/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "elf_file.h" #include #include #include "base/logging.h" #include "base/stringprintf.h" #include "base/stl_util.h" #include "utils.h" #include "instruction_set.h" namespace art { // ------------------------------------------------------------------- // Binary GDB JIT Interface as described in // http://sourceware.org/gdb/onlinedocs/gdb/Declarations.html extern "C" { typedef enum { JIT_NOACTION = 0, JIT_REGISTER_FN, JIT_UNREGISTER_FN } JITAction; struct JITCodeEntry { JITCodeEntry* next_; JITCodeEntry* prev_; const byte *symfile_addr_; uint64_t symfile_size_; }; struct JITDescriptor { uint32_t version_; uint32_t action_flag_; JITCodeEntry* relevant_entry_; JITCodeEntry* first_entry_; }; // GDB will place breakpoint into this function. // To prevent GCC from inlining or removing it we place noinline attribute // and inline assembler statement inside. void __attribute__((noinline)) __jit_debug_register_code() { __asm__(""); } // GDB will inspect contents of this descriptor. // Static initialization is necessary to prevent GDB from seeing // uninitialized descriptor. JITDescriptor __jit_debug_descriptor = { 1, JIT_NOACTION, nullptr, nullptr }; } static JITCodeEntry* CreateCodeEntry(const byte *symfile_addr, uintptr_t symfile_size) { JITCodeEntry* entry = new JITCodeEntry; entry->symfile_addr_ = symfile_addr; entry->symfile_size_ = symfile_size; entry->prev_ = nullptr; // TODO: Do we need a lock here? entry->next_ = __jit_debug_descriptor.first_entry_; if (entry->next_ != nullptr) { entry->next_->prev_ = entry; } __jit_debug_descriptor.first_entry_ = entry; __jit_debug_descriptor.relevant_entry_ = entry; __jit_debug_descriptor.action_flag_ = JIT_REGISTER_FN; __jit_debug_register_code(); return entry; } static void UnregisterCodeEntry(JITCodeEntry* entry) { // TODO: Do we need a lock here? if (entry->prev_ != nullptr) { entry->prev_->next_ = entry->next_; } else { __jit_debug_descriptor.first_entry_ = entry->next_; } if (entry->next_ != nullptr) { entry->next_->prev_ = entry->prev_; } __jit_debug_descriptor.relevant_entry_ = entry; __jit_debug_descriptor.action_flag_ = JIT_UNREGISTER_FN; __jit_debug_register_code(); delete entry; } ElfFile::ElfFile(File* file, bool writable, bool program_header_only) : file_(file), writable_(writable), program_header_only_(program_header_only), header_(NULL), base_address_(NULL), program_headers_start_(NULL), section_headers_start_(NULL), dynamic_program_header_(NULL), dynamic_section_start_(NULL), symtab_section_start_(NULL), dynsym_section_start_(NULL), strtab_section_start_(NULL), dynstr_section_start_(NULL), hash_section_start_(NULL), symtab_symbol_table_(NULL), dynsym_symbol_table_(NULL), jit_elf_image_(NULL), jit_gdb_entry_(NULL) { CHECK(file != NULL); } ElfFile* ElfFile::Open(File* file, bool writable, bool program_header_only, std::string* error_msg) { std::unique_ptr elf_file(new ElfFile(file, writable, program_header_only)); if (!elf_file->Setup(error_msg)) { return nullptr; } return elf_file.release(); } bool ElfFile::Setup(std::string* error_msg) { int prot; int flags; if (writable_) { prot = PROT_READ | PROT_WRITE; flags = MAP_SHARED; } else { prot = PROT_READ; flags = MAP_PRIVATE; } int64_t temp_file_length = file_->GetLength(); if (temp_file_length < 0) { errno = -temp_file_length; *error_msg = StringPrintf("Failed to get length of file: '%s' fd=%d: %s", file_->GetPath().c_str(), file_->Fd(), strerror(errno)); return false; } size_t file_length = static_cast(temp_file_length); if (file_length < sizeof(Elf32_Ehdr)) { *error_msg = StringPrintf("File size of %zd bytes not large enough to contain ELF header of " "%zd bytes: '%s'", file_length, sizeof(Elf32_Ehdr), file_->GetPath().c_str()); return false; } if (program_header_only_) { // first just map ELF header to get program header size information size_t elf_header_size = sizeof(Elf32_Ehdr); if (!SetMap(MemMap::MapFile(elf_header_size, prot, flags, file_->Fd(), 0, file_->GetPath().c_str(), error_msg), error_msg)) { return false; } // then remap to cover program header size_t program_header_size = header_->e_phoff + (header_->e_phentsize * header_->e_phnum); if (file_length < program_header_size) { *error_msg = StringPrintf("File size of %zd bytes not large enough to contain ELF program " "header of %zd bytes: '%s'", file_length, sizeof(Elf32_Ehdr), file_->GetPath().c_str()); return false; } if (!SetMap(MemMap::MapFile(program_header_size, prot, flags, file_->Fd(), 0, file_->GetPath().c_str(), error_msg), error_msg)) { *error_msg = StringPrintf("Failed to map ELF program headers: %s", error_msg->c_str()); return false; } } else { // otherwise map entire file if (!SetMap(MemMap::MapFile(file_->GetLength(), prot, flags, file_->Fd(), 0, file_->GetPath().c_str(), error_msg), error_msg)) { *error_msg = StringPrintf("Failed to map ELF file: %s", error_msg->c_str()); return false; } } // Either way, the program header is relative to the elf header program_headers_start_ = Begin() + GetHeader().e_phoff; if (!program_header_only_) { // Setup section headers. section_headers_start_ = Begin() + GetHeader().e_shoff; // Find .dynamic section info from program header dynamic_program_header_ = FindProgamHeaderByType(PT_DYNAMIC); if (dynamic_program_header_ == NULL) { *error_msg = StringPrintf("Failed to find PT_DYNAMIC program header in ELF file: '%s'", file_->GetPath().c_str()); return false; } dynamic_section_start_ = reinterpret_cast(Begin() + GetDynamicProgramHeader().p_offset); // Find other sections from section headers for (Elf32_Word i = 0; i < GetSectionHeaderNum(); i++) { Elf32_Shdr& section_header = GetSectionHeader(i); byte* section_addr = Begin() + section_header.sh_offset; switch (section_header.sh_type) { case SHT_SYMTAB: { symtab_section_start_ = reinterpret_cast(section_addr); break; } case SHT_DYNSYM: { dynsym_section_start_ = reinterpret_cast(section_addr); break; } case SHT_STRTAB: { // TODO: base these off of sh_link from .symtab and .dynsym above if ((section_header.sh_flags & SHF_ALLOC) != 0) { dynstr_section_start_ = reinterpret_cast(section_addr); } else { strtab_section_start_ = reinterpret_cast(section_addr); } break; } case SHT_DYNAMIC: { if (reinterpret_cast(dynamic_section_start_) != section_addr) { LOG(WARNING) << "Failed to find matching SHT_DYNAMIC for PT_DYNAMIC in " << file_->GetPath() << ": " << std::hex << reinterpret_cast(dynamic_section_start_) << " != " << reinterpret_cast(section_addr); return false; } break; } case SHT_HASH: { hash_section_start_ = reinterpret_cast(section_addr); break; } } } } return true; } ElfFile::~ElfFile() { STLDeleteElements(&segments_); delete symtab_symbol_table_; delete dynsym_symbol_table_; delete jit_elf_image_; if (jit_gdb_entry_) { UnregisterCodeEntry(jit_gdb_entry_); } } bool ElfFile::SetMap(MemMap* map, std::string* error_msg) { if (map == NULL) { // MemMap::Open should have already set an error. DCHECK(!error_msg->empty()); return false; } map_.reset(map); CHECK(map_.get() != NULL) << file_->GetPath(); CHECK(map_->Begin() != NULL) << file_->GetPath(); header_ = reinterpret_cast(map_->Begin()); if ((ELFMAG0 != header_->e_ident[EI_MAG0]) || (ELFMAG1 != header_->e_ident[EI_MAG1]) || (ELFMAG2 != header_->e_ident[EI_MAG2]) || (ELFMAG3 != header_->e_ident[EI_MAG3])) { *error_msg = StringPrintf("Failed to find ELF magic value %d %d %d %d in %s, found %d %d %d %d", ELFMAG0, ELFMAG1, ELFMAG2, ELFMAG3, file_->GetPath().c_str(), header_->e_ident[EI_MAG0], header_->e_ident[EI_MAG1], header_->e_ident[EI_MAG2], header_->e_ident[EI_MAG3]); return false; } if (ELFCLASS32 != header_->e_ident[EI_CLASS]) { *error_msg = StringPrintf("Failed to find expected EI_CLASS value %d in %s, found %d", ELFCLASS32, file_->GetPath().c_str(), header_->e_ident[EI_CLASS]); return false; } if (ELFDATA2LSB != header_->e_ident[EI_DATA]) { *error_msg = StringPrintf("Failed to find expected EI_DATA value %d in %s, found %d", ELFDATA2LSB, file_->GetPath().c_str(), header_->e_ident[EI_CLASS]); return false; } if (EV_CURRENT != header_->e_ident[EI_VERSION]) { *error_msg = StringPrintf("Failed to find expected EI_VERSION value %d in %s, found %d", EV_CURRENT, file_->GetPath().c_str(), header_->e_ident[EI_CLASS]); return false; } if (ET_DYN != header_->e_type) { *error_msg = StringPrintf("Failed to find expected e_type value %d in %s, found %d", ET_DYN, file_->GetPath().c_str(), header_->e_type); return false; } if (EV_CURRENT != header_->e_version) { *error_msg = StringPrintf("Failed to find expected e_version value %d in %s, found %d", EV_CURRENT, file_->GetPath().c_str(), header_->e_version); return false; } if (0 != header_->e_entry) { *error_msg = StringPrintf("Failed to find expected e_entry value %d in %s, found %d", 0, file_->GetPath().c_str(), header_->e_entry); return false; } if (0 == header_->e_phoff) { *error_msg = StringPrintf("Failed to find non-zero e_phoff value in %s", file_->GetPath().c_str()); return false; } if (0 == header_->e_shoff) { *error_msg = StringPrintf("Failed to find non-zero e_shoff value in %s", file_->GetPath().c_str()); return false; } if (0 == header_->e_ehsize) { *error_msg = StringPrintf("Failed to find non-zero e_ehsize value in %s", file_->GetPath().c_str()); return false; } if (0 == header_->e_phentsize) { *error_msg = StringPrintf("Failed to find non-zero e_phentsize value in %s", file_->GetPath().c_str()); return false; } if (0 == header_->e_phnum) { *error_msg = StringPrintf("Failed to find non-zero e_phnum value in %s", file_->GetPath().c_str()); return false; } if (0 == header_->e_shentsize) { *error_msg = StringPrintf("Failed to find non-zero e_shentsize value in %s", file_->GetPath().c_str()); return false; } if (0 == header_->e_shnum) { *error_msg = StringPrintf("Failed to find non-zero e_shnum value in %s", file_->GetPath().c_str()); return false; } if (0 == header_->e_shstrndx) { *error_msg = StringPrintf("Failed to find non-zero e_shstrndx value in %s", file_->GetPath().c_str()); return false; } if (header_->e_shstrndx >= header_->e_shnum) { *error_msg = StringPrintf("Failed to find e_shnum value %d less than %d in %s", header_->e_shstrndx, header_->e_shnum, file_->GetPath().c_str()); return false; } if (!program_header_only_) { if (header_->e_phoff >= Size()) { *error_msg = StringPrintf("Failed to find e_phoff value %d less than %zd in %s", header_->e_phoff, Size(), file_->GetPath().c_str()); return false; } if (header_->e_shoff >= Size()) { *error_msg = StringPrintf("Failed to find e_shoff value %d less than %zd in %s", header_->e_shoff, Size(), file_->GetPath().c_str()); return false; } } return true; } Elf32_Ehdr& ElfFile::GetHeader() const { CHECK(header_ != NULL); return *header_; } byte* ElfFile::GetProgramHeadersStart() const { CHECK(program_headers_start_ != NULL); return program_headers_start_; } byte* ElfFile::GetSectionHeadersStart() const { CHECK(section_headers_start_ != NULL); return section_headers_start_; } Elf32_Phdr& ElfFile::GetDynamicProgramHeader() const { CHECK(dynamic_program_header_ != NULL); return *dynamic_program_header_; } Elf32_Dyn* ElfFile::GetDynamicSectionStart() const { CHECK(dynamic_section_start_ != NULL); return dynamic_section_start_; } Elf32_Sym* ElfFile::GetSymbolSectionStart(Elf32_Word section_type) const { CHECK(IsSymbolSectionType(section_type)) << file_->GetPath() << " " << section_type; Elf32_Sym* symbol_section_start; switch (section_type) { case SHT_SYMTAB: { symbol_section_start = symtab_section_start_; break; } case SHT_DYNSYM: { symbol_section_start = dynsym_section_start_; break; } default: { LOG(FATAL) << section_type; symbol_section_start = NULL; } } CHECK(symbol_section_start != NULL); return symbol_section_start; } const char* ElfFile::GetStringSectionStart(Elf32_Word section_type) const { CHECK(IsSymbolSectionType(section_type)) << file_->GetPath() << " " << section_type; const char* string_section_start; switch (section_type) { case SHT_SYMTAB: { string_section_start = strtab_section_start_; break; } case SHT_DYNSYM: { string_section_start = dynstr_section_start_; break; } default: { LOG(FATAL) << section_type; string_section_start = NULL; } } CHECK(string_section_start != NULL); return string_section_start; } const char* ElfFile::GetString(Elf32_Word section_type, Elf32_Word i) const { CHECK(IsSymbolSectionType(section_type)) << file_->GetPath() << " " << section_type; if (i == 0) { return NULL; } const char* string_section_start = GetStringSectionStart(section_type); const char* string = string_section_start + i; return string; } Elf32_Word* ElfFile::GetHashSectionStart() const { CHECK(hash_section_start_ != NULL); return hash_section_start_; } Elf32_Word ElfFile::GetHashBucketNum() const { return GetHashSectionStart()[0]; } Elf32_Word ElfFile::GetHashChainNum() const { return GetHashSectionStart()[1]; } Elf32_Word ElfFile::GetHashBucket(size_t i) const { CHECK_LT(i, GetHashBucketNum()); // 0 is nbucket, 1 is nchain return GetHashSectionStart()[2 + i]; } Elf32_Word ElfFile::GetHashChain(size_t i) const { CHECK_LT(i, GetHashChainNum()); // 0 is nbucket, 1 is nchain, & chains are after buckets return GetHashSectionStart()[2 + GetHashBucketNum() + i]; } Elf32_Word ElfFile::GetProgramHeaderNum() const { return GetHeader().e_phnum; } Elf32_Phdr& ElfFile::GetProgramHeader(Elf32_Word i) const { CHECK_LT(i, GetProgramHeaderNum()) << file_->GetPath(); byte* program_header = GetProgramHeadersStart() + (i * GetHeader().e_phentsize); CHECK_LT(program_header, End()) << file_->GetPath(); return *reinterpret_cast(program_header); } Elf32_Phdr* ElfFile::FindProgamHeaderByType(Elf32_Word type) const { for (Elf32_Word i = 0; i < GetProgramHeaderNum(); i++) { Elf32_Phdr& program_header = GetProgramHeader(i); if (program_header.p_type == type) { return &program_header; } } return NULL; } Elf32_Word ElfFile::GetSectionHeaderNum() const { return GetHeader().e_shnum; } Elf32_Shdr& ElfFile::GetSectionHeader(Elf32_Word i) const { // Can only access arbitrary sections when we have the whole file, not just program header. // Even if we Load(), it doesn't bring in all the sections. CHECK(!program_header_only_) << file_->GetPath(); CHECK_LT(i, GetSectionHeaderNum()) << file_->GetPath(); byte* section_header = GetSectionHeadersStart() + (i * GetHeader().e_shentsize); CHECK_LT(section_header, End()) << file_->GetPath(); return *reinterpret_cast(section_header); } Elf32_Shdr* ElfFile::FindSectionByType(Elf32_Word type) const { // Can only access arbitrary sections when we have the whole file, not just program header. // We could change this to switch on known types if they were detected during loading. CHECK(!program_header_only_) << file_->GetPath(); for (Elf32_Word i = 0; i < GetSectionHeaderNum(); i++) { Elf32_Shdr& section_header = GetSectionHeader(i); if (section_header.sh_type == type) { return §ion_header; } } return NULL; } // from bionic static unsigned elfhash(const char *_name) { const unsigned char *name = (const unsigned char *) _name; unsigned h = 0, g; while (*name) { h = (h << 4) + *name++; g = h & 0xf0000000; h ^= g; h ^= g >> 24; } return h; } Elf32_Shdr& ElfFile::GetSectionNameStringSection() const { return GetSectionHeader(GetHeader().e_shstrndx); } const byte* ElfFile::FindDynamicSymbolAddress(const std::string& symbol_name) const { Elf32_Word hash = elfhash(symbol_name.c_str()); Elf32_Word bucket_index = hash % GetHashBucketNum(); Elf32_Word symbol_and_chain_index = GetHashBucket(bucket_index); while (symbol_and_chain_index != 0 /* STN_UNDEF */) { Elf32_Sym& symbol = GetSymbol(SHT_DYNSYM, symbol_and_chain_index); const char* name = GetString(SHT_DYNSYM, symbol.st_name); if (symbol_name == name) { return base_address_ + symbol.st_value; } symbol_and_chain_index = GetHashChain(symbol_and_chain_index); } return NULL; } bool ElfFile::IsSymbolSectionType(Elf32_Word section_type) { return ((section_type == SHT_SYMTAB) || (section_type == SHT_DYNSYM)); } Elf32_Word ElfFile::GetSymbolNum(Elf32_Shdr& section_header) const { CHECK(IsSymbolSectionType(section_header.sh_type)) << file_->GetPath() << " " << section_header.sh_type; CHECK_NE(0U, section_header.sh_entsize) << file_->GetPath(); return section_header.sh_size / section_header.sh_entsize; } Elf32_Sym& ElfFile::GetSymbol(Elf32_Word section_type, Elf32_Word i) const { return *(GetSymbolSectionStart(section_type) + i); } ElfFile::SymbolTable** ElfFile::GetSymbolTable(Elf32_Word section_type) { CHECK(IsSymbolSectionType(section_type)) << file_->GetPath() << " " << section_type; switch (section_type) { case SHT_SYMTAB: { return &symtab_symbol_table_; } case SHT_DYNSYM: { return &dynsym_symbol_table_; } default: { LOG(FATAL) << section_type; return NULL; } } } Elf32_Sym* ElfFile::FindSymbolByName(Elf32_Word section_type, const std::string& symbol_name, bool build_map) { CHECK(!program_header_only_) << file_->GetPath(); CHECK(IsSymbolSectionType(section_type)) << file_->GetPath() << " " << section_type; SymbolTable** symbol_table = GetSymbolTable(section_type); if (*symbol_table != NULL || build_map) { if (*symbol_table == NULL) { DCHECK(build_map); *symbol_table = new SymbolTable; Elf32_Shdr* symbol_section = FindSectionByType(section_type); CHECK(symbol_section != NULL) << file_->GetPath(); Elf32_Shdr& string_section = GetSectionHeader(symbol_section->sh_link); for (uint32_t i = 0; i < GetSymbolNum(*symbol_section); i++) { Elf32_Sym& symbol = GetSymbol(section_type, i); unsigned char type = ELF32_ST_TYPE(symbol.st_info); if (type == STT_NOTYPE) { continue; } const char* name = GetString(string_section, symbol.st_name); if (name == NULL) { continue; } std::pair result = (*symbol_table)->insert(std::make_pair(name, &symbol)); if (!result.second) { // If a duplicate, make sure it has the same logical value. Seen on x86. CHECK_EQ(symbol.st_value, result.first->second->st_value); CHECK_EQ(symbol.st_size, result.first->second->st_size); CHECK_EQ(symbol.st_info, result.first->second->st_info); CHECK_EQ(symbol.st_other, result.first->second->st_other); CHECK_EQ(symbol.st_shndx, result.first->second->st_shndx); } } } CHECK(*symbol_table != NULL); SymbolTable::const_iterator it = (*symbol_table)->find(symbol_name); if (it == (*symbol_table)->end()) { return NULL; } return it->second; } // Fall back to linear search Elf32_Shdr* symbol_section = FindSectionByType(section_type); CHECK(symbol_section != NULL) << file_->GetPath(); Elf32_Shdr& string_section = GetSectionHeader(symbol_section->sh_link); for (uint32_t i = 0; i < GetSymbolNum(*symbol_section); i++) { Elf32_Sym& symbol = GetSymbol(section_type, i); const char* name = GetString(string_section, symbol.st_name); if (name == NULL) { continue; } if (symbol_name == name) { return &symbol; } } return NULL; } Elf32_Addr ElfFile::FindSymbolAddress(Elf32_Word section_type, const std::string& symbol_name, bool build_map) { Elf32_Sym* symbol = FindSymbolByName(section_type, symbol_name, build_map); if (symbol == NULL) { return 0; } return symbol->st_value; } const char* ElfFile::GetString(Elf32_Shdr& string_section, Elf32_Word i) const { CHECK(!program_header_only_) << file_->GetPath(); // TODO: remove this static_cast from enum when using -std=gnu++0x CHECK_EQ(static_cast(SHT_STRTAB), string_section.sh_type) << file_->GetPath(); CHECK_LT(i, string_section.sh_size) << file_->GetPath(); if (i == 0) { return NULL; } byte* strings = Begin() + string_section.sh_offset; byte* string = strings + i; CHECK_LT(string, End()) << file_->GetPath(); return reinterpret_cast(string); } Elf32_Word ElfFile::GetDynamicNum() const { return GetDynamicProgramHeader().p_filesz / sizeof(Elf32_Dyn); } Elf32_Dyn& ElfFile::GetDynamic(Elf32_Word i) const { CHECK_LT(i, GetDynamicNum()) << file_->GetPath(); return *(GetDynamicSectionStart() + i); } Elf32_Word ElfFile::FindDynamicValueByType(Elf32_Sword type) const { for (Elf32_Word i = 0; i < GetDynamicNum(); i++) { Elf32_Dyn& elf_dyn = GetDynamic(i); if (elf_dyn.d_tag == type) { return elf_dyn.d_un.d_val; } } return 0; } Elf32_Rel* ElfFile::GetRelSectionStart(Elf32_Shdr& section_header) const { CHECK(SHT_REL == section_header.sh_type) << file_->GetPath() << " " << section_header.sh_type; return reinterpret_cast(Begin() + section_header.sh_offset); } Elf32_Word ElfFile::GetRelNum(Elf32_Shdr& section_header) const { CHECK(SHT_REL == section_header.sh_type) << file_->GetPath() << " " << section_header.sh_type; CHECK_NE(0U, section_header.sh_entsize) << file_->GetPath(); return section_header.sh_size / section_header.sh_entsize; } Elf32_Rel& ElfFile::GetRel(Elf32_Shdr& section_header, Elf32_Word i) const { CHECK(SHT_REL == section_header.sh_type) << file_->GetPath() << " " << section_header.sh_type; CHECK_LT(i, GetRelNum(section_header)) << file_->GetPath(); return *(GetRelSectionStart(section_header) + i); } Elf32_Rela* ElfFile::GetRelaSectionStart(Elf32_Shdr& section_header) const { CHECK(SHT_RELA == section_header.sh_type) << file_->GetPath() << " " << section_header.sh_type; return reinterpret_cast(Begin() + section_header.sh_offset); } Elf32_Word ElfFile::GetRelaNum(Elf32_Shdr& section_header) const { CHECK(SHT_RELA == section_header.sh_type) << file_->GetPath() << " " << section_header.sh_type; return section_header.sh_size / section_header.sh_entsize; } Elf32_Rela& ElfFile::GetRela(Elf32_Shdr& section_header, Elf32_Word i) const { CHECK(SHT_RELA == section_header.sh_type) << file_->GetPath() << " " << section_header.sh_type; CHECK_LT(i, GetRelaNum(section_header)) << file_->GetPath(); return *(GetRelaSectionStart(section_header) + i); } // Base on bionic phdr_table_get_load_size size_t ElfFile::GetLoadedSize() const { Elf32_Addr min_vaddr = 0xFFFFFFFFu; Elf32_Addr max_vaddr = 0x00000000u; for (Elf32_Word i = 0; i < GetProgramHeaderNum(); i++) { Elf32_Phdr& program_header = GetProgramHeader(i); if (program_header.p_type != PT_LOAD) { continue; } Elf32_Addr begin_vaddr = program_header.p_vaddr; if (begin_vaddr < min_vaddr) { min_vaddr = begin_vaddr; } Elf32_Addr end_vaddr = program_header.p_vaddr + program_header.p_memsz; if (end_vaddr > max_vaddr) { max_vaddr = end_vaddr; } } min_vaddr = RoundDown(min_vaddr, kPageSize); max_vaddr = RoundUp(max_vaddr, kPageSize); CHECK_LT(min_vaddr, max_vaddr) << file_->GetPath(); size_t loaded_size = max_vaddr - min_vaddr; return loaded_size; } bool ElfFile::Load(bool executable, std::string* error_msg) { CHECK(program_header_only_) << file_->GetPath(); if (executable) { InstructionSet elf_ISA = kNone; switch (GetHeader().e_machine) { case EM_ARM: { elf_ISA = kArm; break; } case EM_AARCH64: { elf_ISA = kArm64; break; } case EM_386: { elf_ISA = kX86; break; } case EM_X86_64: { elf_ISA = kX86_64; break; } case EM_MIPS: { elf_ISA = kMips; break; } } if (elf_ISA != kRuntimeISA) { std::ostringstream oss; oss << "Expected ISA " << kRuntimeISA << " but found " << elf_ISA; *error_msg = oss.str(); return false; } } for (Elf32_Word i = 0; i < GetProgramHeaderNum(); i++) { Elf32_Phdr& program_header = GetProgramHeader(i); // Record .dynamic header information for later use if (program_header.p_type == PT_DYNAMIC) { dynamic_program_header_ = &program_header; continue; } // Not something to load, move on. if (program_header.p_type != PT_LOAD) { continue; } // Found something to load. // If p_vaddr is zero, it must be the first loadable segment, // since they must be in order. Since it is zero, there isn't a // specific address requested, so first request a contiguous chunk // of required size for all segments, but with no // permissions. We'll then carve that up with the proper // permissions as we load the actual segments. If p_vaddr is // non-zero, the segments require the specific address specified, // which either was specified in the file because we already set // base_address_ after the first zero segment). int64_t temp_file_length = file_->GetLength(); if (temp_file_length < 0) { errno = -temp_file_length; *error_msg = StringPrintf("Failed to get length of file: '%s' fd=%d: %s", file_->GetPath().c_str(), file_->Fd(), strerror(errno)); return false; } size_t file_length = static_cast(temp_file_length); if (program_header.p_vaddr == 0) { std::string reservation_name("ElfFile reservation for "); reservation_name += file_->GetPath(); std::unique_ptr reserve(MemMap::MapAnonymous(reservation_name.c_str(), NULL, GetLoadedSize(), PROT_NONE, false, error_msg)); if (reserve.get() == nullptr) { *error_msg = StringPrintf("Failed to allocate %s: %s", reservation_name.c_str(), error_msg->c_str()); return false; } base_address_ = reserve->Begin(); segments_.push_back(reserve.release()); } // empty segment, nothing to map if (program_header.p_memsz == 0) { continue; } byte* p_vaddr = base_address_ + program_header.p_vaddr; int prot = 0; if (executable && ((program_header.p_flags & PF_X) != 0)) { prot |= PROT_EXEC; } if ((program_header.p_flags & PF_W) != 0) { prot |= PROT_WRITE; } if ((program_header.p_flags & PF_R) != 0) { prot |= PROT_READ; } int flags = 0; if (writable_) { prot |= PROT_WRITE; flags |= MAP_SHARED; } else { flags |= MAP_PRIVATE; } if (file_length < (program_header.p_offset + program_header.p_memsz)) { *error_msg = StringPrintf("File size of %zd bytes not large enough to contain ELF segment " "%d of %d bytes: '%s'", file_length, i, program_header.p_offset + program_header.p_memsz, file_->GetPath().c_str()); return false; } std::unique_ptr segment(MemMap::MapFileAtAddress(p_vaddr, program_header.p_memsz, prot, flags, file_->Fd(), program_header.p_offset, true, // implies MAP_FIXED file_->GetPath().c_str(), error_msg)); if (segment.get() == nullptr) { *error_msg = StringPrintf("Failed to map ELF file segment %d from %s: %s", i, file_->GetPath().c_str(), error_msg->c_str()); return false; } if (segment->Begin() != p_vaddr) { *error_msg = StringPrintf("Failed to map ELF file segment %d from %s at expected address %p, " "instead mapped to %p", i, file_->GetPath().c_str(), p_vaddr, segment->Begin()); return false; } segments_.push_back(segment.release()); } // Now that we are done loading, .dynamic should be in memory to find .dynstr, .dynsym, .hash dynamic_section_start_ = reinterpret_cast(base_address_ + GetDynamicProgramHeader().p_vaddr); for (Elf32_Word i = 0; i < GetDynamicNum(); i++) { Elf32_Dyn& elf_dyn = GetDynamic(i); byte* d_ptr = base_address_ + elf_dyn.d_un.d_ptr; switch (elf_dyn.d_tag) { case DT_HASH: { if (!ValidPointer(d_ptr)) { *error_msg = StringPrintf("DT_HASH value %p does not refer to a loaded ELF segment of %s", d_ptr, file_->GetPath().c_str()); return false; } hash_section_start_ = reinterpret_cast(d_ptr); break; } case DT_STRTAB: { if (!ValidPointer(d_ptr)) { *error_msg = StringPrintf("DT_HASH value %p does not refer to a loaded ELF segment of %s", d_ptr, file_->GetPath().c_str()); return false; } dynstr_section_start_ = reinterpret_cast(d_ptr); break; } case DT_SYMTAB: { if (!ValidPointer(d_ptr)) { *error_msg = StringPrintf("DT_HASH value %p does not refer to a loaded ELF segment of %s", d_ptr, file_->GetPath().c_str()); return false; } dynsym_section_start_ = reinterpret_cast(d_ptr); break; } case DT_NULL: { if (GetDynamicNum() != i+1) { *error_msg = StringPrintf("DT_NULL found after %d .dynamic entries, " "expected %d as implied by size of PT_DYNAMIC segment in %s", i + 1, GetDynamicNum(), file_->GetPath().c_str()); return false; } break; } } } // Use GDB JIT support to do stack backtrace, etc. if (executable) { GdbJITSupport(); } return true; } bool ElfFile::ValidPointer(const byte* start) const { for (size_t i = 0; i < segments_.size(); ++i) { const MemMap* segment = segments_[i]; if (segment->Begin() <= start && start < segment->End()) { return true; } } return false; } static bool check_section_name(ElfFile& file, int section_num, const char *name) { Elf32_Shdr& section_header = file.GetSectionHeader(section_num); const char *section_name = file.GetString(SHT_SYMTAB, section_header.sh_name); return strcmp(name, section_name) == 0; } static void IncrementUint32(byte *p, uint32_t increment) { uint32_t *u = reinterpret_cast(p); *u += increment; } static void RoundAndClear(byte *image, uint32_t& offset, int pwr2) { uint32_t mask = pwr2 - 1; while (offset & mask) { image[offset++] = 0; } } // Simple macro to bump a point to a section header to the next one. #define BUMP_SHENT(sp) \ sp = reinterpret_cast (\ reinterpret_cast(sp) + elf_hdr.e_shentsize);\ offset += elf_hdr.e_shentsize void ElfFile::GdbJITSupport() { // We only get here if we only are mapping the program header. DCHECK(program_header_only_); // Well, we need the whole file to do this. std::string error_msg; std::unique_ptr ptr(Open(const_cast(file_), false, false, &error_msg)); ElfFile& all = *ptr; // Do we have interesting sections? // Is this an OAT file with interesting sections? if (all.GetSectionHeaderNum() != kExpectedSectionsInOATFile) { return; } if (!check_section_name(all, 8, ".debug_info") || !check_section_name(all, 9, ".debug_abbrev") || !check_section_name(all, 10, ".debug_frame") || !check_section_name(all, 11, ".debug_str")) { return; } #ifdef __LP64__ if (true) { return; // No ELF debug support in 64bit. } #endif // This is not needed if we have no .text segment. uint32_t text_start_addr = 0; for (uint32_t i = 0; i < segments_.size(); i++) { if (segments_[i]->GetProtect() & PROT_EXEC) { // We found the .text section. text_start_addr = PointerToLowMemUInt32(segments_[i]->Begin()); break; } } if (text_start_addr == 0U) { return; } // Okay, we are good enough. Fake up an ELF image and tell GDB about it. // We need some extra space for the debug and string sections, the ELF header, and the // section header. uint32_t needed_size = KB; for (Elf32_Word i = 1; i < all.GetSectionHeaderNum(); i++) { Elf32_Shdr& section_header = all.GetSectionHeader(i); if (section_header.sh_addr == 0 && section_header.sh_type != SHT_DYNSYM) { // Debug section: we need it. needed_size += section_header.sh_size; } else if (section_header.sh_type == SHT_STRTAB && strcmp(".shstrtab", all.GetString(SHT_SYMTAB, section_header.sh_name)) == 0) { // We also need the shared string table. needed_size += section_header.sh_size; // We also need the extra strings .symtab\0.strtab\0 needed_size += 16; } } // Start creating our image. jit_elf_image_ = new byte[needed_size]; // Create the Elf Header by copying the old one Elf32_Ehdr& elf_hdr = *reinterpret_cast(jit_elf_image_); elf_hdr = all.GetHeader(); elf_hdr.e_entry = 0; elf_hdr.e_phoff = 0; elf_hdr.e_phnum = 0; elf_hdr.e_phentsize = 0; elf_hdr.e_type = ET_EXEC; uint32_t offset = sizeof(Elf32_Ehdr); // Copy the debug sections and string table. uint32_t debug_offsets[kExpectedSectionsInOATFile]; memset(debug_offsets, '\0', sizeof debug_offsets); Elf32_Shdr *text_header = nullptr; int extra_shstrtab_entries = -1; int text_section_index = -1; int section_index = 1; for (Elf32_Word i = 1; i < kExpectedSectionsInOATFile; i++) { Elf32_Shdr& section_header = all.GetSectionHeader(i); // Round up to multiple of 4, ensuring zero fill. RoundAndClear(jit_elf_image_, offset, 4); if (section_header.sh_addr == 0 && section_header.sh_type != SHT_DYNSYM) { // Debug section: we need it. Unfortunately, it wasn't mapped in. debug_offsets[i] = offset; // Read it from the file. lseek(file_->Fd(), section_header.sh_offset, SEEK_SET); read(file_->Fd(), jit_elf_image_ + offset, section_header.sh_size); offset += section_header.sh_size; section_index++; offset += 16; } else if (section_header.sh_type == SHT_STRTAB && strcmp(".shstrtab", all.GetString(SHT_SYMTAB, section_header.sh_name)) == 0) { // We also need the shared string table. debug_offsets[i] = offset; // Read it from the file. lseek(file_->Fd(), section_header.sh_offset, SEEK_SET); read(file_->Fd(), jit_elf_image_ + offset, section_header.sh_size); offset += section_header.sh_size; // We also need the extra strings .symtab\0.strtab\0 extra_shstrtab_entries = section_header.sh_size; memcpy(jit_elf_image_+offset, ".symtab\0.strtab\0", 16); offset += 16; section_index++; } else if (section_header.sh_flags & SHF_EXECINSTR) { DCHECK(strcmp(".text", all.GetString(SHT_SYMTAB, section_header.sh_name)) == 0); text_header = §ion_header; text_section_index = section_index++; } } DCHECK(text_header != nullptr); DCHECK_NE(extra_shstrtab_entries, -1); // We now need to update the addresses for debug_info and debug_frame to get to the // correct offset within the .text section. byte *p = jit_elf_image_+debug_offsets[8]; byte *end = p + all.GetSectionHeader(8).sh_size; // For debug_info; patch compilation using low_pc @ offset 13, high_pc at offset 17. IncrementUint32(p + 13, text_start_addr); IncrementUint32(p + 17, text_start_addr); // Now fix the low_pc, high_pc for each method address. // First method starts at offset 0x15, each subsequent method is 1+3*4 bytes further. for (p += 0x15; p < end; p += 1 /* attr# */ + 3 * sizeof(uint32_t) /* addresses */) { IncrementUint32(p + 1 + sizeof(uint32_t), text_start_addr); IncrementUint32(p + 1 + 2 * sizeof(uint32_t), text_start_addr); } // Now we have to handle the debug_frame method start addresses p = jit_elf_image_+debug_offsets[10]; end = p + all.GetSectionHeader(10).sh_size; // Skip past the CIE. p += *reinterpret_cast(p) + 4; // And walk the FDEs. for (; p < end; p += *reinterpret_cast(p) + sizeof(uint32_t)) { IncrementUint32(p + 2 * sizeof(uint32_t), text_start_addr); } // Create the data for the symbol table. const int kSymbtabAlignment = 16; RoundAndClear(jit_elf_image_, offset, kSymbtabAlignment); uint32_t symtab_offset = offset; // First entry is empty. memset(jit_elf_image_+offset, 0, sizeof(Elf32_Sym)); offset += sizeof(Elf32_Sym); // Symbol 1 is the real .text section. Elf32_Sym& sym_ent = *reinterpret_cast(jit_elf_image_+offset); sym_ent.st_name = 1; /* .text */ sym_ent.st_value = text_start_addr; sym_ent.st_size = text_header->sh_size; SetBindingAndType(&sym_ent, STB_LOCAL, STT_SECTION); sym_ent.st_other = 0; sym_ent.st_shndx = text_section_index; offset += sizeof(Elf32_Sym); // Create the data for the string table. RoundAndClear(jit_elf_image_, offset, kSymbtabAlignment); const int kTextStringSize = 7; uint32_t strtab_offset = offset; memcpy(jit_elf_image_+offset, "\0.text", kTextStringSize); offset += kTextStringSize; // Create the section header table. // Round up to multiple of kSymbtabAlignment, ensuring zero fill. RoundAndClear(jit_elf_image_, offset, kSymbtabAlignment); elf_hdr.e_shoff = offset; Elf32_Shdr *sp = reinterpret_cast(jit_elf_image_ + offset); // Copy the first empty index. *sp = all.GetSectionHeader(0); BUMP_SHENT(sp); elf_hdr.e_shnum = 1; for (Elf32_Word i = 1; i < kExpectedSectionsInOATFile; i++) { Elf32_Shdr& section_header = all.GetSectionHeader(i); if (section_header.sh_addr == 0 && section_header.sh_type != SHT_DYNSYM) { // Debug section: we need it. *sp = section_header; sp->sh_offset = debug_offsets[i]; sp->sh_addr = 0; elf_hdr.e_shnum++; BUMP_SHENT(sp); } else if (section_header.sh_type == SHT_STRTAB && strcmp(".shstrtab", all.GetString(SHT_SYMTAB, section_header.sh_name)) == 0) { // We also need the shared string table. *sp = section_header; sp->sh_offset = debug_offsets[i]; sp->sh_size += 16; /* sizeof ".symtab\0.strtab\0" */ sp->sh_addr = 0; elf_hdr.e_shstrndx = elf_hdr.e_shnum; elf_hdr.e_shnum++; BUMP_SHENT(sp); } } // Add a .text section for the matching code section. *sp = *text_header; sp->sh_type = SHT_NOBITS; sp->sh_offset = 0; sp->sh_addr = text_start_addr; elf_hdr.e_shnum++; BUMP_SHENT(sp); // .symtab section: Need an empty index and the .text entry sp->sh_name = extra_shstrtab_entries; sp->sh_type = SHT_SYMTAB; sp->sh_flags = 0; sp->sh_addr = 0; sp->sh_offset = symtab_offset; sp->sh_size = 2 * sizeof(Elf32_Sym); sp->sh_link = elf_hdr.e_shnum + 1; // Link to .strtab section. sp->sh_info = 0; sp->sh_addralign = 16; sp->sh_entsize = sizeof(Elf32_Sym); elf_hdr.e_shnum++; BUMP_SHENT(sp); // .strtab section: Enough for .text\0. sp->sh_name = extra_shstrtab_entries + 8; sp->sh_type = SHT_STRTAB; sp->sh_flags = 0; sp->sh_addr = 0; sp->sh_offset = strtab_offset; sp->sh_size = kTextStringSize; sp->sh_link = 0; sp->sh_info = 0; sp->sh_addralign = 16; sp->sh_entsize = 0; elf_hdr.e_shnum++; BUMP_SHENT(sp); // We now have enough information to tell GDB about our file. jit_gdb_entry_ = CreateCodeEntry(jit_elf_image_, offset); } } // namespace art