/* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "fault_handler.h" #include #include #include #include "art_method-inl.h" #include "base/stl_util.h" #include "mirror/class.h" #include "sigchain.h" #include "thread-inl.h" #include "verify_object-inl.h" // Note on nested signal support // ----------------------------- // // Typically a signal handler should not need to deal with signals that occur within it. // However, when a SIGSEGV occurs that is in generated code and is not one of the // handled signals (implicit checks), we call a function to try to dump the stack // to the log. This enhances the debugging experience but may have the side effect // that it may not work. If the cause of the original SIGSEGV is a corrupted stack or other // memory region, the stack backtrace code may run into trouble and may either crash // or fail with an abort (SIGABRT). In either case we don't want that (new) signal to // mask the original signal and thus prevent useful debug output from being presented. // // In order to handle this situation, before we call the stack tracer we do the following: // // 1. shutdown the fault manager so that we are talking to the real signal management // functions rather than those in sigchain. // 2. use pthread_sigmask to allow SIGSEGV and SIGABRT signals to be delivered to the // thread running the signal handler. // 3. set the handler for SIGSEGV and SIGABRT to a secondary signal handler. // 4. save the thread's state to the TLS of the current thread using 'setjmp' // // We then call the stack tracer and one of two things may happen: // a. it completes successfully // b. it crashes and a signal is raised. // // In the former case, we fall through and everything is fine. In the latter case // our secondary signal handler gets called in a signal context. This results in // a call to FaultManager::HandledNestedSignal(), an archirecture specific function // whose purpose is to call 'longjmp' on the jmp_buf saved in the TLS of the current // thread. This results in a return with a non-zero value from 'setjmp'. We detect this // and write something to the log to tell the user that it happened. // // Regardless of how we got there, we reach the code after the stack tracer and we // restore the signal states to their original values, reinstate the fault manager (thus // reestablishing the signal chain) and continue. // This is difficult to test with a runtime test. To invoke the nested signal code // on any signal, uncomment the following line and run something that throws a // NullPointerException. // #define TEST_NESTED_SIGNAL namespace art { // Static fault manger object accessed by signal handler. FaultManager fault_manager; extern "C" __attribute__((visibility("default"))) void art_sigsegv_fault() { // Set a breakpoint here to be informed when a SIGSEGV is unhandled by ART. VLOG(signals)<< "Caught unknown SIGSEGV in ART fault handler - chaining to next handler."; } // Signal handler called on SIGSEGV. static void art_fault_handler(int sig, siginfo_t* info, void* context) { fault_manager.HandleFault(sig, info, context); } // Signal handler for dealing with a nested signal. static void art_nested_signal_handler(int sig, siginfo_t* info, void* context) { fault_manager.HandleNestedSignal(sig, info, context); } FaultManager::FaultManager() : initialized_(false) { sigaction(SIGSEGV, nullptr, &oldaction_); } FaultManager::~FaultManager() { } static void SetUpArtAction(struct sigaction* action) { action->sa_sigaction = art_fault_handler; sigemptyset(&action->sa_mask); action->sa_flags = SA_SIGINFO | SA_ONSTACK; #if !defined(__APPLE__) && !defined(__mips__) action->sa_restorer = nullptr; #endif } void FaultManager::EnsureArtActionInFrontOfSignalChain() { if (initialized_) { struct sigaction action; SetUpArtAction(&action); EnsureFrontOfChain(SIGSEGV, &action); } else { LOG(WARNING) << "Can't call " << __FUNCTION__ << " due to unitialized fault manager"; } } void FaultManager::Init() { CHECK(!initialized_); struct sigaction action; SetUpArtAction(&action); // Set our signal handler now. int e = sigaction(SIGSEGV, &action, &oldaction_); if (e != 0) { VLOG(signals) << "Failed to claim SEGV: " << strerror(errno); } // Make sure our signal handler is called before any user handlers. ClaimSignalChain(SIGSEGV, &oldaction_); initialized_ = true; } void FaultManager::Release() { if (initialized_) { UnclaimSignalChain(SIGSEGV); initialized_ = false; } } void FaultManager::Shutdown() { if (initialized_) { Release(); // Free all handlers. STLDeleteElements(&generated_code_handlers_); STLDeleteElements(&other_handlers_); } } void FaultManager::HandleFault(int sig, siginfo_t* info, void* context) { // BE CAREFUL ALLOCATING HERE INCLUDING USING LOG(...) // // If malloc calls abort, it will be holding its lock. // If the handler tries to call malloc, it will deadlock. VLOG(signals) << "Handling fault"; if (IsInGeneratedCode(info, context, true)) { VLOG(signals) << "in generated code, looking for handler"; for (const auto& handler : generated_code_handlers_) { VLOG(signals) << "invoking Action on handler " << handler; if (handler->Action(sig, info, context)) { #ifdef TEST_NESTED_SIGNAL // In test mode we want to fall through to stack trace handler // on every signal (in reality this will cause a crash on the first // signal). break; #else // We have handled a signal so it's time to return from the // signal handler to the appropriate place. return; #endif } } } // We hit a signal we didn't handle. This might be something for which // we can give more information about so call all registered handlers to see // if it is. Thread* self = Thread::Current(); // If ART is not running, or the thread is not attached to ART pass the // signal on to the next handler in the chain. if (self == nullptr || Runtime::Current() == nullptr || !Runtime::Current()->IsStarted()) { InvokeUserSignalHandler(sig, info, context); return; } // Now set up the nested signal handler. // TODO: add SIGSEGV back to the nested signals when we can handle running out stack gracefully. static const int handled_nested_signals[] = {SIGABRT}; constexpr size_t num_handled_nested_signals = arraysize(handled_nested_signals); // Release the fault manager so that it will remove the signal chain for // SIGSEGV and we call the real sigaction. fault_manager.Release(); // The action for SIGSEGV should be the default handler now. // Unblock the signals we allow so that they can be delivered in the signal handler. sigset_t sigset; sigemptyset(&sigset); for (int signal : handled_nested_signals) { sigaddset(&sigset, signal); } pthread_sigmask(SIG_UNBLOCK, &sigset, nullptr); // If we get a signal in this code we want to invoke our nested signal // handler. struct sigaction action; struct sigaction oldactions[num_handled_nested_signals]; action.sa_sigaction = art_nested_signal_handler; // Explicitly mask out SIGSEGV and SIGABRT from the nested signal handler. This // should be the default but we definitely don't want these happening in our // nested signal handler. sigemptyset(&action.sa_mask); for (int signal : handled_nested_signals) { sigaddset(&action.sa_mask, signal); } action.sa_flags = SA_SIGINFO | SA_ONSTACK; #if !defined(__APPLE__) && !defined(__mips__) action.sa_restorer = nullptr; #endif // Catch handled signals to invoke our nested handler. bool success = true; for (size_t i = 0; i < num_handled_nested_signals; ++i) { success = sigaction(handled_nested_signals[i], &action, &oldactions[i]) == 0; if (!success) { PLOG(ERROR) << "Unable to set up nested signal handler"; break; } } if (success) { // Save the current state and call the handlers. If anything causes a signal // our nested signal handler will be invoked and this will longjmp to the saved // state. if (setjmp(*self->GetNestedSignalState()) == 0) { for (const auto& handler : other_handlers_) { if (handler->Action(sig, info, context)) { // Restore the signal handlers, reinit the fault manager and return. Signal was // handled. for (size_t i = 0; i < num_handled_nested_signals; ++i) { success = sigaction(handled_nested_signals[i], &oldactions[i], nullptr) == 0; if (!success) { PLOG(ERROR) << "Unable to restore signal handler"; } } fault_manager.Init(); return; } } } else { LOG(ERROR) << "Nested signal detected - original signal being reported"; } // Restore the signal handlers. for (size_t i = 0; i < num_handled_nested_signals; ++i) { success = sigaction(handled_nested_signals[i], &oldactions[i], nullptr) == 0; if (!success) { PLOG(ERROR) << "Unable to restore signal handler"; } } } // Now put the fault manager back in place. fault_manager.Init(); // Set a breakpoint in this function to catch unhandled signals. art_sigsegv_fault(); // Pass this on to the next handler in the chain, or the default if none. InvokeUserSignalHandler(sig, info, context); } void FaultManager::AddHandler(FaultHandler* handler, bool generated_code) { DCHECK(initialized_); if (generated_code) { generated_code_handlers_.push_back(handler); } else { other_handlers_.push_back(handler); } } void FaultManager::RemoveHandler(FaultHandler* handler) { auto it = std::find(generated_code_handlers_.begin(), generated_code_handlers_.end(), handler); if (it != generated_code_handlers_.end()) { generated_code_handlers_.erase(it); return; } auto it2 = std::find(other_handlers_.begin(), other_handlers_.end(), handler); if (it2 != other_handlers_.end()) { other_handlers_.erase(it); return; } LOG(FATAL) << "Attempted to remove non existent handler " << handler; } // This function is called within the signal handler. It checks that // the mutator_lock is held (shared). No annotalysis is done. bool FaultManager::IsInGeneratedCode(siginfo_t* siginfo, void* context, bool check_dex_pc) { // We can only be running Java code in the current thread if it // is in Runnable state. VLOG(signals) << "Checking for generated code"; Thread* thread = Thread::Current(); if (thread == nullptr) { VLOG(signals) << "no current thread"; return false; } ThreadState state = thread->GetState(); if (state != kRunnable) { VLOG(signals) << "not runnable"; return false; } // Current thread is runnable. // Make sure it has the mutator lock. if (!Locks::mutator_lock_->IsSharedHeld(thread)) { VLOG(signals) << "no lock"; return false; } ArtMethod* method_obj = 0; uintptr_t return_pc = 0; uintptr_t sp = 0; // Get the architecture specific method address and return address. These // are in architecture specific files in arch//fault_handler_. GetMethodAndReturnPcAndSp(siginfo, context, &method_obj, &return_pc, &sp); // If we don't have a potential method, we're outta here. VLOG(signals) << "potential method: " << method_obj; // TODO: Check linear alloc and image. if (method_obj == 0 || !IsAligned(method_obj)) { VLOG(signals) << "no method"; return false; } // Verify that the potential method is indeed a method. // TODO: check the GC maps to make sure it's an object. // Check that the class pointer inside the object is not null and is aligned. // TODO: Method might be not a heap address, and GetClass could fault. // No read barrier because method_obj may not be a real object. mirror::Class* cls = method_obj->GetDeclaringClassNoBarrier(); if (cls == nullptr) { VLOG(signals) << "not a class"; return false; } if (!IsAligned(cls)) { VLOG(signals) << "not aligned"; return false; } if (!VerifyClassClass(cls)) { VLOG(signals) << "not a class class"; return false; } // We can be certain that this is a method now. Check if we have a GC map // at the return PC address. if (true || kIsDebugBuild) { VLOG(signals) << "looking for dex pc for return pc " << std::hex << return_pc; const void* code = Runtime::Current()->GetInstrumentation()->GetQuickCodeFor(method_obj, sizeof(void*)); uint32_t sought_offset = return_pc - reinterpret_cast(code); VLOG(signals) << "pc offset: " << std::hex << sought_offset; } uint32_t dexpc = method_obj->ToDexPc(return_pc, false); VLOG(signals) << "dexpc: " << dexpc; return !check_dex_pc || dexpc != DexFile::kDexNoIndex; } FaultHandler::FaultHandler(FaultManager* manager) : manager_(manager) { } // // Null pointer fault handler // NullPointerHandler::NullPointerHandler(FaultManager* manager) : FaultHandler(manager) { manager_->AddHandler(this, true); } // // Suspension fault handler // SuspensionHandler::SuspensionHandler(FaultManager* manager) : FaultHandler(manager) { manager_->AddHandler(this, true); } // // Stack overflow fault handler // StackOverflowHandler::StackOverflowHandler(FaultManager* manager) : FaultHandler(manager) { manager_->AddHandler(this, true); } // // Stack trace handler, used to help get a stack trace from SIGSEGV inside of compiled code. // JavaStackTraceHandler::JavaStackTraceHandler(FaultManager* manager) : FaultHandler(manager) { manager_->AddHandler(this, false); } bool JavaStackTraceHandler::Action(int sig, siginfo_t* siginfo, void* context) { // Make sure that we are in the generated code, but we may not have a dex pc. UNUSED(sig); #ifdef TEST_NESTED_SIGNAL bool in_generated_code = true; #else bool in_generated_code = manager_->IsInGeneratedCode(siginfo, context, false); #endif if (in_generated_code) { LOG(ERROR) << "Dumping java stack trace for crash in generated code"; ArtMethod* method = nullptr; uintptr_t return_pc = 0; uintptr_t sp = 0; Thread* self = Thread::Current(); manager_->GetMethodAndReturnPcAndSp(siginfo, context, &method, &return_pc, &sp); // Inside of generated code, sp[0] is the method, so sp is the frame. self->SetTopOfStack(reinterpret_cast(sp)); #ifdef TEST_NESTED_SIGNAL // To test the nested signal handler we raise a signal here. This will cause the // nested signal handler to be called and perform a longjmp back to the setjmp // above. abort(); #endif self->DumpJavaStack(LOG(ERROR)); } return false; // Return false since we want to propagate the fault to the main signal handler. } } // namespace art