {} // TODO: Enable annotalysis. We know lock is held in constructor, but abstraction confuses // annotalysis. bool VisitFrame() NO_THREAD_SAFETY_ANALYSIS { if (depth >= kMaxAllocRecordStackDepth) { return false; } mirror::ArtMethod* m = GetMethod(); if (!m->IsRuntimeMethod()) { record->stack[depth].method = m; record->stack[depth].dex_pc = GetDexPc(); ++depth; } return true; } ~AllocRecordStackVisitor() { // Clear out any unused stack trace elements. for (; depth < kMaxAllocRecordStackDepth; ++depth) { record->stack[depth].method = NULL; record->stack[depth].dex_pc = 0; } } AllocRecord* record; size_t depth; }; void Dbg::RecordAllocation(mirror::Class* type, size_t byte_count) { Thread* self = Thread::Current(); CHECK(self != NULL); MutexLock mu(self, *alloc_tracker_lock_); if (recent_allocation_records_ == NULL) { return; } // Advance and clip. if (++alloc_record_head_ == alloc_record_max_) { alloc_record_head_ = 0; } // Fill in the basics. AllocRecord* record = &recent_allocation_records_[alloc_record_head_]; record->type = type; record->byte_count = byte_count; record->thin_lock_id = self->GetThreadId(); // Fill in the stack trace. AllocRecordStackVisitor visitor(self, record); visitor.WalkStack(); if (alloc_record_count_ < alloc_record_max_) { ++alloc_record_count_; } } // Returns the index of the head element. // // We point at the most-recently-written record, so if gAllocRecordCount is 1 // we want to use the current element. Take "head+1" and subtract count // from it. // // We need to handle underflow in our circular buffer, so we add // gAllocRecordMax and then mask it back down. size_t Dbg::HeadIndex() { return (Dbg::alloc_record_head_ + 1 + Dbg::alloc_record_max_ - Dbg::alloc_record_count_) & (Dbg::alloc_record_max_ - 1); } void Dbg::DumpRecentAllocations() { ScopedObjectAccess soa(Thread::Current()); MutexLock mu(soa.Self(), *alloc_tracker_lock_); if (recent_allocation_records_ == NULL) { LOG(INFO) << "Not recording tracked allocations"; return; } // "i" is the head of the list. We want to start at the end of the // list and move forward to the tail. size_t i = HeadIndex(); size_t count = alloc_record_count_; LOG(INFO) << "Tracked allocations, (head=" << alloc_record_head_ << " count=" << count << ")"; while (count--) { AllocRecord* record = &recent_allocation_records_[i]; LOG(INFO) << StringPrintf(" Thread %-2d %6zd bytes ", record->thin_lock_id, record->byte_count) << PrettyClass(record->type); for (size_t stack_frame = 0; stack_frame < kMaxAllocRecordStackDepth; ++stack_frame) { mirror::ArtMethod* m = record->stack[stack_frame].method; if (m == NULL) { break; } LOG(INFO) << " " << PrettyMethod(m) << " line " << record->stack[stack_frame].LineNumber(); } // pause periodically to help logcat catch up if ((count % 5) == 0) { usleep(40000); } i = (i + 1) & (alloc_record_max_ - 1); } } void Dbg::UpdateObjectPointers(IsMarkedCallback* callback, void* arg) { if (recent_allocation_records_ != nullptr) { MutexLock mu(Thread::Current(), *alloc_tracker_lock_); size_t i = HeadIndex(); size_t count = alloc_record_count_; while (count--) { AllocRecord* record = &recent_allocation_records_[i]; DCHECK(record != nullptr); record->UpdateObjectPointers(callback, arg); i = (i + 1) & (alloc_record_max_ - 1); } } if (gRegistry != nullptr) { gRegistry->UpdateObjectPointers(callback, arg); } } void Dbg::AllowNewObjectRegistryObjects() { if (gRegistry != nullptr) { gRegistry->AllowNewObjects(); } } void Dbg::DisallowNewObjectRegistryObjects() { if (gRegistry != nullptr) { gRegistry->DisallowNewObjects(); } } class StringTable { public: StringTable() { } void Add(const char* s) { table_.insert(s); } size_t IndexOf(const char* s) const { auto it = table_.find(s); if (it == table_.end()) { LOG(FATAL) << "IndexOf(\"" << s << "\") failed"; } return std::distance(table_.begin(), it); } size_t Size() const { return table_.size(); } void WriteTo(std::vector& bytes) const { for (const std::string& str : table_) { const char* s = str.c_str(); size_t s_len = CountModifiedUtf8Chars(s); UniquePtr s_utf16(new uint16_t[s_len]); ConvertModifiedUtf8ToUtf16(s_utf16.get(), s); JDWP::AppendUtf16BE(bytes, s_utf16.get(), s_len); } } private: std::set table_; DISALLOW_COPY_AND_ASSIGN(StringTable); }; /* * The data we send to DDMS contains everything we have recorded. * * Message header (all values big-endian): * (1b) message header len (to allow future expansion); includes itself * (1b) entry header len * (1b) stack frame len * (2b) number of entries * (4b) offset to string table from start of message * (2b) number of class name strings * (2b) number of method name strings * (2b) number of source file name strings * For each entry: * (4b) total allocation size * (2b) thread id * (2b) allocated object's class name index * (1b) stack depth * For each stack frame: * (2b) method's class name * (2b) method name * (2b) method source file * (2b) line number, clipped to 32767; -2 if native; -1 if no source * (xb) class name strings * (xb) method name strings * (xb) source file strings * * As with other DDM traffic, strings are sent as a 4-byte length * followed by UTF-16 data. * * We send up 16-bit unsigned indexes into string tables. In theory there * can be (kMaxAllocRecordStackDepth * gAllocRecordMax) unique strings in * each table, but in practice there should be far fewer. * * The chief reason for using a string table here is to keep the size of * the DDMS message to a minimum. This is partly to make the protocol * efficient, but also because we have to form the whole thing up all at * once in a memory buffer. * * We use separate string tables for class names, method names, and source * files to keep the indexes small. There will generally be no overlap * between the contents of these tables. */ jbyteArray Dbg::GetRecentAllocations() { if (false) { DumpRecentAllocations(); } Thread* self = Thread::Current(); std::vector bytes; { MutexLock mu(self, *alloc_tracker_lock_); // // Part 1: generate string tables. // StringTable class_names; StringTable method_names; StringTable filenames; int count = alloc_record_count_; int idx = HeadIndex(); while (count--) { AllocRecord* record = &recent_allocation_records_[idx]; class_names.Add(ClassHelper(record->type).GetDescriptor()); MethodHelper mh; for (size_t i = 0; i < kMaxAllocRecordStackDepth; i++) { mirror::ArtMethod* m = record->stack[i].method; if (m != NULL) { mh.ChangeMethod(m); class_names.Add(mh.GetDeclaringClassDescriptor()); method_names.Add(mh.GetName()); filenames.Add(mh.GetDeclaringClassSourceFile()); } } idx = (idx + 1) & (alloc_record_max_ - 1); } LOG(INFO) << "allocation records: " << alloc_record_count_; // // Part 2: Generate the output and store it in the buffer. // // (1b) message header len (to allow future expansion); includes itself // (1b) entry header len // (1b) stack frame len const int kMessageHeaderLen = 15; const int kEntryHeaderLen = 9; const int kStackFrameLen = 8; JDWP::Append1BE(bytes, kMessageHeaderLen); JDWP::Append1BE(bytes, kEntryHeaderLen); JDWP::Append1BE(bytes, kStackFrameLen); // (2b) number of entries // (4b) offset to string table from start of message // (2b) number of class name strings // (2b) number of method name strings // (2b) number of source file name strings JDWP::Append2BE(bytes, alloc_record_count_); size_t string_table_offset = bytes.size(); JDWP::Append4BE(bytes, 0); // We'll patch this later... JDWP::Append2BE(bytes, class_names.Size()); JDWP::Append2BE(bytes, method_names.Size()); JDWP::Append2BE(bytes, filenames.Size()); count = alloc_record_count_; idx = HeadIndex(); while (count--) { // For each entry: // (4b) total allocation size // (2b) thread id // (2b) allocated object's class name index // (1b) stack depth AllocRecord* record = &recent_allocation_records_[idx]; size_t stack_depth = record->GetDepth(); ClassHelper kh(record->type); size_t allocated_object_class_name_index = class_names.IndexOf(kh.GetDescriptor()); JDWP::Append4BE(bytes, record->byte_count); JDWP::Append2BE(bytes, record->thin_lock_id); JDWP::Append2BE(bytes, allocated_object_class_name_index); JDWP::Append1BE(bytes, stack_depth); MethodHelper mh; for (size_t stack_frame = 0; stack_frame < stack_depth; ++stack_frame) { // For each stack frame: // (2b) method's class name // (2b) method name // (2b) method source file // (2b) line number, clipped to 32767; -2 if native; -1 if no source mh.ChangeMethod(record->stack[stack_frame].method); size_t class_name_index = class_names.IndexOf(mh.GetDeclaringClassDescriptor()); size_t method_name_index = method_names.IndexOf(mh.GetName()); size_t file_name_index = filenames.IndexOf(mh.GetDeclaringClassSourceFile()); JDWP::Append2BE(bytes, class_name_index); JDWP::Append2BE(bytes, method_name_index); JDWP::Append2BE(bytes, file_name_index); JDWP::Append2BE(bytes, record->stack[stack_frame].LineNumber()); } idx = (idx + 1) & (alloc_record_max_ - 1); } // (xb) class name strings // (xb) method name strings // (xb) source file strings JDWP::Set4BE(&bytes[string_table_offset], bytes.size()); class_names.WriteTo(bytes); method_names.WriteTo(bytes); filenames.WriteTo(bytes); } JNIEnv* env = self->GetJniEnv(); jbyteArray result = env->NewByteArray(bytes.size()); if (result != NULL) { env->SetByteArrayRegion(result, 0, bytes.size(), reinterpret_cast(&bytes[0])); } return result; } } // namespace art