/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "dex_instruction-inl.h" #include "dex_file-inl.h" #include "utils.h" #include namespace art { const char* const Instruction::kInstructionNames[] = { #define INSTRUCTION_NAME(o, c, pname, f, r, i, a, v) pname, #include "dex_instruction_list.h" DEX_INSTRUCTION_LIST(INSTRUCTION_NAME) #undef DEX_INSTRUCTION_LIST #undef INSTRUCTION_NAME }; Instruction::Format const Instruction::kInstructionFormats[] = { #define INSTRUCTION_FORMAT(o, c, p, format, r, i, a, v) format, #include "dex_instruction_list.h" DEX_INSTRUCTION_LIST(INSTRUCTION_FORMAT) #undef DEX_INSTRUCTION_LIST #undef INSTRUCTION_FORMAT }; int const Instruction::kInstructionFlags[] = { #define INSTRUCTION_FLAGS(o, c, p, f, r, i, flags, v) flags, #include "dex_instruction_list.h" DEX_INSTRUCTION_LIST(INSTRUCTION_FLAGS) #undef DEX_INSTRUCTION_LIST #undef INSTRUCTION_FLAGS }; int const Instruction::kInstructionVerifyFlags[] = { #define INSTRUCTION_VERIFY_FLAGS(o, c, p, f, r, i, a, vflags) vflags, #include "dex_instruction_list.h" DEX_INSTRUCTION_LIST(INSTRUCTION_VERIFY_FLAGS) #undef DEX_INSTRUCTION_LIST #undef INSTRUCTION_VERIFY_FLAGS }; int const Instruction::kInstructionSizeInCodeUnits[] = { #define INSTRUCTION_SIZE(opcode, c, p, format, r, i, a, v) \ ((opcode == NOP) ? -1 : \ ((format >= k10x) && (format <= k10t)) ? 1 : \ ((format >= k20t) && (format <= k22c)) ? 2 : \ ((format >= k32x) && (format <= k3rc)) ? 3 : \ (format == k51l) ? 5 : -1), #include "dex_instruction_list.h" DEX_INSTRUCTION_LIST(INSTRUCTION_SIZE) #undef DEX_INSTRUCTION_LIST #undef INSTRUCTION_SIZE }; /* * Handy macros for helping decode instructions. */ #define FETCH(_offset) (insns[(_offset)]) #define FETCH_uint32(_offset) (fetch_uint32_impl((_offset), insns)) #define INST_A(_insn) (((uint16_t)(_insn) >> 8) & 0x0f) #define INST_B(_insn) ((uint16_t)(_insn) >> 12) #define INST_AA(_insn) ((_insn) >> 8) /* Helper for FETCH_uint32, above. */ static inline uint32_t fetch_uint32_impl(uint32_t offset, const uint16_t* insns) { return insns[offset] | ((uint32_t) insns[offset+1] << 16); } bool Instruction::HasVRegC() const { switch (FormatOf(Opcode())) { case k23x: return true; case k35c: return true; case k3rc: return true; default: return false; } } bool Instruction::HasVRegB() const { switch (FormatOf(Opcode())) { case k12x: return true; case k22b: return true; case k22c: return true; case k22s: return true; case k22t: return true; case k22x: return true; case k23x: return true; case k32x: return true; default: return false; } } bool Instruction::HasVRegA() const { switch (FormatOf(Opcode())) { case k11n: return true; case k11x: return true; case k12x: return true; case k21c: return true; case k21h: return true; case k21s: return true; case k21t: return true; case k22b: return true; case k22c: return true; case k22s: return true; case k22t: return true; case k22x: return true; case k23x: return true; case k31c: return true; case k31i: return true; case k31t: return true; case k32x: return true; case k51l: return true; default: return false; } } int32_t Instruction::VRegC() const { switch (FormatOf(Opcode())) { case k23x: return VRegC_23x(); case k35c: return VRegC_35c(); case k3rc: return VRegC_3rc(); default: LOG(FATAL) << "Tried to access vC of instruction " << Name() << " which has no C operand."; } return -1; } int32_t Instruction::VRegB() const { switch (FormatOf(Opcode())) { case k12x: return VRegB_12x(); case k22b: return VRegB_22b(); case k22c: return VRegB_22c(); case k22s: return VRegB_22s(); case k22t: return VRegB_22t(); case k22x: return VRegB_22x(); case k23x: return VRegB_23x(); case k32x: return VRegB_32x(); default: LOG(FATAL) << "Tried to access vB of instruction " << Name() << " which has no B operand."; } return -1; } int32_t Instruction::VRegA() const { switch (FormatOf(Opcode())) { case k11n: return VRegA_11n(); case k11x: return VRegA_11x(); case k12x: return VRegA_12x(); case k21c: return VRegA_21c(); case k21h: return VRegA_21h(); case k21s: return VRegA_21s(); case k21t: return VRegA_21t(); case k22b: return VRegA_22b(); case k22c: return VRegA_22c(); case k22s: return VRegA_22s(); case k22t: return VRegA_22t(); case k22x: return VRegA_22x(); case k23x: return VRegA_23x(); case k31c: return VRegA_31c(); case k31i: return VRegA_31i(); case k31t: return VRegA_31t(); case k32x: return VRegA_32x(); case k51l: return VRegA_51l(); default: LOG(FATAL) << "Tried to access vA of instruction " << Name() << " which has no A operand."; } return -1; } int32_t Instruction::GetTargetOffset() const { switch (FormatOf(Opcode())) { // Cases for conditional branches follow. case k22t: return VRegC_22t(); case k21t: return VRegB_21t(); // Cases for unconditional branches follow. case k10t: return VRegA_10t(); case k20t: return VRegA_20t(); case k30t: return VRegA_30t(); default: LOG(FATAL) << "Tried to access the branch offset of an instruction " << Name() << " which does not have a target operand."; } return 0; } bool Instruction::CanFlowThrough() const { const uint16_t* insns = reinterpret_cast(this); uint16_t insn = *insns; Code opcode = static_cast(insn & 0xFF); return FlagsOf(opcode) & Instruction::kContinue; } void Instruction::Decode(uint32_t &vA, uint32_t &vB, uint64_t &vB_wide, uint32_t &vC, uint32_t arg[]) const { const uint16_t* insns = reinterpret_cast(this); uint16_t insn = *insns; Code opcode = static_cast(insn & 0xFF); switch (FormatOf(opcode)) { case k10x: // op /* nothing to do; copy the AA bits out for the verifier */ vA = INST_AA(insn); break; case k12x: // op vA, vB vA = INST_A(insn); vB = INST_B(insn); break; case k11n: // op vA, #+B vA = INST_A(insn); vB = (int32_t) (INST_B(insn) << 28) >> 28; // sign extend 4-bit value break; case k11x: // op vAA vA = INST_AA(insn); break; case k10t: // op +AA vA = (int8_t) INST_AA(insn); // sign-extend 8-bit value break; case k20t: // op +AAAA vA = (int16_t) FETCH(1); // sign-extend 16-bit value break; case k21c: // op vAA, thing@BBBB case k22x: // op vAA, vBBBB vA = INST_AA(insn); vB = FETCH(1); break; case k21s: // op vAA, #+BBBB case k21t: // op vAA, +BBBB vA = INST_AA(insn); vB = (int16_t) FETCH(1); // sign-extend 16-bit value break; case k21h: // op vAA, #+BBBB0000[00000000] vA = INST_AA(insn); /* * The value should be treated as right-zero-extended, but we don't * actually do that here. Among other things, we don't know if it's * the top bits of a 32- or 64-bit value. */ vB = FETCH(1); break; case k23x: // op vAA, vBB, vCC vA = INST_AA(insn); vB = FETCH(1) & 0xff; vC = FETCH(1) >> 8; break; case k22b: // op vAA, vBB, #+CC vA = INST_AA(insn); vB = FETCH(1) & 0xff; vC = (int8_t) (FETCH(1) >> 8); // sign-extend 8-bit value break; case k22s: // op vA, vB, #+CCCC case k22t: // op vA, vB, +CCCC vA = INST_A(insn); vB = INST_B(insn); vC = (int16_t) FETCH(1); // sign-extend 16-bit value break; case k22c: // op vA, vB, thing@CCCC vA = INST_A(insn); vB = INST_B(insn); vC = FETCH(1); break; case k30t: // op +AAAAAAAA vA = FETCH_uint32(1); // signed 32-bit value break; case k31t: // op vAA, +BBBBBBBB case k31c: // op vAA, string@BBBBBBBB vA = INST_AA(insn); vB = FETCH_uint32(1); // 32-bit value break; case k32x: // op vAAAA, vBBBB vA = FETCH(1); vB = FETCH(2); break; case k31i: // op vAA, #+BBBBBBBB vA = INST_AA(insn); vB = FETCH_uint32(1); // signed 32-bit value break; case k35c: // op {vC, vD, vE, vF, vG}, thing@BBBB { /* * Note that the fields mentioned in the spec don't appear in * their "usual" positions here compared to most formats. This * was done so that the field names for the argument count and * reference index match between this format and the corresponding * range formats (3rc and friends). * * Bottom line: The argument count is always in vA, and the * method constant (or equivalent) is always in vB. */ uint16_t regList; int count; vA = INST_B(insn); // This is labeled A in the spec. vB = FETCH(1); regList = FETCH(2); count = vA; /* * Copy the argument registers into the arg[] array, and * also copy the first argument (if any) into vC. (The * DecodedInstruction structure doesn't have separate * fields for {vD, vE, vF, vG}, so there's no need to make * copies of those.) Note that cases 5..2 fall through. */ switch (count) { case 5: arg[4] = INST_A(insn); case 4: arg[3] = (regList >> 12) & 0x0f; case 3: arg[2] = (regList >> 8) & 0x0f; case 2: arg[1] = (regList >> 4) & 0x0f; case 1: vC = arg[0] = regList & 0x0f; break; case 0: break; // Valid, but no need to do anything. default: LOG(ERROR) << "Invalid arg count in 35c (" << count << ")"; return; } } break; case k3rc: // op {vCCCC .. v(CCCC+AA-1)}, meth@BBBB vA = INST_AA(insn); vB = FETCH(1); vC = FETCH(2); break; case k51l: // op vAA, #+BBBBBBBBBBBBBBBB vA = INST_AA(insn); vB_wide = FETCH_uint32(1) | ((uint64_t) FETCH_uint32(3) << 32); break; default: LOG(ERROR) << "Can't decode unexpected format " << FormatOf(opcode) << " (op=" << opcode << ")"; return; } } size_t Instruction::SizeInCodeUnitsComplexOpcode() const { const uint16_t* insns = reinterpret_cast(this); // Handle special NOP encoded variable length sequences. switch (*insns) { case kPackedSwitchSignature: return (4 + insns[1] * 2); case kSparseSwitchSignature: return (2 + insns[1] * 4); case kArrayDataSignature: { uint16_t element_size = insns[1]; uint32_t length = insns[2] | (((uint32_t)insns[3]) << 16); // The plus 1 is to round up for odd size and width. return (4 + (element_size * length + 1) / 2); } default: if ((*insns & 0xFF) == 0) { return 1; // NOP. } else { LOG(FATAL) << "Unreachable: " << DumpString(NULL); return 0; } } } std::string Instruction::DumpHex(size_t code_units) const { size_t inst_length = SizeInCodeUnits(); if (inst_length > code_units) { inst_length = code_units; } std::ostringstream os; const uint16_t* insn = reinterpret_cast(this); for (size_t i = 0; i < inst_length; i++) { os << StringPrintf("0x%04x", insn[i]) << " "; } for (size_t i = inst_length; i < code_units; i++) { os << " "; } return os.str(); } std::string Instruction::DumpString(const DexFile* file) const { std::ostringstream os; const char* opcode = kInstructionNames[Opcode()]; switch (FormatOf(Opcode())) { case k10x: os << opcode; break; case k12x: os << StringPrintf("%s v%d, v%d", opcode, VRegA_12x(), VRegB_12x()); break; case k11n: os << StringPrintf("%s v%d, #%+d", opcode, VRegA_11n(), VRegB_11n()); break; case k11x: os << StringPrintf("%s v%d", opcode, VRegA_11x()); break; case k10t: os << StringPrintf("%s %+d", opcode, VRegA_10t()); break; case k20t: os << StringPrintf("%s %+d", opcode, VRegA_20t()); break; case k22x: os << StringPrintf("%s v%d, v%d", opcode, VRegA_22x(), VRegB_22x()); break; case k21t: os << StringPrintf("%s v%d, %+d", opcode, VRegA_21t(), VRegB_21t()); break; case k21s: os << StringPrintf("%s v%d, #%+d", opcode, VRegA_21s(), VRegB_21s()); break; case k21h: { // op vAA, #+BBBB0000[00000000] if (Opcode() == CONST_HIGH16) { uint32_t value = VRegB_21h() << 16; os << StringPrintf("%s v%d, #int %+d // 0x%x", opcode, VRegA_21h(), value, value); } else { uint64_t value = static_cast(VRegB_21h()) << 48; os << StringPrintf("%s v%d, #long %+lld // 0x%llx", opcode, VRegA_21h(), value, value); } } break; case k21c: { switch (Opcode()) { case CONST_STRING: if (file != NULL) { uint32_t string_idx = VRegB_21c(); os << StringPrintf("const-string v%d, %s // string@%d", VRegA_21c(), PrintableString(file->StringDataByIdx(string_idx)).c_str(), string_idx); break; } // else fall-through case CHECK_CAST: case CONST_CLASS: case NEW_INSTANCE: if (file != NULL) { uint32_t type_idx = VRegB_21c(); os << opcode << " v" << static_cast(VRegA_21c()) << ", " << PrettyType(type_idx, *file) << " // type@" << type_idx; break; } // else fall-through case SGET: case SGET_WIDE: case SGET_OBJECT: case SGET_BOOLEAN: case SGET_BYTE: case SGET_CHAR: case SGET_SHORT: if (file != NULL) { uint32_t field_idx = VRegB_21c(); os << opcode << " v" << static_cast(VRegA_21c()) << ", " << PrettyField(field_idx, *file, true) << " // field@" << field_idx; break; } // else fall-through case SPUT: case SPUT_WIDE: case SPUT_OBJECT: case SPUT_BOOLEAN: case SPUT_BYTE: case SPUT_CHAR: case SPUT_SHORT: if (file != NULL) { uint32_t field_idx = VRegB_21c(); os << opcode << " v" << static_cast(VRegA_21c()) << ", " << PrettyField(field_idx, *file, true) << " // field@" << field_idx; break; } // else fall-through default: os << StringPrintf("%s v%d, thing@%d", opcode, VRegA_21c(), VRegB_21c()); break; } break; } case k23x: os << StringPrintf("%s v%d, v%d, v%d", opcode, VRegA_23x(), VRegB_23x(), VRegC_23x()); break; case k22b: os << StringPrintf("%s v%d, v%d, #%+d", opcode, VRegA_22b(), VRegB_22b(), VRegC_22b()); break; case k22t: os << StringPrintf("%s v%d, v%d, %+d", opcode, VRegA_22t(), VRegB_22t(), VRegC_22t()); break; case k22s: os << StringPrintf("%s v%d, v%d, #%+d", opcode, VRegA_22s(), VRegB_22s(), VRegC_22s()); break; case k22c: { switch (Opcode()) { case IGET: case IGET_WIDE: case IGET_OBJECT: case IGET_BOOLEAN: case IGET_BYTE: case IGET_CHAR: case IGET_SHORT: if (file != NULL) { uint32_t field_idx = VRegC_22c(); os << opcode << " v" << static_cast(VRegA_22c()) << ", v" << static_cast(VRegB_22c()) << ", " << PrettyField(field_idx, *file, true) << " // field@" << field_idx; break; } // else fall-through case IGET_QUICK: case IGET_OBJECT_QUICK: if (file != NULL) { uint32_t field_idx = VRegC_22c(); os << opcode << " v" << static_cast(VRegA_22c()) << ", v" << static_cast(VRegB_22c()) << ", " << "// offset@" << field_idx; break; } // else fall-through case IPUT: case IPUT_WIDE: case IPUT_OBJECT: case IPUT_BOOLEAN: case IPUT_BYTE: case IPUT_CHAR: case IPUT_SHORT: if (file != NULL) { uint32_t field_idx = VRegC_22c(); os << opcode << " v" << static_cast(VRegA_22c()) << ", v" << static_cast(VRegB_22c()) << ", " << PrettyField(field_idx, *file, true) << " // field@" << field_idx; break; } // else fall-through case IPUT_QUICK: case IPUT_OBJECT_QUICK: if (file != NULL) { uint32_t field_idx = VRegC_22c(); os << opcode << " v" << static_cast(VRegA_22c()) << ", v" << static_cast(VRegB_22c()) << ", " << "// offset@" << field_idx; break; } // else fall-through case INSTANCE_OF: if (file != NULL) { uint32_t type_idx = VRegC_22c(); os << opcode << " v" << static_cast(VRegA_22c()) << ", v" << static_cast(VRegB_22c()) << ", " << PrettyType(type_idx, *file) << " // type@" << type_idx; break; } case NEW_ARRAY: if (file != NULL) { uint32_t type_idx = VRegC_22c(); os << opcode << " v" << static_cast(VRegA_22c()) << ", v" << static_cast(VRegB_22c()) << ", " << PrettyType(type_idx, *file) << " // type@" << type_idx; break; } // else fall-through default: os << StringPrintf("%s v%d, v%d, thing@%d", opcode, VRegA_22c(), VRegB_22c(), VRegC_22c()); break; } break; } case k32x: os << StringPrintf("%s v%d, v%d", opcode, VRegA_32x(), VRegB_32x()); break; case k30t: os << StringPrintf("%s %+d", opcode, VRegA_30t()); break; case k31t: os << StringPrintf("%s v%d, %+d", opcode, VRegA_31t(), VRegB_31t()); break; case k31i: os << StringPrintf("%s v%d, #%+d", opcode, VRegA_31i(), VRegB_31i()); break; case k31c: os << StringPrintf("%s v%d, thing@%d", opcode, VRegA_31c(), VRegB_31c()); break; case k35c: { uint32_t arg[5]; GetArgs(arg); switch (Opcode()) { case INVOKE_VIRTUAL: case INVOKE_SUPER: case INVOKE_DIRECT: case INVOKE_STATIC: case INVOKE_INTERFACE: if (file != NULL) { os << opcode << " {"; uint32_t method_idx = VRegB_35c(); for (size_t i = 0; i < VRegA_35c(); ++i) { if (i != 0) { os << ", "; } os << "v" << arg[i]; } os << "}, " << PrettyMethod(method_idx, *file) << " // method@" << method_idx; break; } // else fall-through case INVOKE_VIRTUAL_QUICK: if (file != NULL) { os << opcode << " {"; uint32_t method_idx = VRegB_35c(); for (size_t i = 0; i < VRegA_35c(); ++i) { if (i != 0) { os << ", "; } os << "v" << arg[i]; } os << "}, // vtable@" << method_idx; break; } // else fall-through default: os << opcode << " {v" << arg[0] << ", v" << arg[1] << ", v" << arg[2] << ", v" << arg[3] << ", v" << arg[4] << "}, thing@" << VRegB_35c(); break; } break; } case k3rc: { switch (Opcode()) { case INVOKE_VIRTUAL_RANGE: case INVOKE_SUPER_RANGE: case INVOKE_DIRECT_RANGE: case INVOKE_STATIC_RANGE: case INVOKE_INTERFACE_RANGE: if (file != NULL) { uint32_t method_idx = VRegB_3rc(); os << StringPrintf("%s, {v%d .. v%d}, ", opcode, VRegC_3rc(), (VRegC_3rc() + VRegA_3rc() - 1)) << PrettyMethod(method_idx, *file) << " // method@" << method_idx; break; } // else fall-through case INVOKE_VIRTUAL_RANGE_QUICK: if (file != NULL) { uint32_t method_idx = VRegB_3rc(); os << StringPrintf("%s, {v%d .. v%d}, ", opcode, VRegC_3rc(), (VRegC_3rc() + VRegA_3rc() - 1)) << "// vtable@" << method_idx; break; } // else fall-through default: os << StringPrintf("%s, {v%d .. v%d}, thing@%d", opcode, VRegC_3rc(), (VRegC_3rc() + VRegA_3rc() - 1), VRegB_3rc()); break; } break; } case k51l: os << StringPrintf("%s v%d, #%+lld", opcode, VRegA_51l(), VRegB_51l()); break; default: os << " unknown format (" << DumpHex(5) << ")"; break; } return os.str(); } std::ostream& operator<<(std::ostream& os, const Instruction::Code& code) { return os << Instruction::Name(code); } } // namespace art