/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "callee_save_frame.h" #include "common_throws.h" #include "dex_file-inl.h" #include "dex_instruction-inl.h" #include "entrypoints/entrypoint_utils.h" #include "gc/accounting/card_table-inl.h" #include "interpreter/interpreter.h" #include "mirror/art_method-inl.h" #include "mirror/class-inl.h" #include "mirror/dex_cache-inl.h" #include "mirror/object-inl.h" #include "mirror/object_array-inl.h" #include "object_utils.h" #include "runtime.h" #include "scoped_thread_state_change.h" namespace art { // Visits the arguments as saved to the stack by a Runtime::kRefAndArgs callee save frame. class QuickArgumentVisitor { // Size of each spilled GPR. #ifdef __LP64__ static constexpr size_t kBytesPerGprSpillLocation = 8; #else static constexpr size_t kBytesPerGprSpillLocation = 4; #endif // Number of bytes for each out register in the caller method's frame. static constexpr size_t kBytesStackArgLocation = 4; #if defined(__arm__) // The callee save frame is pointed to by SP. // | argN | | // | ... | | // | arg4 | | // | arg3 spill | | Caller's frame // | arg2 spill | | // | arg1 spill | | // | Method* | --- // | LR | // | ... | callee saves // | R3 | arg3 // | R2 | arg2 // | R1 | arg1 // | R0 | padding // | Method* | <- sp static constexpr bool kQuickSoftFloatAbi = true; // This is a soft float ABI. static constexpr size_t kNumQuickGprArgs = 3; // 3 arguments passed in GPRs. static constexpr size_t kNumQuickFprArgs = 0; // 0 arguments passed in FPRs. static constexpr size_t kBytesPerFprSpillLocation = 4; // FPR spill size is 4 bytes. static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 0; // Offset of first FPR arg. static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 8; // Offset of first GPR arg. static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 44; // Offset of return address. static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize = 48; // Frame size. static size_t GprIndexToGprOffset(uint32_t gpr_index) { return gpr_index * kBytesPerGprSpillLocation; } #elif defined(__aarch64__) // The callee save frame is pointed to by SP. // | argN | | // | ... | | // | arg4 | | // | arg3 spill | | Caller's frame // | arg2 spill | | // | arg1 spill | | // | Method* | --- // | LR | // | X28 | // | : | // | X19 | // | X7 | // | : | // | X1 | // | D15 | // | : | // | D0 | // | | padding // | Method* | <- sp static constexpr bool kQuickSoftFloatAbi = false; // This is a hard float ABI. static constexpr size_t kNumQuickGprArgs = 7; // 7 arguments passed in GPRs. static constexpr size_t kNumQuickFprArgs = 8; // 8 arguments passed in FPRs. static constexpr size_t kBytesPerFprSpillLocation = 8; // FPR spill size is 8 bytes. static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =16; // Offset of first FPR arg. static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 144; // Offset of first GPR arg. static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 296; // Offset of return address. static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize = 304; // Frame size. static size_t GprIndexToGprOffset(uint32_t gpr_index) { return gpr_index * kBytesPerGprSpillLocation; } #elif defined(__mips__) // The callee save frame is pointed to by SP. // | argN | | // | ... | | // | arg4 | | // | arg3 spill | | Caller's frame // | arg2 spill | | // | arg1 spill | | // | Method* | --- // | RA | // | ... | callee saves // | A3 | arg3 // | A2 | arg2 // | A1 | arg1 // | A0/Method* | <- sp static constexpr bool kQuickSoftFloatAbi = true; // This is a soft float ABI. static constexpr size_t kNumQuickGprArgs = 3; // 3 arguments passed in GPRs. static constexpr size_t kNumQuickFprArgs = 0; // 0 arguments passed in FPRs. static constexpr size_t kBytesPerFprSpillLocation = 4; // FPR spill size is 4 bytes. static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 0; // Offset of first FPR arg. static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4; // Offset of first GPR arg. static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 60; // Offset of return address. static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize = 64; // Frame size. static size_t GprIndexToGprOffset(uint32_t gpr_index) { return gpr_index * kBytesPerGprSpillLocation; } #elif defined(__i386__) // The callee save frame is pointed to by SP. // | argN | | // | ... | | // | arg4 | | // | arg3 spill | | Caller's frame // | arg2 spill | | // | arg1 spill | | // | Method* | --- // | Return | // | EBP,ESI,EDI | callee saves // | EBX | arg3 // | EDX | arg2 // | ECX | arg1 // | EAX/Method* | <- sp static constexpr bool kQuickSoftFloatAbi = true; // This is a soft float ABI. static constexpr size_t kNumQuickGprArgs = 3; // 3 arguments passed in GPRs. static constexpr size_t kNumQuickFprArgs = 0; // 0 arguments passed in FPRs. static constexpr size_t kBytesPerFprSpillLocation = 8; // FPR spill size is 8 bytes. static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 0; // Offset of first FPR arg. static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4; // Offset of first GPR arg. static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 28; // Offset of return address. static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize = 32; // Frame size. static size_t GprIndexToGprOffset(uint32_t gpr_index) { return gpr_index * kBytesPerGprSpillLocation; } #elif defined(__x86_64__) // The callee save frame is pointed to by SP. // | argN | | // | ... | | // | reg. arg spills | | Caller's frame // | Method* | --- // | Return | // | R15 | callee save // | R14 | callee save // | R13 | callee save // | R12 | callee save // | R9 | arg5 // | R8 | arg4 // | RSI/R6 | arg1 // | RBP/R5 | callee save // | RBX/R3 | callee save // | RDX/R2 | arg2 // | RCX/R1 | arg3 // | XMM7 | float arg 8 // | XMM6 | float arg 7 // | XMM5 | float arg 6 // | XMM4 | float arg 5 // | XMM3 | float arg 4 // | XMM2 | float arg 3 // | XMM1 | float arg 2 // | XMM0 | float arg 1 // | Padding | // | RDI/Method* | <- sp static constexpr bool kQuickSoftFloatAbi = false; // This is a hard float ABI. static constexpr size_t kNumQuickGprArgs = 5; // 3 arguments passed in GPRs. static constexpr size_t kNumQuickFprArgs = 8; // 0 arguments passed in FPRs. static constexpr size_t kBytesPerFprSpillLocation = 8; // FPR spill size is 8 bytes. static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 16; // Offset of first FPR arg. static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80; // Offset of first GPR arg. static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 168; // Offset of return address. static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize = 176; // Frame size. static size_t GprIndexToGprOffset(uint32_t gpr_index) { switch (gpr_index) { case 0: return (4 * kBytesPerGprSpillLocation); case 1: return (1 * kBytesPerGprSpillLocation); case 2: return (0 * kBytesPerGprSpillLocation); case 3: return (5 * kBytesPerGprSpillLocation); case 4: return (6 * kBytesPerGprSpillLocation); default: LOG(FATAL) << "Unexpected GPR index: " << gpr_index; return 0; } } #else #error "Unsupported architecture" #endif public: static mirror::ArtMethod* GetCallingMethod(mirror::ArtMethod** sp) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { DCHECK((*sp)->IsCalleeSaveMethod()); byte* previous_sp = reinterpret_cast(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize; return *reinterpret_cast(previous_sp); } // For the given quick ref and args quick frame, return the caller's PC. static uintptr_t GetCallingPc(mirror::ArtMethod** sp) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { DCHECK((*sp)->IsCalleeSaveMethod()); byte* lr = reinterpret_cast(sp) + kQuickCalleeSaveFrame_RefAndArgs_LrOffset; return *reinterpret_cast(lr); } QuickArgumentVisitor(mirror::ArtMethod** sp, bool is_static, const char* shorty, uint32_t shorty_len) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) : is_static_(is_static), shorty_(shorty), shorty_len_(shorty_len), gpr_args_(reinterpret_cast(sp) + kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset), fpr_args_(reinterpret_cast(sp) + kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset), stack_args_(reinterpret_cast(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize + StackArgumentStartFromShorty(is_static, shorty, shorty_len)), gpr_index_(0), fpr_index_(0), stack_index_(0), cur_type_(Primitive::kPrimVoid), is_split_long_or_double_(false) { DCHECK_EQ(kQuickCalleeSaveFrame_RefAndArgs_FrameSize, Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs)->GetFrameSizeInBytes()); } virtual ~QuickArgumentVisitor() {} virtual void Visit() = 0; Primitive::Type GetParamPrimitiveType() const { return cur_type_; } byte* GetParamAddress() const { if (!kQuickSoftFloatAbi) { Primitive::Type type = GetParamPrimitiveType(); if (UNLIKELY((type == Primitive::kPrimDouble) || (type == Primitive::kPrimFloat))) { if ((kNumQuickFprArgs != 0) && (fpr_index_ + 1 < kNumQuickFprArgs + 1)) { return fpr_args_ + (fpr_index_ * kBytesPerFprSpillLocation); } return stack_args_ + (stack_index_ * kBytesStackArgLocation); } } if (gpr_index_ < kNumQuickGprArgs) { return gpr_args_ + GprIndexToGprOffset(gpr_index_); } return stack_args_ + (stack_index_ * kBytesStackArgLocation); } bool IsSplitLongOrDouble() const { if ((kBytesPerGprSpillLocation == 4) || (kBytesPerFprSpillLocation == 4)) { return is_split_long_or_double_; } else { return false; // An optimization for when GPR and FPRs are 64bit. } } bool IsParamAReference() const { return GetParamPrimitiveType() == Primitive::kPrimNot; } bool IsParamALongOrDouble() const { Primitive::Type type = GetParamPrimitiveType(); return type == Primitive::kPrimLong || type == Primitive::kPrimDouble; } uint64_t ReadSplitLongParam() const { DCHECK(IsSplitLongOrDouble()); uint64_t low_half = *reinterpret_cast(GetParamAddress()); uint64_t high_half = *reinterpret_cast(stack_args_); return (low_half & 0xffffffffULL) | (high_half << 32); } void VisitArguments() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { // This implementation doesn't support reg-spill area for hard float // ABI targets such as x86_64 and aarch64. So, for those targets whose // 'kQuickSoftFloatAbi' is 'false': // (a) 'stack_args_' should point to the first method's argument // (b) whatever the argument type it is, the 'stack_index_' should // be moved forward along with every visiting. gpr_index_ = 0; fpr_index_ = 0; stack_index_ = 0; if (!is_static_) { // Handle this. cur_type_ = Primitive::kPrimNot; is_split_long_or_double_ = false; Visit(); if (!kQuickSoftFloatAbi || kNumQuickGprArgs == 0) { stack_index_++; } if (kNumQuickGprArgs > 0) { gpr_index_++; } } for (uint32_t shorty_index = 1; shorty_index < shorty_len_; ++shorty_index) { cur_type_ = Primitive::GetType(shorty_[shorty_index]); switch (cur_type_) { case Primitive::kPrimNot: case Primitive::kPrimBoolean: case Primitive::kPrimByte: case Primitive::kPrimChar: case Primitive::kPrimShort: case Primitive::kPrimInt: is_split_long_or_double_ = false; Visit(); if (!kQuickSoftFloatAbi || kNumQuickGprArgs == gpr_index_) { stack_index_++; } if (gpr_index_ < kNumQuickGprArgs) { gpr_index_++; } break; case Primitive::kPrimFloat: is_split_long_or_double_ = false; Visit(); if (kQuickSoftFloatAbi) { if (gpr_index_ < kNumQuickGprArgs) { gpr_index_++; } else { stack_index_++; } } else { if ((kNumQuickFprArgs != 0) && (fpr_index_ + 1 < kNumQuickFprArgs + 1)) { fpr_index_++; } stack_index_++; } break; case Primitive::kPrimDouble: case Primitive::kPrimLong: if (kQuickSoftFloatAbi || (cur_type_ == Primitive::kPrimLong)) { is_split_long_or_double_ = (kBytesPerGprSpillLocation == 4) && ((gpr_index_ + 1) == kNumQuickGprArgs); Visit(); if (!kQuickSoftFloatAbi || kNumQuickGprArgs == gpr_index_) { if (kBytesStackArgLocation == 4) { stack_index_+= 2; } else { CHECK_EQ(kBytesStackArgLocation, 8U); stack_index_++; } } if (gpr_index_ < kNumQuickGprArgs) { gpr_index_++; if (kBytesPerGprSpillLocation == 4) { if (gpr_index_ < kNumQuickGprArgs) { gpr_index_++; } else if (kQuickSoftFloatAbi) { stack_index_++; } } } } else { is_split_long_or_double_ = (kBytesPerFprSpillLocation == 4) && ((fpr_index_ + 1) == kNumQuickFprArgs); Visit(); if ((kNumQuickFprArgs != 0) && (fpr_index_ + 1 < kNumQuickFprArgs + 1)) { fpr_index_++; if (kBytesPerFprSpillLocation == 4) { if ((kNumQuickFprArgs != 0) && (fpr_index_ + 1 < kNumQuickFprArgs + 1)) { fpr_index_++; } } } if (kBytesStackArgLocation == 4) { stack_index_+= 2; } else { CHECK_EQ(kBytesStackArgLocation, 8U); stack_index_++; } } break; default: LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty_; } } } private: static size_t StackArgumentStartFromShorty(bool is_static, const char* shorty, uint32_t shorty_len) { if (kQuickSoftFloatAbi) { CHECK_EQ(kNumQuickFprArgs, 0U); return (kNumQuickGprArgs * kBytesPerGprSpillLocation) + kBytesPerGprSpillLocation /* ArtMethod* */; } else { // For now, there is no reg-spill area for the targets with // hard float ABI. So, the offset pointing to the first method's // parameter ('this' for non-static methods) should be returned. return kBytesPerGprSpillLocation; // Skip Method*. } } const bool is_static_; const char* const shorty_; const uint32_t shorty_len_; byte* const gpr_args_; // Address of GPR arguments in callee save frame. byte* const fpr_args_; // Address of FPR arguments in callee save frame. byte* const stack_args_; // Address of stack arguments in caller's frame. uint32_t gpr_index_; // Index into spilled GPRs. uint32_t fpr_index_; // Index into spilled FPRs. uint32_t stack_index_; // Index into arguments on the stack. // The current type of argument during VisitArguments. Primitive::Type cur_type_; // Does a 64bit parameter straddle the register and stack arguments? bool is_split_long_or_double_; }; // Visits arguments on the stack placing them into the shadow frame. class BuildQuickShadowFrameVisitor FINAL : public QuickArgumentVisitor { public: BuildQuickShadowFrameVisitor(mirror::ArtMethod** sp, bool is_static, const char* shorty, uint32_t shorty_len, ShadowFrame* sf, size_t first_arg_reg) : QuickArgumentVisitor(sp, is_static, shorty, shorty_len), sf_(sf), cur_reg_(first_arg_reg) {} void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE; private: ShadowFrame* const sf_; uint32_t cur_reg_; DISALLOW_COPY_AND_ASSIGN(BuildQuickShadowFrameVisitor); }; void BuildQuickShadowFrameVisitor::Visit() { Primitive::Type type = GetParamPrimitiveType(); switch (type) { case Primitive::kPrimLong: // Fall-through. case Primitive::kPrimDouble: if (IsSplitLongOrDouble()) { sf_->SetVRegLong(cur_reg_, ReadSplitLongParam()); } else { sf_->SetVRegLong(cur_reg_, *reinterpret_cast(GetParamAddress())); } ++cur_reg_; break; case Primitive::kPrimNot: { StackReference* stack_ref = reinterpret_cast*>(GetParamAddress()); sf_->SetVRegReference(cur_reg_, stack_ref->AsMirrorPtr()); } break; case Primitive::kPrimBoolean: // Fall-through. case Primitive::kPrimByte: // Fall-through. case Primitive::kPrimChar: // Fall-through. case Primitive::kPrimShort: // Fall-through. case Primitive::kPrimInt: // Fall-through. case Primitive::kPrimFloat: sf_->SetVReg(cur_reg_, *reinterpret_cast(GetParamAddress())); break; case Primitive::kPrimVoid: LOG(FATAL) << "UNREACHABLE"; break; } ++cur_reg_; } extern "C" uint64_t artQuickToInterpreterBridge(mirror::ArtMethod* method, Thread* self, mirror::ArtMethod** sp) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { // Ensure we don't get thread suspension until the object arguments are safely in the shadow // frame. FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs); if (method->IsAbstract()) { ThrowAbstractMethodError(method); return 0; } else { DCHECK(!method->IsNative()) << PrettyMethod(method); const char* old_cause = self->StartAssertNoThreadSuspension("Building interpreter shadow frame"); MethodHelper mh(method); const DexFile::CodeItem* code_item = mh.GetCodeItem(); DCHECK(code_item != nullptr) << PrettyMethod(method); uint16_t num_regs = code_item->registers_size_; void* memory = alloca(ShadowFrame::ComputeSize(num_regs)); ShadowFrame* shadow_frame(ShadowFrame::Create(num_regs, NULL, // No last shadow coming from quick. method, 0, memory)); size_t first_arg_reg = code_item->registers_size_ - code_item->ins_size_; BuildQuickShadowFrameVisitor shadow_frame_builder(sp, mh.IsStatic(), mh.GetShorty(), mh.GetShortyLength(), shadow_frame, first_arg_reg); shadow_frame_builder.VisitArguments(); // Push a transition back into managed code onto the linked list in thread. ManagedStack fragment; self->PushManagedStackFragment(&fragment); self->PushShadowFrame(shadow_frame); self->EndAssertNoThreadSuspension(old_cause); if (method->IsStatic() && !method->GetDeclaringClass()->IsInitializing()) { // Ensure static method's class is initialized. SirtRef sirt_c(self, method->GetDeclaringClass()); if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(sirt_c, true, true)) { DCHECK(Thread::Current()->IsExceptionPending()) << PrettyMethod(method); self->PopManagedStackFragment(fragment); return 0; } } JValue result = interpreter::EnterInterpreterFromStub(self, mh, code_item, *shadow_frame); // Pop transition. self->PopManagedStackFragment(fragment); // No need to restore the args since the method has already been run by the interpreter. return result.GetJ(); } } // Visits arguments on the stack placing them into the args vector, Object* arguments are converted // to jobjects. class BuildQuickArgumentVisitor FINAL : public QuickArgumentVisitor { public: BuildQuickArgumentVisitor(mirror::ArtMethod** sp, bool is_static, const char* shorty, uint32_t shorty_len, ScopedObjectAccessUnchecked* soa, std::vector* args) : QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa), args_(args) {} void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE; void FixupReferences() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); private: ScopedObjectAccessUnchecked* const soa_; std::vector* const args_; // References which we must update when exiting in case the GC moved the objects. std::vector*> > references_; DISALLOW_COPY_AND_ASSIGN(BuildQuickArgumentVisitor); }; void BuildQuickArgumentVisitor::Visit() { jvalue val; Primitive::Type type = GetParamPrimitiveType(); switch (type) { case Primitive::kPrimNot: { StackReference* stack_ref = reinterpret_cast*>(GetParamAddress()); val.l = soa_->AddLocalReference(stack_ref->AsMirrorPtr()); references_.push_back(std::make_pair(val.l, stack_ref)); break; } case Primitive::kPrimLong: // Fall-through. case Primitive::kPrimDouble: if (IsSplitLongOrDouble()) { val.j = ReadSplitLongParam(); } else { val.j = *reinterpret_cast(GetParamAddress()); } break; case Primitive::kPrimBoolean: // Fall-through. case Primitive::kPrimByte: // Fall-through. case Primitive::kPrimChar: // Fall-through. case Primitive::kPrimShort: // Fall-through. case Primitive::kPrimInt: // Fall-through. case Primitive::kPrimFloat: val.i = *reinterpret_cast(GetParamAddress()); break; case Primitive::kPrimVoid: LOG(FATAL) << "UNREACHABLE"; val.j = 0; break; } args_->push_back(val); } void BuildQuickArgumentVisitor::FixupReferences() { // Fixup any references which may have changed. for (const auto& pair : references_) { pair.second->Assign(soa_->Decode(pair.first)); soa_->Env()->DeleteLocalRef(pair.first); } } // Handler for invocation on proxy methods. On entry a frame will exist for the proxy object method // which is responsible for recording callee save registers. We explicitly place into jobjects the // incoming reference arguments (so they survive GC). We invoke the invocation handler, which is a // field within the proxy object, which will box the primitive arguments and deal with error cases. extern "C" uint64_t artQuickProxyInvokeHandler(mirror::ArtMethod* proxy_method, mirror::Object* receiver, Thread* self, mirror::ArtMethod** sp) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { DCHECK(proxy_method->IsProxyMethod()) << PrettyMethod(proxy_method); DCHECK(receiver->GetClass()->IsProxyClass()) << PrettyMethod(proxy_method); // Ensure we don't get thread suspension until the object arguments are safely in jobjects. const char* old_cause = self->StartAssertNoThreadSuspension("Adding to IRT proxy object arguments"); // Register the top of the managed stack, making stack crawlable. DCHECK_EQ(*sp, proxy_method) << PrettyMethod(proxy_method); self->SetTopOfStack(sp, 0); DCHECK_EQ(proxy_method->GetFrameSizeInBytes(), Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs)->GetFrameSizeInBytes()) << PrettyMethod(proxy_method); self->VerifyStack(); // Start new JNI local reference state. JNIEnvExt* env = self->GetJniEnv(); ScopedObjectAccessUnchecked soa(env); ScopedJniEnvLocalRefState env_state(env); // Create local ref. copies of proxy method and the receiver. jobject rcvr_jobj = soa.AddLocalReference(receiver); // Placing arguments into args vector and remove the receiver. MethodHelper proxy_mh(proxy_method); DCHECK(!proxy_mh.IsStatic()) << PrettyMethod(proxy_method); std::vector args; BuildQuickArgumentVisitor local_ref_visitor(sp, proxy_mh.IsStatic(), proxy_mh.GetShorty(), proxy_mh.GetShortyLength(), &soa, &args); local_ref_visitor.VisitArguments(); DCHECK_GT(args.size(), 0U) << PrettyMethod(proxy_method); args.erase(args.begin()); // Convert proxy method into expected interface method. mirror::ArtMethod* interface_method = proxy_method->FindOverriddenMethod(); DCHECK(interface_method != NULL) << PrettyMethod(proxy_method); DCHECK(!interface_method->IsProxyMethod()) << PrettyMethod(interface_method); jobject interface_method_jobj = soa.AddLocalReference(interface_method); // All naked Object*s should now be in jobjects, so its safe to go into the main invoke code // that performs allocations. self->EndAssertNoThreadSuspension(old_cause); JValue result = InvokeProxyInvocationHandler(soa, proxy_mh.GetShorty(), rcvr_jobj, interface_method_jobj, args); // Restore references which might have moved. local_ref_visitor.FixupReferences(); return result.GetJ(); } // Read object references held in arguments from quick frames and place in a JNI local references, // so they don't get garbage collected. class RememberForGcArgumentVisitor FINAL : public QuickArgumentVisitor { public: RememberForGcArgumentVisitor(mirror::ArtMethod** sp, bool is_static, const char* shorty, uint32_t shorty_len, ScopedObjectAccessUnchecked* soa) : QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa) {} void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE; void FixupReferences() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); private: ScopedObjectAccessUnchecked* const soa_; // References which we must update when exiting in case the GC moved the objects. std::vector*> > references_; DISALLOW_COPY_AND_ASSIGN(RememberForGcArgumentVisitor); }; void RememberForGcArgumentVisitor::Visit() { if (IsParamAReference()) { StackReference* stack_ref = reinterpret_cast*>(GetParamAddress()); jobject reference = soa_->AddLocalReference(stack_ref->AsMirrorPtr()); references_.push_back(std::make_pair(reference, stack_ref)); } } void RememberForGcArgumentVisitor::FixupReferences() { // Fixup any references which may have changed. for (const auto& pair : references_) { pair.second->Assign(soa_->Decode(pair.first)); soa_->Env()->DeleteLocalRef(pair.first); } } // Lazily resolve a method for quick. Called by stub code. extern "C" const void* artQuickResolutionTrampoline(mirror::ArtMethod* called, mirror::Object* receiver, Thread* self, mirror::ArtMethod** sp) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs); // Start new JNI local reference state JNIEnvExt* env = self->GetJniEnv(); ScopedObjectAccessUnchecked soa(env); ScopedJniEnvLocalRefState env_state(env); const char* old_cause = self->StartAssertNoThreadSuspension("Quick method resolution set up"); // Compute details about the called method (avoid GCs) ClassLinker* linker = Runtime::Current()->GetClassLinker(); mirror::ArtMethod* caller = QuickArgumentVisitor::GetCallingMethod(sp); InvokeType invoke_type; const DexFile* dex_file; uint32_t dex_method_idx; if (called->IsRuntimeMethod()) { uint32_t dex_pc = caller->ToDexPc(QuickArgumentVisitor::GetCallingPc(sp)); const DexFile::CodeItem* code; { MethodHelper mh(caller); dex_file = &mh.GetDexFile(); code = mh.GetCodeItem(); } CHECK_LT(dex_pc, code->insns_size_in_code_units_); const Instruction* instr = Instruction::At(&code->insns_[dex_pc]); Instruction::Code instr_code = instr->Opcode(); bool is_range; switch (instr_code) { case Instruction::INVOKE_DIRECT: invoke_type = kDirect; is_range = false; break; case Instruction::INVOKE_DIRECT_RANGE: invoke_type = kDirect; is_range = true; break; case Instruction::INVOKE_STATIC: invoke_type = kStatic; is_range = false; break; case Instruction::INVOKE_STATIC_RANGE: invoke_type = kStatic; is_range = true; break; case Instruction::INVOKE_SUPER: invoke_type = kSuper; is_range = false; break; case Instruction::INVOKE_SUPER_RANGE: invoke_type = kSuper; is_range = true; break; case Instruction::INVOKE_VIRTUAL: invoke_type = kVirtual; is_range = false; break; case Instruction::INVOKE_VIRTUAL_RANGE: invoke_type = kVirtual; is_range = true; break; case Instruction::INVOKE_INTERFACE: invoke_type = kInterface; is_range = false; break; case Instruction::INVOKE_INTERFACE_RANGE: invoke_type = kInterface; is_range = true; break; default: LOG(FATAL) << "Unexpected call into trampoline: " << instr->DumpString(NULL); // Avoid used uninitialized warnings. invoke_type = kDirect; is_range = false; } dex_method_idx = (is_range) ? instr->VRegB_3rc() : instr->VRegB_35c(); } else { invoke_type = kStatic; dex_file = &MethodHelper(called).GetDexFile(); dex_method_idx = called->GetDexMethodIndex(); } uint32_t shorty_len; const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(dex_method_idx), &shorty_len); RememberForGcArgumentVisitor visitor(sp, invoke_type == kStatic, shorty, shorty_len, &soa); visitor.VisitArguments(); self->EndAssertNoThreadSuspension(old_cause); bool virtual_or_interface = invoke_type == kVirtual || invoke_type == kInterface; // Resolve method filling in dex cache. if (called->IsRuntimeMethod()) { SirtRef sirt_receiver(soa.Self(), virtual_or_interface ? receiver : nullptr); called = linker->ResolveMethod(dex_method_idx, caller, invoke_type); receiver = sirt_receiver.get(); } const void* code = NULL; if (LIKELY(!self->IsExceptionPending())) { // Incompatible class change should have been handled in resolve method. CHECK(!called->CheckIncompatibleClassChange(invoke_type)) << PrettyMethod(called) << " " << invoke_type; if (virtual_or_interface) { // Refine called method based on receiver. CHECK(receiver != nullptr) << invoke_type; if (invoke_type == kVirtual) { called = receiver->GetClass()->FindVirtualMethodForVirtual(called); } else { called = receiver->GetClass()->FindVirtualMethodForInterface(called); } // We came here because of sharpening. Ensure the dex cache is up-to-date on the method index // of the sharpened method. if (called->GetDexCacheResolvedMethods() == caller->GetDexCacheResolvedMethods()) { caller->GetDexCacheResolvedMethods()->Set(called->GetDexMethodIndex(), called); } else { // Calling from one dex file to another, need to compute the method index appropriate to // the caller's dex file. Since we get here only if the original called was a runtime // method, we've got the correct dex_file and a dex_method_idx from above. DCHECK(&MethodHelper(caller).GetDexFile() == dex_file); uint32_t method_index = MethodHelper(called).FindDexMethodIndexInOtherDexFile(*dex_file, dex_method_idx); if (method_index != DexFile::kDexNoIndex) { caller->GetDexCacheResolvedMethods()->Set(method_index, called); } } } // Ensure that the called method's class is initialized. SirtRef called_class(soa.Self(), called->GetDeclaringClass()); linker->EnsureInitialized(called_class, true, true); if (LIKELY(called_class->IsInitialized())) { code = called->GetEntryPointFromQuickCompiledCode(); } else if (called_class->IsInitializing()) { if (invoke_type == kStatic) { // Class is still initializing, go to oat and grab code (trampoline must be left in place // until class is initialized to stop races between threads). code = linker->GetQuickOatCodeFor(called); } else { // No trampoline for non-static methods. code = called->GetEntryPointFromQuickCompiledCode(); } } else { DCHECK(called_class->IsErroneous()); } } CHECK_EQ(code == NULL, self->IsExceptionPending()); // Fixup any locally saved objects may have moved during a GC. visitor.FixupReferences(); // Place called method in callee-save frame to be placed as first argument to quick method. *sp = called; return code; } /* * This class uses a couple of observations to unite the different calling conventions through * a few constants. * * 1) Number of registers used for passing is normally even, so counting down has no penalty for * possible alignment. * 2) Known 64b architectures store 8B units on the stack, both for integral and floating point * types, so using uintptr_t is OK. Also means that we can use kRegistersNeededX to denote * when we have to split things * 3) The only soft-float, Arm, is 32b, so no widening needs to be taken into account for floats * and we can use Int handling directly. * 4) Only 64b architectures widen, and their stack is aligned 8B anyways, so no padding code * necessary when widening. Also, widening of Ints will take place implicitly, and the * extension should be compatible with Aarch64, which mandates copying the available bits * into LSB and leaving the rest unspecified. * 5) Aligning longs and doubles is necessary on arm only, and it's the same in registers and on * the stack. * 6) There is only little endian. * * * Actual work is supposed to be done in a delegate of the template type. The interface is as * follows: * * void PushGpr(uintptr_t): Add a value for the next GPR * * void PushFpr4(float): Add a value for the next FPR of size 32b. Is only called if we need * padding, that is, think the architecture is 32b and aligns 64b. * * void PushFpr8(uint64_t): Push a double. We _will_ call this on 32b, it's the callee's job to * split this if necessary. The current state will have aligned, if * necessary. * * void PushStack(uintptr_t): Push a value to the stack. * * uintptr_t PushSirt(mirror::Object* ref): Add a reference to the Sirt. This _will_ have nullptr, * as this might be important for null initialization. * Must return the jobject, that is, the reference to the * entry in the Sirt (nullptr if necessary). * */ template class BuildGenericJniFrameStateMachine { public: #if defined(__arm__) // TODO: These are all dummy values! static constexpr bool kNativeSoftFloatAbi = true; static constexpr size_t kNumNativeGprArgs = 4; // 4 arguments passed in GPRs, r0-r3 static constexpr size_t kNumNativeFprArgs = 0; // 0 arguments passed in FPRs. static constexpr size_t kRegistersNeededForLong = 2; static constexpr size_t kRegistersNeededForDouble = 2; static constexpr bool kMultiRegistersAligned = true; static constexpr bool kMultiRegistersWidened = false; static constexpr bool kAlignLongOnStack = true; static constexpr bool kAlignDoubleOnStack = true; #elif defined(__aarch64__) static constexpr bool kNativeSoftFloatAbi = false; // This is a hard float ABI. static constexpr size_t kNumNativeGprArgs = 8; // 6 arguments passed in GPRs. static constexpr size_t kNumNativeFprArgs = 8; // 8 arguments passed in FPRs. static constexpr size_t kRegistersNeededForLong = 1; static constexpr size_t kRegistersNeededForDouble = 1; static constexpr bool kMultiRegistersAligned = false; static constexpr bool kMultiRegistersWidened = false; static constexpr bool kAlignLongOnStack = false; static constexpr bool kAlignDoubleOnStack = false; #elif defined(__mips__) // TODO: These are all dummy values! static constexpr bool kNativeSoftFloatAbi = true; // This is a hard float ABI. static constexpr size_t kNumNativeGprArgs = 0; // 6 arguments passed in GPRs. static constexpr size_t kNumNativeFprArgs = 0; // 8 arguments passed in FPRs. static constexpr size_t kRegistersNeededForLong = 2; static constexpr size_t kRegistersNeededForDouble = 2; static constexpr bool kMultiRegistersAligned = true; static constexpr bool kMultiRegistersWidened = true; static constexpr bool kAlignLongOnStack = false; static constexpr bool kAlignDoubleOnStack = false; #elif defined(__i386__) // TODO: Check these! static constexpr bool kNativeSoftFloatAbi = false; // Not using int registers for fp static constexpr size_t kNumNativeGprArgs = 0; // 6 arguments passed in GPRs. static constexpr size_t kNumNativeFprArgs = 0; // 8 arguments passed in FPRs. static constexpr size_t kRegistersNeededForLong = 2; static constexpr size_t kRegistersNeededForDouble = 2; static constexpr bool kMultiRegistersAligned = false; // x86 not using regs, anyways static constexpr bool kMultiRegistersWidened = false; static constexpr bool kAlignLongOnStack = false; static constexpr bool kAlignDoubleOnStack = false; #elif defined(__x86_64__) static constexpr bool kNativeSoftFloatAbi = false; // This is a hard float ABI. static constexpr size_t kNumNativeGprArgs = 6; // 6 arguments passed in GPRs. static constexpr size_t kNumNativeFprArgs = 8; // 8 arguments passed in FPRs. static constexpr size_t kRegistersNeededForLong = 1; static constexpr size_t kRegistersNeededForDouble = 1; static constexpr bool kMultiRegistersAligned = false; static constexpr bool kMultiRegistersWidened = false; static constexpr bool kAlignLongOnStack = false; static constexpr bool kAlignDoubleOnStack = false; #else #error "Unsupported architecture" #endif public: explicit BuildGenericJniFrameStateMachine(T* delegate) : gpr_index_(kNumNativeGprArgs), fpr_index_(kNumNativeFprArgs), stack_entries_(0), delegate_(delegate) { // For register alignment, we want to assume that counters (gpr_index_, fpr_index_) are even iff // the next register is even; counting down is just to make the compiler happy... CHECK_EQ(kNumNativeGprArgs % 2, 0U); CHECK_EQ(kNumNativeFprArgs % 2, 0U); } virtual ~BuildGenericJniFrameStateMachine() {} bool HavePointerGpr() { return gpr_index_ > 0; } void AdvancePointer(void* val) { if (HavePointerGpr()) { gpr_index_--; PushGpr(reinterpret_cast(val)); } else { stack_entries_++; // TODO: have a field for pointer length as multiple of 32b PushStack(reinterpret_cast(val)); gpr_index_ = 0; } } bool HaveSirtGpr() { return gpr_index_ > 0; } void AdvanceSirt(mirror::Object* ptr) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { uintptr_t sirtRef = PushSirt(ptr); if (HaveSirtGpr()) { gpr_index_--; PushGpr(sirtRef); } else { stack_entries_++; PushStack(sirtRef); gpr_index_ = 0; } } bool HaveIntGpr() { return gpr_index_ > 0; } void AdvanceInt(uint32_t val) { if (HaveIntGpr()) { gpr_index_--; PushGpr(val); } else { stack_entries_++; PushStack(val); gpr_index_ = 0; } } bool HaveLongGpr() { return gpr_index_ >= kRegistersNeededForLong + (LongGprNeedsPadding() ? 1 : 0); } bool LongGprNeedsPadding() { return kRegistersNeededForLong > 1 && // only pad when using multiple registers kAlignLongOnStack && // and when it needs alignment (gpr_index_ & 1) == 1; // counter is odd, see constructor } bool LongStackNeedsPadding() { return kRegistersNeededForLong > 1 && // only pad when using multiple registers kAlignLongOnStack && // and when it needs 8B alignment (stack_entries_ & 1) == 1; // counter is odd } void AdvanceLong(uint64_t val) { if (HaveLongGpr()) { if (LongGprNeedsPadding()) { PushGpr(0); gpr_index_--; } if (kRegistersNeededForLong == 1) { PushGpr(static_cast(val)); } else { PushGpr(static_cast(val & 0xFFFFFFFF)); PushGpr(static_cast((val >> 32) & 0xFFFFFFFF)); } gpr_index_ -= kRegistersNeededForLong; } else { if (LongStackNeedsPadding()) { PushStack(0); stack_entries_++; } if (kRegistersNeededForLong == 1) { PushStack(static_cast(val)); stack_entries_++; } else { PushStack(static_cast(val & 0xFFFFFFFF)); PushStack(static_cast((val >> 32) & 0xFFFFFFFF)); stack_entries_ += 2; } gpr_index_ = 0; } } bool HaveFloatFpr() { return fpr_index_ > 0; } template V convert(U in) { CHECK_LE(sizeof(U), sizeof(V)); union { U u; V v; } tmp; tmp.u = in; return tmp.v; } void AdvanceFloat(float val) { if (kNativeSoftFloatAbi) { AdvanceInt(convert(val)); } else { if (HaveFloatFpr()) { fpr_index_--; if (kRegistersNeededForDouble == 1) { if (kMultiRegistersWidened) { PushFpr8(convert(val)); } else { // No widening, just use the bits. PushFpr8(convert(val)); } } else { PushFpr4(val); } } else { stack_entries_++; if (kRegistersNeededForDouble == 1 && kMultiRegistersWidened) { // Need to widen before storing: Note the "double" in the template instantiation. PushStack(convert(val)); } else { PushStack(convert(val)); } fpr_index_ = 0; } } } bool HaveDoubleFpr() { return fpr_index_ >= kRegistersNeededForDouble + (DoubleFprNeedsPadding() ? 1 : 0); } bool DoubleFprNeedsPadding() { return kRegistersNeededForDouble > 1 && // only pad when using multiple registers kAlignDoubleOnStack && // and when it needs alignment (fpr_index_ & 1) == 1; // counter is odd, see constructor } bool DoubleStackNeedsPadding() { return kRegistersNeededForDouble > 1 && // only pad when using multiple registers kAlignDoubleOnStack && // and when it needs 8B alignment (stack_entries_ & 1) == 1; // counter is odd } void AdvanceDouble(uint64_t val) { if (kNativeSoftFloatAbi) { AdvanceLong(val); } else { if (HaveDoubleFpr()) { if (DoubleFprNeedsPadding()) { PushFpr4(0); fpr_index_--; } PushFpr8(val); fpr_index_ -= kRegistersNeededForDouble; } else { if (DoubleStackNeedsPadding()) { PushStack(0); stack_entries_++; } if (kRegistersNeededForDouble == 1) { PushStack(static_cast(val)); stack_entries_++; } else { PushStack(static_cast(val & 0xFFFFFFFF)); PushStack(static_cast((val >> 32) & 0xFFFFFFFF)); stack_entries_ += 2; } fpr_index_ = 0; } } } uint32_t getStackEntries() { return stack_entries_; } uint32_t getNumberOfUsedGprs() { return kNumNativeGprArgs - gpr_index_; } uint32_t getNumberOfUsedFprs() { return kNumNativeFprArgs - fpr_index_; } private: void PushGpr(uintptr_t val) { delegate_->PushGpr(val); } void PushFpr4(float val) { delegate_->PushFpr4(val); } void PushFpr8(uint64_t val) { delegate_->PushFpr8(val); } void PushStack(uintptr_t val) { delegate_->PushStack(val); } uintptr_t PushSirt(mirror::Object* ref) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return delegate_->PushSirt(ref); } uint32_t gpr_index_; // Number of free GPRs uint32_t fpr_index_; // Number of free FPRs uint32_t stack_entries_; // Stack entries are in multiples of 32b, as floats are usually not // extended T* delegate_; // What Push implementation gets called }; class ComputeGenericJniFrameSize FINAL { public: ComputeGenericJniFrameSize() : num_sirt_references_(0), num_stack_entries_(0) {} uint32_t GetStackSize() { return num_stack_entries_ * sizeof(uintptr_t); } // WARNING: After this, *sp won't be pointing to the method anymore! void ComputeLayout(mirror::ArtMethod*** m, bool is_static, const char* shorty, uint32_t shorty_len, void* sp, StackIndirectReferenceTable** table, uint32_t* sirt_entries, uintptr_t** start_stack, uintptr_t** start_gpr, uint32_t** start_fpr, void** code_return, size_t* overall_size) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { ComputeAll(is_static, shorty, shorty_len); mirror::ArtMethod* method = **m; uint8_t* sp8 = reinterpret_cast(sp); // First, fix up the layout of the callee-save frame. // We have to squeeze in the Sirt, and relocate the method pointer. // "Free" the slot for the method. sp8 += kPointerSize; // Add the Sirt. *sirt_entries = num_sirt_references_; size_t sirt_size = StackIndirectReferenceTable::GetAlignedSirtSize(num_sirt_references_); sp8 -= sirt_size; *table = reinterpret_cast(sp8); (*table)->SetNumberOfReferences(num_sirt_references_); // Add a slot for the method pointer, and fill it. Fix the pointer-pointer given to us. sp8 -= kPointerSize; uint8_t* method_pointer = sp8; *(reinterpret_cast(method_pointer)) = method; *m = reinterpret_cast(method_pointer); // Reference cookie and padding sp8 -= 8; // Store Sirt size *reinterpret_cast(sp8) = static_cast(sirt_size & 0xFFFFFFFF); // Next comes the native call stack. sp8 -= GetStackSize(); // Now align the call stack below. This aligns by 16, as AArch64 seems to require. uintptr_t mask = ~0x0F; sp8 = reinterpret_cast(reinterpret_cast(sp8) & mask); *start_stack = reinterpret_cast(sp8); // put fprs and gprs below // Assumption is OK right now, as we have soft-float arm size_t fregs = BuildGenericJniFrameStateMachine::kNumNativeFprArgs; sp8 -= fregs * sizeof(uintptr_t); *start_fpr = reinterpret_cast(sp8); size_t iregs = BuildGenericJniFrameStateMachine::kNumNativeGprArgs; sp8 -= iregs * sizeof(uintptr_t); *start_gpr = reinterpret_cast(sp8); // reserve space for the code pointer sp8 -= kPointerSize; *code_return = reinterpret_cast(sp8); *overall_size = reinterpret_cast(sp) - sp8; // The new SP is stored at the end of the alloca, so it can be immediately popped sp8 = reinterpret_cast(sp) - 5 * KB; *(reinterpret_cast(sp8)) = method_pointer; } void ComputeSirtOffset() { } // nothing to do, static right now void ComputeAll(bool is_static, const char* shorty, uint32_t shorty_len) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { BuildGenericJniFrameStateMachine sm(this); // JNIEnv sm.AdvancePointer(nullptr); // Class object or this as first argument sm.AdvanceSirt(reinterpret_cast(0x12345678)); for (uint32_t i = 1; i < shorty_len; ++i) { Primitive::Type cur_type_ = Primitive::GetType(shorty[i]); switch (cur_type_) { case Primitive::kPrimNot: sm.AdvanceSirt(reinterpret_cast(0x12345678)); break; case Primitive::kPrimBoolean: case Primitive::kPrimByte: case Primitive::kPrimChar: case Primitive::kPrimShort: case Primitive::kPrimInt: sm.AdvanceInt(0); break; case Primitive::kPrimFloat: sm.AdvanceFloat(0); break; case Primitive::kPrimDouble: sm.AdvanceDouble(0); break; case Primitive::kPrimLong: sm.AdvanceLong(0); break; default: LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty; } } num_stack_entries_ = sm.getStackEntries(); } void PushGpr(uintptr_t /* val */) { // not optimizing registers, yet } void PushFpr4(float /* val */) { // not optimizing registers, yet } void PushFpr8(uint64_t /* val */) { // not optimizing registers, yet } void PushStack(uintptr_t /* val */) { // counting is already done in the superclass } uintptr_t PushSirt(mirror::Object* /* ptr */) { num_sirt_references_++; return reinterpret_cast(nullptr); } private: uint32_t num_sirt_references_; uint32_t num_stack_entries_; }; // Visits arguments on the stack placing them into a region lower down the stack for the benefit // of transitioning into native code. class BuildGenericJniFrameVisitor FINAL : public QuickArgumentVisitor { public: BuildGenericJniFrameVisitor(mirror::ArtMethod*** sp, bool is_static, const char* shorty, uint32_t shorty_len, Thread* self) : QuickArgumentVisitor(*sp, is_static, shorty, shorty_len), sm_(this) { ComputeGenericJniFrameSize fsc; fsc.ComputeLayout(sp, is_static, shorty, shorty_len, *sp, &sirt_, &sirt_expected_refs_, &cur_stack_arg_, &cur_gpr_reg_, &cur_fpr_reg_, &code_return_, &alloca_used_size_); sirt_number_of_references_ = 0; cur_sirt_entry_ = reinterpret_cast*>(GetFirstSirtEntry()); // jni environment is always first argument sm_.AdvancePointer(self->GetJniEnv()); if (is_static) { sm_.AdvanceSirt((**sp)->GetDeclaringClass()); } } void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE; void FinalizeSirt(Thread* self) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); jobject GetFirstSirtEntry() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return reinterpret_cast(sirt_->GetStackReference(0)); } void PushGpr(uintptr_t val) { *cur_gpr_reg_ = val; cur_gpr_reg_++; } void PushFpr4(float val) { *cur_fpr_reg_ = val; cur_fpr_reg_++; } void PushFpr8(uint64_t val) { uint64_t* tmp = reinterpret_cast(cur_fpr_reg_); *tmp = val; cur_fpr_reg_ += 2; } void PushStack(uintptr_t val) { *cur_stack_arg_ = val; cur_stack_arg_++; } uintptr_t PushSirt(mirror::Object* ref) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { uintptr_t tmp; if (ref == nullptr) { *cur_sirt_entry_ = StackReference(); tmp = reinterpret_cast(nullptr); } else { *cur_sirt_entry_ = StackReference::FromMirrorPtr(ref); tmp = reinterpret_cast(cur_sirt_entry_); } cur_sirt_entry_++; sirt_number_of_references_++; return tmp; } // Size of the part of the alloca that we actually need. size_t GetAllocaUsedSize() { return alloca_used_size_; } void* GetCodeReturn() { return code_return_; } private: uint32_t sirt_number_of_references_; StackReference* cur_sirt_entry_; StackIndirectReferenceTable* sirt_; uint32_t sirt_expected_refs_; uintptr_t* cur_gpr_reg_; uint32_t* cur_fpr_reg_; uintptr_t* cur_stack_arg_; // StackReference* top_of_sirt_; void* code_return_; size_t alloca_used_size_; BuildGenericJniFrameStateMachine sm_; DISALLOW_COPY_AND_ASSIGN(BuildGenericJniFrameVisitor); }; void BuildGenericJniFrameVisitor::Visit() { Primitive::Type type = GetParamPrimitiveType(); switch (type) { case Primitive::kPrimLong: { jlong long_arg; if (IsSplitLongOrDouble()) { long_arg = ReadSplitLongParam(); } else { long_arg = *reinterpret_cast(GetParamAddress()); } sm_.AdvanceLong(long_arg); break; } case Primitive::kPrimDouble: { uint64_t double_arg; if (IsSplitLongOrDouble()) { // Read into union so that we don't case to a double. double_arg = ReadSplitLongParam(); } else { double_arg = *reinterpret_cast(GetParamAddress()); } sm_.AdvanceDouble(double_arg); break; } case Primitive::kPrimNot: { StackReference* stack_ref = reinterpret_cast*>(GetParamAddress()); sm_.AdvanceSirt(stack_ref->AsMirrorPtr()); break; } case Primitive::kPrimFloat: sm_.AdvanceFloat(*reinterpret_cast(GetParamAddress())); break; case Primitive::kPrimBoolean: // Fall-through. case Primitive::kPrimByte: // Fall-through. case Primitive::kPrimChar: // Fall-through. case Primitive::kPrimShort: // Fall-through. case Primitive::kPrimInt: // Fall-through. sm_.AdvanceInt(*reinterpret_cast(GetParamAddress())); break; case Primitive::kPrimVoid: LOG(FATAL) << "UNREACHABLE"; break; } } void BuildGenericJniFrameVisitor::FinalizeSirt(Thread* self) { // Initialize padding entries. while (sirt_number_of_references_ < sirt_expected_refs_) { *cur_sirt_entry_ = StackReference(); cur_sirt_entry_++; sirt_number_of_references_++; } sirt_->SetNumberOfReferences(sirt_expected_refs_); DCHECK_NE(sirt_expected_refs_, 0U); // Install Sirt. self->PushSirt(sirt_); } extern "C" void* artFindNativeMethod(); uint64_t artQuickGenericJniEndJNIRef(Thread* self, uint32_t cookie, jobject l, jobject lock) { if (lock != nullptr) { return reinterpret_cast(JniMethodEndWithReferenceSynchronized(l, cookie, lock, self)); } else { return reinterpret_cast(JniMethodEndWithReference(l, cookie, self)); } } void artQuickGenericJniEndJNINonRef(Thread* self, uint32_t cookie, jobject lock) { if (lock != nullptr) { JniMethodEndSynchronized(cookie, lock, self); } else { JniMethodEnd(cookie, self); } } /* * Initializes an alloca region assumed to be directly below sp for a native call: * Create a Sirt and call stack and fill a mini stack with values to be pushed to registers. * The final element on the stack is a pointer to the native code. * * On entry, the stack has a standard callee-save frame above sp, and an alloca below it. * We need to fix this, as the Sirt needs to go into the callee-save frame. * * The return of this function denotes: * 1) How many bytes of the alloca can be released, if the value is non-negative. * 2) An error, if the value is negative. */ extern "C" ssize_t artQuickGenericJniTrampoline(Thread* self, mirror::ArtMethod** sp) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { mirror::ArtMethod* called = *sp; DCHECK(called->IsNative()) << PrettyMethod(called, true); // run the visitor MethodHelper mh(called); BuildGenericJniFrameVisitor visitor(&sp, called->IsStatic(), mh.GetShorty(), mh.GetShortyLength(), self); visitor.VisitArguments(); visitor.FinalizeSirt(self); // fix up managed-stack things in Thread self->SetTopOfStack(sp, 0); self->VerifyStack(); // Start JNI, save the cookie. uint32_t cookie; if (called->IsSynchronized()) { cookie = JniMethodStartSynchronized(visitor.GetFirstSirtEntry(), self); if (self->IsExceptionPending()) { self->PopSirt(); // A negative value denotes an error. return -1; } } else { cookie = JniMethodStart(self); } uint32_t* sp32 = reinterpret_cast(sp); *(sp32 - 1) = cookie; // Retrieve the stored native code. const void* nativeCode = called->GetNativeMethod(); // There are two cases for the content of nativeCode: // 1) Pointer to the native function. // 2) Pointer to the trampoline for native code binding. // In the second case, we need to execute the binding and continue with the actual native function // pointer. DCHECK(nativeCode != nullptr); if (nativeCode == GetJniDlsymLookupStub()) { nativeCode = artFindNativeMethod(); if (nativeCode == nullptr) { DCHECK(self->IsExceptionPending()); // There should be an exception pending now. // End JNI, as the assembly will move to deliver the exception. jobject lock = called->IsSynchronized() ? visitor.GetFirstSirtEntry() : nullptr; if (mh.GetShorty()[0] == 'L') { artQuickGenericJniEndJNIRef(self, cookie, nullptr, lock); } else { artQuickGenericJniEndJNINonRef(self, cookie, lock); } return -1; } // Note that the native code pointer will be automatically set by artFindNativeMethod(). } // Store the native code pointer in the stack at the right location. uintptr_t* code_pointer = reinterpret_cast(visitor.GetCodeReturn()); *code_pointer = reinterpret_cast(nativeCode); // 5K reserved, window_size + frame pointer used. size_t window_size = visitor.GetAllocaUsedSize(); return (5 * KB) - window_size - kPointerSize; } /* * Is called after the native JNI code. Responsible for cleanup (SIRT, saved state) and * unlocking. */ extern "C" uint64_t artQuickGenericJniEndTrampoline(Thread* self, mirror::ArtMethod** sp, jvalue result, uint64_t result_f) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { uint32_t* sp32 = reinterpret_cast(sp); mirror::ArtMethod* called = *sp; uint32_t cookie = *(sp32 - 1); jobject lock = nullptr; if (called->IsSynchronized()) { StackIndirectReferenceTable* table = reinterpret_cast( reinterpret_cast(sp) + kPointerSize); lock = reinterpret_cast(table->GetStackReference(0)); } MethodHelper mh(called); char return_shorty_char = mh.GetShorty()[0]; if (return_shorty_char == 'L') { return artQuickGenericJniEndJNIRef(self, cookie, result.l, lock); } else { artQuickGenericJniEndJNINonRef(self, cookie, lock); switch (return_shorty_char) { case 'F': // Fall-through. case 'D': return result_f; case 'Z': return result.z; case 'B': return result.b; case 'C': return result.c; case 'S': return result.s; case 'I': return result.i; case 'J': return result.j; case 'V': return 0; default: LOG(FATAL) << "Unexpected return shorty character " << return_shorty_char; return 0; } } } template static uint64_t artInvokeCommon(uint32_t method_idx, mirror::Object* this_object, mirror::ArtMethod* caller_method, Thread* self, mirror::ArtMethod** sp); template static uint64_t artInvokeCommon(uint32_t method_idx, mirror::Object* this_object, mirror::ArtMethod* caller_method, Thread* self, mirror::ArtMethod** sp) { mirror::ArtMethod* method = FindMethodFast(method_idx, this_object, caller_method, access_check, type); if (UNLIKELY(method == nullptr)) { FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs); const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()->GetDexFile(); uint32_t shorty_len; const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(method_idx), &shorty_len); { // Remember the args in case a GC happens in FindMethodFromCode. ScopedObjectAccessUnchecked soa(self->GetJniEnv()); RememberForGcArgumentVisitor visitor(sp, type == kStatic, shorty, shorty_len, &soa); visitor.VisitArguments(); method = FindMethodFromCode(method_idx, this_object, caller_method, self); visitor.FixupReferences(); } if (UNLIKELY(method == NULL)) { CHECK(self->IsExceptionPending()); return 0; // failure } } DCHECK(!self->IsExceptionPending()); const void* code = method->GetEntryPointFromQuickCompiledCode(); // When we return, the caller will branch to this address, so it had better not be 0! DCHECK(code != nullptr) << "Code was NULL in method: " << PrettyMethod(method) << " location: " << MethodHelper(method).GetDexFile().GetLocation(); #ifdef __LP64__ UNIMPLEMENTED(FATAL); return 0; #else uint32_t method_uint = reinterpret_cast(method); uint64_t code_uint = reinterpret_cast(code); uint64_t result = ((code_uint << 32) | method_uint); return result; #endif } // Explicit artInvokeCommon template function declarations to please analysis tool. #define EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(type, access_check) \ template SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) \ uint64_t artInvokeCommon(uint32_t method_idx, \ mirror::Object* this_object, \ mirror::ArtMethod* caller_method, \ Thread* self, mirror::ArtMethod** sp) \ EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, false); EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, true); EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, false); EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, true); EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, false); EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, true); EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, false); EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, true); EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, false); EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, true); #undef EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL // See comments in runtime_support_asm.S extern "C" uint64_t artInvokeInterfaceTrampolineWithAccessCheck(uint32_t method_idx, mirror::Object* this_object, mirror::ArtMethod* caller_method, Thread* self, mirror::ArtMethod** sp) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return artInvokeCommon(method_idx, this_object, caller_method, self, sp); } extern "C" uint64_t artInvokeDirectTrampolineWithAccessCheck(uint32_t method_idx, mirror::Object* this_object, mirror::ArtMethod* caller_method, Thread* self, mirror::ArtMethod** sp) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return artInvokeCommon(method_idx, this_object, caller_method, self, sp); } extern "C" uint64_t artInvokeStaticTrampolineWithAccessCheck(uint32_t method_idx, mirror::Object* this_object, mirror::ArtMethod* caller_method, Thread* self, mirror::ArtMethod** sp) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return artInvokeCommon(method_idx, this_object, caller_method, self, sp); } extern "C" uint64_t artInvokeSuperTrampolineWithAccessCheck(uint32_t method_idx, mirror::Object* this_object, mirror::ArtMethod* caller_method, Thread* self, mirror::ArtMethod** sp) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return artInvokeCommon(method_idx, this_object, caller_method, self, sp); } extern "C" uint64_t artInvokeVirtualTrampolineWithAccessCheck(uint32_t method_idx, mirror::Object* this_object, mirror::ArtMethod* caller_method, Thread* self, mirror::ArtMethod** sp) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return artInvokeCommon(method_idx, this_object, caller_method, self, sp); } // Determine target of interface dispatch. This object is known non-null. extern "C" uint64_t artInvokeInterfaceTrampoline(mirror::ArtMethod* interface_method, mirror::Object* this_object, mirror::ArtMethod* caller_method, Thread* self, mirror::ArtMethod** sp) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { mirror::ArtMethod* method; if (LIKELY(interface_method->GetDexMethodIndex() != DexFile::kDexNoIndex)) { method = this_object->GetClass()->FindVirtualMethodForInterface(interface_method); if (UNLIKELY(method == NULL)) { FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs); ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch(interface_method, this_object, caller_method); return 0; // Failure. } } else { FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs); DCHECK(interface_method == Runtime::Current()->GetResolutionMethod()); // Determine method index from calling dex instruction. #if defined(__arm__) // On entry the stack pointed by sp is: // | argN | | // | ... | | // | arg4 | | // | arg3 spill | | Caller's frame // | arg2 spill | | // | arg1 spill | | // | Method* | --- // | LR | // | ... | callee saves // | R3 | arg3 // | R2 | arg2 // | R1 | arg1 // | R0 | // | Method* | <- sp DCHECK_EQ(48U, Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs)->GetFrameSizeInBytes()); uintptr_t* regs = reinterpret_cast(reinterpret_cast(sp) + kPointerSize); uintptr_t caller_pc = regs[10]; #elif defined(__i386__) // On entry the stack pointed by sp is: // | argN | | // | ... | | // | arg4 | | // | arg3 spill | | Caller's frame // | arg2 spill | | // | arg1 spill | | // | Method* | --- // | Return | // | EBP,ESI,EDI | callee saves // | EBX | arg3 // | EDX | arg2 // | ECX | arg1 // | EAX/Method* | <- sp DCHECK_EQ(32U, Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs)->GetFrameSizeInBytes()); uintptr_t* regs = reinterpret_cast(reinterpret_cast(sp)); uintptr_t caller_pc = regs[7]; #elif defined(__mips__) // On entry the stack pointed by sp is: // | argN | | // | ... | | // | arg4 | | // | arg3 spill | | Caller's frame // | arg2 spill | | // | arg1 spill | | // | Method* | --- // | RA | // | ... | callee saves // | A3 | arg3 // | A2 | arg2 // | A1 | arg1 // | A0/Method* | <- sp DCHECK_EQ(64U, Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs)->GetFrameSizeInBytes()); uintptr_t* regs = reinterpret_cast(reinterpret_cast(sp)); uintptr_t caller_pc = regs[15]; #else UNIMPLEMENTED(FATAL); uintptr_t caller_pc = 0; #endif uint32_t dex_pc = caller_method->ToDexPc(caller_pc); const DexFile::CodeItem* code = MethodHelper(caller_method).GetCodeItem(); CHECK_LT(dex_pc, code->insns_size_in_code_units_); const Instruction* instr = Instruction::At(&code->insns_[dex_pc]); Instruction::Code instr_code = instr->Opcode(); CHECK(instr_code == Instruction::INVOKE_INTERFACE || instr_code == Instruction::INVOKE_INTERFACE_RANGE) << "Unexpected call into interface trampoline: " << instr->DumpString(NULL); uint32_t dex_method_idx; if (instr_code == Instruction::INVOKE_INTERFACE) { dex_method_idx = instr->VRegB_35c(); } else { DCHECK_EQ(instr_code, Instruction::INVOKE_INTERFACE_RANGE); dex_method_idx = instr->VRegB_3rc(); } const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()->GetDexFile(); uint32_t shorty_len; const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(dex_method_idx), &shorty_len); { // Remember the args in case a GC happens in FindMethodFromCode. ScopedObjectAccessUnchecked soa(self->GetJniEnv()); RememberForGcArgumentVisitor visitor(sp, false, shorty, shorty_len, &soa); visitor.VisitArguments(); method = FindMethodFromCode(dex_method_idx, this_object, caller_method, self); visitor.FixupReferences(); } if (UNLIKELY(method == nullptr)) { CHECK(self->IsExceptionPending()); return 0; // Failure. } } const void* code = method->GetEntryPointFromQuickCompiledCode(); // When we return, the caller will branch to this address, so it had better not be 0! DCHECK(code != nullptr) << "Code was NULL in method: " << PrettyMethod(method) << " location: " << MethodHelper(method).GetDexFile().GetLocation(); #ifdef __LP64__ UNIMPLEMENTED(FATAL); return 0; #else uint32_t method_uint = reinterpret_cast(method); uint64_t code_uint = reinterpret_cast(code); uint64_t result = ((code_uint << 32) | method_uint); return result; #endif } } // namespace art