/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "callee_save_frame.h" #include "common_throws.h" #include "dex_file-inl.h" #include "dex_instruction-inl.h" #include "entrypoints/entrypoint_utils.h" #include "gc/accounting/card_table-inl.h" #include "interpreter/interpreter.h" #include "invoke_arg_array_builder.h" #include "mirror/art_method-inl.h" #include "mirror/class-inl.h" #include "mirror/object-inl.h" #include "mirror/object_array-inl.h" #include "object_utils.h" #include "runtime.h" namespace art { // Visits the arguments as saved to the stack by a Runtime::kRefAndArgs callee save frame. class QuickArgumentVisitor { // Size of each spilled GPR. #ifdef __LP64__ static constexpr size_t kBytesPerGprSpillLocation = 8; #else static constexpr size_t kBytesPerGprSpillLocation = 4; #endif // Number of bytes for each out register in the caller method's frame. static constexpr size_t kBytesStackArgLocation = 4; #if defined(__arm__) // The callee save frame is pointed to by SP. // | argN | | // | ... | | // | arg4 | | // | arg3 spill | | Caller's frame // | arg2 spill | | // | arg1 spill | | // | Method* | --- // | LR | // | ... | callee saves // | R3 | arg3 // | R2 | arg2 // | R1 | arg1 // | R0 | padding // | Method* | <- sp static constexpr bool kSoftFloatAbi = true; // This is a soft float ABI. static constexpr size_t kNumGprArgs = 3; // 3 arguments passed in GPRs. static constexpr size_t kNumFprArgs = 0; // 0 arguments passed in FPRs. static constexpr size_t kBytesPerFprSpillLocation = 4; // FPR spill size is 4 bytes. static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 0; // Offset of first FPR arg. static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 8; // Offset of first GPR arg. static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 44; // Offset of return address. static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize = 48; // Frame size. static size_t GprIndexToGprOffset(uint32_t gpr_index) { return gpr_index * kBytesPerGprSpillLocation; } #elif defined(__mips__) // The callee save frame is pointed to by SP. // | argN | | // | ... | | // | arg4 | | // | arg3 spill | | Caller's frame // | arg2 spill | | // | arg1 spill | | // | Method* | --- // | RA | // | ... | callee saves // | A3 | arg3 // | A2 | arg2 // | A1 | arg1 // | A0/Method* | <- sp static constexpr bool kSoftFloatAbi = true; // This is a soft float ABI. static constexpr size_t kNumGprArgs = 3; // 3 arguments passed in GPRs. static constexpr size_t kNumFprArgs = 0; // 0 arguments passed in FPRs. static constexpr size_t kBytesPerFprSpillLocation = 4; // FPR spill size is 4 bytes. static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 0; // Offset of first FPR arg. static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4; // Offset of first GPR arg. static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 60; // Offset of return address. static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize = 64; // Frame size. static size_t GprIndexToGprOffset(uint32_t gpr_index) { return gpr_index * kBytesPerGprSpillLocation; } #elif defined(__i386__) // The callee save frame is pointed to by SP. // | argN | | // | ... | | // | arg4 | | // | arg3 spill | | Caller's frame // | arg2 spill | | // | arg1 spill | | // | Method* | --- // | Return | // | EBP,ESI,EDI | callee saves // | EBX | arg3 // | EDX | arg2 // | ECX | arg1 // | EAX/Method* | <- sp static constexpr bool kSoftFloatAbi = true; // This is a soft float ABI. static constexpr size_t kNumGprArgs = 3; // 3 arguments passed in GPRs. static constexpr size_t kNumFprArgs = 0; // 0 arguments passed in FPRs. static constexpr size_t kBytesPerFprSpillLocation = 8; // FPR spill size is 8 bytes. static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 0; // Offset of first FPR arg. static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4; // Offset of first GPR arg. static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 28; // Offset of return address. static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize = 32; // Frame size. static size_t GprIndexToGprOffset(uint32_t gpr_index) { return gpr_index * kBytesPerGprSpillLocation; } #elif defined(__x86_64__) // The callee save frame is pointed to by SP. // | argN | | // | ... | | // | reg. arg spills | | Caller's frame // | Method* | --- // | Return | // | R15 | callee save // | R14 | callee save // | R13 | callee save // | R12 | callee save // | R9 | arg5 // | R8 | arg4 // | RSI/R6 | arg1 // | RBP/R5 | callee save // | RBX/R3 | callee save // | RDX/R2 | arg2 // | RCX/R1 | arg3 // | XMM7 | float arg 8 // | XMM6 | float arg 7 // | XMM5 | float arg 6 // | XMM4 | float arg 5 // | XMM3 | float arg 4 // | XMM2 | float arg 3 // | XMM1 | float arg 2 // | XMM0 | float arg 1 // | Padding | // | RDI/Method* | <- sp static constexpr bool kSoftFloatAbi = false; // This is a hard float ABI. static constexpr size_t kNumGprArgs = 5; // 3 arguments passed in GPRs. static constexpr size_t kNumFprArgs = 8; // 0 arguments passed in FPRs. static constexpr size_t kBytesPerFprSpillLocation = 8; // FPR spill size is 8 bytes. static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 16; // Offset of first FPR arg. static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80; // Offset of first GPR arg. static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 168; // Offset of return address. static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize = 176; // Frame size. static size_t GprIndexToGprOffset(uint32_t gpr_index) { switch (gpr_index) { case 0: return (4 * kBytesPerGprSpillLocation); case 1: return (1 * kBytesPerGprSpillLocation); case 2: return (0 * kBytesPerGprSpillLocation); case 3: return (5 * kBytesPerGprSpillLocation); case 4: return (6 * kBytesPerGprSpillLocation); default: LOG(FATAL) << "Unexpected GPR index: " << gpr_index; return 0; } } #else #error "Unsupported architecture" #endif public: static mirror::ArtMethod* GetCallingMethod(mirror::ArtMethod** sp) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { DCHECK((*sp)->IsCalleeSaveMethod()); byte* previous_sp = reinterpret_cast(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize; return *reinterpret_cast(previous_sp); } // For the given quick ref and args quick frame, return the caller's PC. static uintptr_t GetCallingPc(mirror::ArtMethod** sp) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { DCHECK((*sp)->IsCalleeSaveMethod()); byte* lr = reinterpret_cast(sp) + kQuickCalleeSaveFrame_RefAndArgs_LrOffset; return *reinterpret_cast(lr); } QuickArgumentVisitor(mirror::ArtMethod** sp, bool is_static, const char* shorty, uint32_t shorty_len) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) : is_static_(is_static), shorty_(shorty), shorty_len_(shorty_len), gpr_args_(reinterpret_cast(sp) + kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset), fpr_args_(reinterpret_cast(sp) + kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset), stack_args_(reinterpret_cast(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize + StackArgumentStartFromShorty(is_static, shorty, shorty_len)), gpr_index_(0), fpr_index_(0), stack_index_(0), cur_type_(Primitive::kPrimVoid), is_split_long_or_double_(false) { DCHECK_EQ(kQuickCalleeSaveFrame_RefAndArgs_FrameSize, Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs)->GetFrameSizeInBytes()); } virtual ~QuickArgumentVisitor() {} virtual void Visit() = 0; Primitive::Type GetParamPrimitiveType() const { return cur_type_; } byte* GetParamAddress() const { if (!kSoftFloatAbi) { Primitive::Type type = GetParamPrimitiveType(); if (UNLIKELY((type == Primitive::kPrimDouble) || (type == Primitive::kPrimFloat))) { if ((kNumFprArgs != 0) && (fpr_index_ + 1 < kNumFprArgs + 1)) { return fpr_args_ + (fpr_index_ * kBytesPerFprSpillLocation); } } } if (gpr_index_ < kNumGprArgs) { return gpr_args_ + GprIndexToGprOffset(gpr_index_); } return stack_args_ + (stack_index_ * kBytesStackArgLocation); } bool IsSplitLongOrDouble() const { if ((kBytesPerGprSpillLocation == 4) || (kBytesPerFprSpillLocation == 4)) { return is_split_long_or_double_; } else { return false; // An optimization for when GPR and FPRs are 64bit. } } bool IsParamAReference() const { return GetParamPrimitiveType() == Primitive::kPrimNot; } bool IsParamALongOrDouble() const { Primitive::Type type = GetParamPrimitiveType(); return type == Primitive::kPrimLong || type == Primitive::kPrimDouble; } uint64_t ReadSplitLongParam() const { DCHECK(IsSplitLongOrDouble()); uint64_t low_half = *reinterpret_cast(GetParamAddress()); uint64_t high_half = *reinterpret_cast(stack_args_); return (low_half & 0xffffffffULL) | (high_half << 32); } void VisitArguments() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { gpr_index_ = 0; fpr_index_ = 0; stack_index_ = 0; if (!is_static_) { // Handle this. cur_type_ = Primitive::kPrimNot; is_split_long_or_double_ = false; Visit(); if (kNumGprArgs > 0) { gpr_index_++; } else { stack_index_++; } } for (uint32_t shorty_index = 1; shorty_index < shorty_len_; ++shorty_index) { cur_type_ = Primitive::GetType(shorty_[shorty_index]); switch (cur_type_) { case Primitive::kPrimNot: case Primitive::kPrimBoolean: case Primitive::kPrimByte: case Primitive::kPrimChar: case Primitive::kPrimShort: case Primitive::kPrimInt: is_split_long_or_double_ = false; Visit(); if (gpr_index_ < kNumGprArgs) { gpr_index_++; } else { stack_index_++; } break; case Primitive::kPrimFloat: is_split_long_or_double_ = false; Visit(); if (kSoftFloatAbi) { if (gpr_index_ < kNumGprArgs) { gpr_index_++; } else { stack_index_++; } } else { if ((kNumFprArgs != 0) && (fpr_index_ + 1 < kNumFprArgs + 1)) { fpr_index_++; } else { stack_index_++; } } break; case Primitive::kPrimDouble: case Primitive::kPrimLong: if (kSoftFloatAbi || (cur_type_ == Primitive::kPrimLong)) { is_split_long_or_double_ = (kBytesPerGprSpillLocation == 4) && ((gpr_index_ + 1) == kNumGprArgs); Visit(); if (gpr_index_ < kNumGprArgs) { gpr_index_++; if (kBytesPerGprSpillLocation == 4) { if (gpr_index_ < kNumGprArgs) { gpr_index_++; } else { stack_index_++; } } } else { if (kBytesStackArgLocation == 4) { stack_index_+= 2; } else { CHECK_EQ(kBytesStackArgLocation, 8U); stack_index_++; } } } else { is_split_long_or_double_ = (kBytesPerFprSpillLocation == 4) && ((fpr_index_ + 1) == kNumFprArgs); Visit(); if ((kNumFprArgs != 0) && (fpr_index_ + 1 < kNumFprArgs + 1)) { fpr_index_++; if (kBytesPerFprSpillLocation == 4) { if ((kNumFprArgs != 0) && (fpr_index_ + 1 < kNumFprArgs + 1)) { fpr_index_++; } else { stack_index_++; } } } else { if (kBytesStackArgLocation == 4) { stack_index_+= 2; } else { CHECK_EQ(kBytesStackArgLocation, 8U); stack_index_++; } } } break; default: LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty_; } } } private: static size_t StackArgumentStartFromShorty(bool is_static, const char* shorty, uint32_t shorty_len) { if (kSoftFloatAbi) { CHECK_EQ(kNumFprArgs, 0U); return (kNumGprArgs * kBytesPerGprSpillLocation) + kBytesPerGprSpillLocation /* ArtMethod* */; } else { size_t offset = kBytesPerGprSpillLocation; // Skip Method*. size_t gprs_seen = 0; size_t fprs_seen = 0; if (!is_static && (gprs_seen < kNumGprArgs)) { gprs_seen++; offset += kBytesStackArgLocation; } for (uint32_t i = 1; i < shorty_len; ++i) { switch (shorty[i]) { case 'Z': case 'B': case 'C': case 'S': case 'I': case 'L': if (gprs_seen < kNumGprArgs) { gprs_seen++; offset += kBytesStackArgLocation; } break; case 'J': if (gprs_seen < kNumGprArgs) { gprs_seen++; offset += 2 * kBytesStackArgLocation; if (kBytesPerGprSpillLocation == 4) { if (gprs_seen < kNumGprArgs) { gprs_seen++; } } } break; case 'F': if ((kNumFprArgs != 0) && (fprs_seen + 1 < kNumFprArgs + 1)) { fprs_seen++; offset += kBytesStackArgLocation; } break; case 'D': if ((kNumFprArgs != 0) && (fprs_seen + 1 < kNumFprArgs + 1)) { fprs_seen++; offset += 2 * kBytesStackArgLocation; if (kBytesPerFprSpillLocation == 4) { if ((kNumFprArgs != 0) && (fprs_seen + 1 < kNumFprArgs + 1)) { fprs_seen++; } } } break; default: LOG(FATAL) << "Unexpected shorty character: " << shorty[i] << " in " << shorty; } } return offset; } } const bool is_static_; const char* const shorty_; const uint32_t shorty_len_; byte* const gpr_args_; // Address of GPR arguments in callee save frame. byte* const fpr_args_; // Address of FPR arguments in callee save frame. byte* const stack_args_; // Address of stack arguments in caller's frame. uint32_t gpr_index_; // Index into spilled GPRs. uint32_t fpr_index_; // Index into spilled FPRs. uint32_t stack_index_; // Index into arguments on the stack. // The current type of argument during VisitArguments. Primitive::Type cur_type_; // Does a 64bit parameter straddle the register and stack arguments? bool is_split_long_or_double_; }; // Visits arguments on the stack placing them into the shadow frame. class BuildQuickShadowFrameVisitor : public QuickArgumentVisitor { public: BuildQuickShadowFrameVisitor(mirror::ArtMethod** sp, bool is_static, const char* shorty, uint32_t shorty_len, ShadowFrame* sf, size_t first_arg_reg) : QuickArgumentVisitor(sp, is_static, shorty, shorty_len), sf_(sf), cur_reg_(first_arg_reg) {} virtual void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { Primitive::Type type = GetParamPrimitiveType(); switch (type) { case Primitive::kPrimLong: // Fall-through. case Primitive::kPrimDouble: if (IsSplitLongOrDouble()) { sf_->SetVRegLong(cur_reg_, ReadSplitLongParam()); } else { sf_->SetVRegLong(cur_reg_, *reinterpret_cast(GetParamAddress())); } ++cur_reg_; break; case Primitive::kPrimNot: { StackReference* stack_ref = reinterpret_cast*>(GetParamAddress()); sf_->SetVRegReference(cur_reg_, stack_ref->AsMirrorPtr()); } break; case Primitive::kPrimBoolean: // Fall-through. case Primitive::kPrimByte: // Fall-through. case Primitive::kPrimChar: // Fall-through. case Primitive::kPrimShort: // Fall-through. case Primitive::kPrimInt: // Fall-through. case Primitive::kPrimFloat: sf_->SetVReg(cur_reg_, *reinterpret_cast(GetParamAddress())); break; case Primitive::kPrimVoid: LOG(FATAL) << "UNREACHABLE"; break; } ++cur_reg_; } private: ShadowFrame* const sf_; uint32_t cur_reg_; DISALLOW_COPY_AND_ASSIGN(BuildQuickShadowFrameVisitor); }; extern "C" uint64_t artQuickToInterpreterBridge(mirror::ArtMethod* method, Thread* self, mirror::ArtMethod** sp) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { // Ensure we don't get thread suspension until the object arguments are safely in the shadow // frame. FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs); if (method->IsAbstract()) { ThrowAbstractMethodError(method); return 0; } else { const char* old_cause = self->StartAssertNoThreadSuspension("Building interpreter shadow frame"); MethodHelper mh(method); const DexFile::CodeItem* code_item = mh.GetCodeItem(); uint16_t num_regs = code_item->registers_size_; void* memory = alloca(ShadowFrame::ComputeSize(num_regs)); ShadowFrame* shadow_frame(ShadowFrame::Create(num_regs, NULL, // No last shadow coming from quick. method, 0, memory)); size_t first_arg_reg = code_item->registers_size_ - code_item->ins_size_; BuildQuickShadowFrameVisitor shadow_frame_builder(sp, mh.IsStatic(), mh.GetShorty(), mh.GetShortyLength(), shadow_frame, first_arg_reg); shadow_frame_builder.VisitArguments(); // Push a transition back into managed code onto the linked list in thread. ManagedStack fragment; self->PushManagedStackFragment(&fragment); self->PushShadowFrame(shadow_frame); self->EndAssertNoThreadSuspension(old_cause); if (method->IsStatic() && !method->GetDeclaringClass()->IsInitializing()) { // Ensure static method's class is initialized. SirtRef sirt_c(self, method->GetDeclaringClass()); if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(sirt_c, true, true)) { DCHECK(Thread::Current()->IsExceptionPending()); self->PopManagedStackFragment(fragment); return 0; } } JValue result = interpreter::EnterInterpreterFromStub(self, mh, code_item, *shadow_frame); // Pop transition. self->PopManagedStackFragment(fragment); // No need to restore the args since the method has already been run by the interpreter. return result.GetJ(); } } // Visits arguments on the stack placing them into the args vector, Object* arguments are converted // to jobjects. class BuildQuickArgumentVisitor : public QuickArgumentVisitor { public: BuildQuickArgumentVisitor(mirror::ArtMethod** sp, bool is_static, const char* shorty, uint32_t shorty_len, ScopedObjectAccessUnchecked* soa, std::vector* args) : QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa), args_(args) {} virtual void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { jvalue val; Primitive::Type type = GetParamPrimitiveType(); switch (type) { case Primitive::kPrimNot: { StackReference* stack_ref = reinterpret_cast*>(GetParamAddress()); val.l = soa_->AddLocalReference(stack_ref->AsMirrorPtr()); references_.push_back(std::make_pair(val.l, stack_ref)); break; } case Primitive::kPrimLong: // Fall-through. case Primitive::kPrimDouble: if (IsSplitLongOrDouble()) { val.j = ReadSplitLongParam(); } else { val.j = *reinterpret_cast(GetParamAddress()); } break; case Primitive::kPrimBoolean: // Fall-through. case Primitive::kPrimByte: // Fall-through. case Primitive::kPrimChar: // Fall-through. case Primitive::kPrimShort: // Fall-through. case Primitive::kPrimInt: // Fall-through. case Primitive::kPrimFloat: val.i = *reinterpret_cast(GetParamAddress()); break; case Primitive::kPrimVoid: LOG(FATAL) << "UNREACHABLE"; val.j = 0; break; } args_->push_back(val); } void FixupReferences() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { // Fixup any references which may have changed. for (const auto& pair : references_) { pair.second->Assign(soa_->Decode(pair.first)); } } private: ScopedObjectAccessUnchecked* soa_; std::vector* args_; // References which we must update when exiting in case the GC moved the objects. std::vector*> > references_; DISALLOW_COPY_AND_ASSIGN(BuildQuickArgumentVisitor); }; // Handler for invocation on proxy methods. On entry a frame will exist for the proxy object method // which is responsible for recording callee save registers. We explicitly place into jobjects the // incoming reference arguments (so they survive GC). We invoke the invocation handler, which is a // field within the proxy object, which will box the primitive arguments and deal with error cases. extern "C" uint64_t artQuickProxyInvokeHandler(mirror::ArtMethod* proxy_method, mirror::Object* receiver, Thread* self, mirror::ArtMethod** sp) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { DCHECK(proxy_method->IsProxyMethod()) << PrettyMethod(proxy_method); DCHECK(receiver->GetClass()->IsProxyClass()) << PrettyMethod(proxy_method); // Ensure we don't get thread suspension until the object arguments are safely in jobjects. const char* old_cause = self->StartAssertNoThreadSuspension("Adding to IRT proxy object arguments"); // Register the top of the managed stack, making stack crawlable. DCHECK_EQ(*sp, proxy_method) << PrettyMethod(proxy_method); self->SetTopOfStack(sp, 0); DCHECK_EQ(proxy_method->GetFrameSizeInBytes(), Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs)->GetFrameSizeInBytes()) << PrettyMethod(proxy_method); self->VerifyStack(); // Start new JNI local reference state. JNIEnvExt* env = self->GetJniEnv(); ScopedObjectAccessUnchecked soa(env); ScopedJniEnvLocalRefState env_state(env); // Create local ref. copies of proxy method and the receiver. jobject rcvr_jobj = soa.AddLocalReference(receiver); // Placing arguments into args vector and remove the receiver. MethodHelper proxy_mh(proxy_method); DCHECK(!proxy_mh.IsStatic()) << PrettyMethod(proxy_method); std::vector args; BuildQuickArgumentVisitor local_ref_visitor(sp, proxy_mh.IsStatic(), proxy_mh.GetShorty(), proxy_mh.GetShortyLength(), &soa, &args); local_ref_visitor.VisitArguments(); DCHECK_GT(args.size(), 0U) << PrettyMethod(proxy_method); args.erase(args.begin()); // Convert proxy method into expected interface method. mirror::ArtMethod* interface_method = proxy_method->FindOverriddenMethod(); DCHECK(interface_method != NULL) << PrettyMethod(proxy_method); DCHECK(!interface_method->IsProxyMethod()) << PrettyMethod(interface_method); jobject interface_method_jobj = soa.AddLocalReference(interface_method); // All naked Object*s should now be in jobjects, so its safe to go into the main invoke code // that performs allocations. self->EndAssertNoThreadSuspension(old_cause); JValue result = InvokeProxyInvocationHandler(soa, proxy_mh.GetShorty(), rcvr_jobj, interface_method_jobj, args); // Restore references which might have moved. local_ref_visitor.FixupReferences(); return result.GetJ(); } // Read object references held in arguments from quick frames and place in a JNI local references, // so they don't get garbage collected. class RememberForGcArgumentVisitor : public QuickArgumentVisitor { public: RememberForGcArgumentVisitor(mirror::ArtMethod** sp, bool is_static, const char* shorty, uint32_t shorty_len, ScopedObjectAccessUnchecked* soa) : QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa) {} virtual void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { if (IsParamAReference()) { StackReference* stack_ref = reinterpret_cast*>(GetParamAddress()); jobject reference = soa_->AddLocalReference(stack_ref->AsMirrorPtr()); references_.push_back(std::make_pair(reference, stack_ref)); } } void FixupReferences() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { // Fixup any references which may have changed. for (const auto& pair : references_) { pair.second->Assign(soa_->Decode(pair.first)); } } private: ScopedObjectAccessUnchecked* soa_; // References which we must update when exiting in case the GC moved the objects. std::vector*> > references_; DISALLOW_COPY_AND_ASSIGN(RememberForGcArgumentVisitor); }; // Lazily resolve a method for quick. Called by stub code. extern "C" const void* artQuickResolutionTrampoline(mirror::ArtMethod* called, mirror::Object* receiver, Thread* thread, mirror::ArtMethod** sp) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { FinishCalleeSaveFrameSetup(thread, sp, Runtime::kRefsAndArgs); // Start new JNI local reference state JNIEnvExt* env = thread->GetJniEnv(); ScopedObjectAccessUnchecked soa(env); ScopedJniEnvLocalRefState env_state(env); const char* old_cause = thread->StartAssertNoThreadSuspension("Quick method resolution set up"); // Compute details about the called method (avoid GCs) ClassLinker* linker = Runtime::Current()->GetClassLinker(); mirror::ArtMethod* caller = QuickArgumentVisitor::GetCallingMethod(sp); InvokeType invoke_type; const DexFile* dex_file; uint32_t dex_method_idx; if (called->IsRuntimeMethod()) { uint32_t dex_pc = caller->ToDexPc(QuickArgumentVisitor::GetCallingPc(sp)); const DexFile::CodeItem* code; { MethodHelper mh(caller); dex_file = &mh.GetDexFile(); code = mh.GetCodeItem(); } CHECK_LT(dex_pc, code->insns_size_in_code_units_); const Instruction* instr = Instruction::At(&code->insns_[dex_pc]); Instruction::Code instr_code = instr->Opcode(); bool is_range; switch (instr_code) { case Instruction::INVOKE_DIRECT: invoke_type = kDirect; is_range = false; break; case Instruction::INVOKE_DIRECT_RANGE: invoke_type = kDirect; is_range = true; break; case Instruction::INVOKE_STATIC: invoke_type = kStatic; is_range = false; break; case Instruction::INVOKE_STATIC_RANGE: invoke_type = kStatic; is_range = true; break; case Instruction::INVOKE_SUPER: invoke_type = kSuper; is_range = false; break; case Instruction::INVOKE_SUPER_RANGE: invoke_type = kSuper; is_range = true; break; case Instruction::INVOKE_VIRTUAL: invoke_type = kVirtual; is_range = false; break; case Instruction::INVOKE_VIRTUAL_RANGE: invoke_type = kVirtual; is_range = true; break; case Instruction::INVOKE_INTERFACE: invoke_type = kInterface; is_range = false; break; case Instruction::INVOKE_INTERFACE_RANGE: invoke_type = kInterface; is_range = true; break; default: LOG(FATAL) << "Unexpected call into trampoline: " << instr->DumpString(NULL); // Avoid used uninitialized warnings. invoke_type = kDirect; is_range = false; } dex_method_idx = (is_range) ? instr->VRegB_3rc() : instr->VRegB_35c(); } else { invoke_type = kStatic; dex_file = &MethodHelper(called).GetDexFile(); dex_method_idx = called->GetDexMethodIndex(); } uint32_t shorty_len; const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(dex_method_idx), &shorty_len); RememberForGcArgumentVisitor visitor(sp, invoke_type == kStatic, shorty, shorty_len, &soa); visitor.VisitArguments(); thread->EndAssertNoThreadSuspension(old_cause); bool virtual_or_interface = invoke_type == kVirtual || invoke_type == kInterface; // Resolve method filling in dex cache. if (called->IsRuntimeMethod()) { SirtRef sirt_receiver(soa.Self(), virtual_or_interface ? receiver : nullptr); called = linker->ResolveMethod(dex_method_idx, caller, invoke_type); receiver = sirt_receiver.get(); } const void* code = NULL; if (LIKELY(!thread->IsExceptionPending())) { // Incompatible class change should have been handled in resolve method. CHECK(!called->CheckIncompatibleClassChange(invoke_type)); if (virtual_or_interface) { // Refine called method based on receiver. CHECK(receiver != nullptr) << invoke_type; if (invoke_type == kVirtual) { called = receiver->GetClass()->FindVirtualMethodForVirtual(called); } else { called = receiver->GetClass()->FindVirtualMethodForInterface(called); } // We came here because of sharpening. Ensure the dex cache is up-to-date on the method index // of the sharpened method. if (called->GetDexCacheResolvedMethods() == caller->GetDexCacheResolvedMethods()) { caller->GetDexCacheResolvedMethods()->Set(called->GetDexMethodIndex(), called); } else { // Calling from one dex file to another, need to compute the method index appropriate to // the caller's dex file. Since we get here only if the original called was a runtime // method, we've got the correct dex_file and a dex_method_idx from above. DCHECK(&MethodHelper(caller).GetDexFile() == dex_file); uint32_t method_index = MethodHelper(called).FindDexMethodIndexInOtherDexFile(*dex_file, dex_method_idx); if (method_index != DexFile::kDexNoIndex) { caller->GetDexCacheResolvedMethods()->Set(method_index, called); } } } // Ensure that the called method's class is initialized. SirtRef called_class(soa.Self(), called->GetDeclaringClass()); linker->EnsureInitialized(called_class, true, true); if (LIKELY(called_class->IsInitialized())) { code = called->GetEntryPointFromQuickCompiledCode(); } else if (called_class->IsInitializing()) { if (invoke_type == kStatic) { // Class is still initializing, go to oat and grab code (trampoline must be left in place // until class is initialized to stop races between threads). code = linker->GetQuickOatCodeFor(called); } else { // No trampoline for non-static methods. code = called->GetEntryPointFromQuickCompiledCode(); } } else { DCHECK(called_class->IsErroneous()); } } CHECK_EQ(code == NULL, thread->IsExceptionPending()); // Fixup any locally saved objects may have moved during a GC. visitor.FixupReferences(); // Place called method in callee-save frame to be placed as first argument to quick method. *sp = called; return code; } } // namespace art