/* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "fault_handler.h" #include #include #include "base/macros.h" #include "globals.h" #include "base/logging.h" #include "base/hex_dump.h" #include "thread.h" #include "mirror/art_method-inl.h" #include "mirror/class-inl.h" #include "mirror/dex_cache.h" #include "mirror/object_array-inl.h" #include "mirror/object-inl.h" #include "object_utils.h" #include "scoped_thread_state_change.h" #ifdef HAVE_ANDROID_OS #include "sigchain.h" #endif #include "verify_object-inl.h" namespace art { // Static fault manger object accessed by signal handler. FaultManager fault_manager; extern "C" { void art_sigsegv_fault() { // Set a breakpoint here to be informed when a SIGSEGV is unhandled by ART. VLOG(signals)<< "Caught unknown SIGSEGV in ART fault handler - chaining to next handler."; } } // Signal handler called on SIGSEGV. static void art_fault_handler(int sig, siginfo_t* info, void* context) { fault_manager.HandleFault(sig, info, context); } FaultManager::FaultManager() { sigaction(SIGSEGV, nullptr, &oldaction_); } FaultManager::~FaultManager() { #ifdef HAVE_ANDROID_OS UnclaimSignalChain(SIGSEGV); #endif sigaction(SIGSEGV, &oldaction_, nullptr); // Restore old handler. } void FaultManager::Init() { struct sigaction action; action.sa_sigaction = art_fault_handler; sigemptyset(&action.sa_mask); action.sa_flags = SA_SIGINFO | SA_ONSTACK; #if !defined(__APPLE__) && !defined(__mips__) action.sa_restorer = nullptr; #endif // Set our signal handler now. sigaction(SIGSEGV, &action, &oldaction_); #ifdef HAVE_ANDROID_OS // Make sure our signal handler is called before any user handlers. ClaimSignalChain(SIGSEGV, &oldaction_); #endif } void FaultManager::HandleFault(int sig, siginfo_t* info, void* context) { // BE CAREFUL ALLOCATING HERE INCLUDING USING LOG(...) // // If malloc calls abort, it will be holding its lock. // If the handler tries to call malloc, it will deadlock. VLOG(signals) << "Handling fault"; if (IsInGeneratedCode(context, true)) { VLOG(signals) << "in generated code, looking for handler"; for (const auto& handler : generated_code_handlers_) { VLOG(signals) << "invoking Action on handler " << handler; if (handler->Action(sig, info, context)) { return; } } } for (const auto& handler : other_handlers_) { if (handler->Action(sig, info, context)) { return; } } art_sigsegv_fault(); #ifdef HAVE_ANDROID_OS InvokeUserSignalHandler(sig, info, context); #else oldaction_.sa_sigaction(sig, info, context); #endif } void FaultManager::AddHandler(FaultHandler* handler, bool generated_code) { if (generated_code) { generated_code_handlers_.push_back(handler); } else { other_handlers_.push_back(handler); } } void FaultManager::RemoveHandler(FaultHandler* handler) { auto it = std::find(generated_code_handlers_.begin(), generated_code_handlers_.end(), handler); if (it != generated_code_handlers_.end()) { generated_code_handlers_.erase(it); return; } auto it2 = std::find(other_handlers_.begin(), other_handlers_.end(), handler); if (it2 != other_handlers_.end()) { other_handlers_.erase(it); return; } LOG(FATAL) << "Attempted to remove non existent handler " << handler; } // This function is called within the signal handler. It checks that // the mutator_lock is held (shared). No annotalysis is done. bool FaultManager::IsInGeneratedCode(void* context, bool check_dex_pc) { // We can only be running Java code in the current thread if it // is in Runnable state. VLOG(signals) << "Checking for generated code"; Thread* thread = Thread::Current(); if (thread == nullptr) { VLOG(signals) << "no current thread"; return false; } ThreadState state = thread->GetState(); if (state != kRunnable) { VLOG(signals) << "not runnable"; return false; } // Current thread is runnable. // Make sure it has the mutator lock. if (!Locks::mutator_lock_->IsSharedHeld(thread)) { VLOG(signals) << "no lock"; return false; } mirror::ArtMethod* method_obj = 0; uintptr_t return_pc = 0; uintptr_t sp = 0; // Get the architecture specific method address and return address. These // are in architecture specific files in arch//fault_handler_. GetMethodAndReturnPCAndSP(context, &method_obj, &return_pc, &sp); // If we don't have a potential method, we're outta here. VLOG(signals) << "potential method: " << method_obj; if (method_obj == 0 || !IsAligned(method_obj)) { VLOG(signals) << "no method"; return false; } // Verify that the potential method is indeed a method. // TODO: check the GC maps to make sure it's an object. // Check that the class pointer inside the object is not null and is aligned. // TODO: Method might be not a heap address, and GetClass could fault. mirror::Class* cls = method_obj->GetClass(); if (cls == nullptr) { VLOG(signals) << "not a class"; return false; } if (!IsAligned(cls)) { VLOG(signals) << "not aligned"; return false; } if (!VerifyClassClass(cls)) { VLOG(signals) << "not a class class"; return false; } // Now make sure the class is a mirror::ArtMethod. if (!cls->IsArtMethodClass()) { VLOG(signals) << "not a method"; return false; } // We can be certain that this is a method now. Check if we have a GC map // at the return PC address. if (true || kIsDebugBuild) { VLOG(signals) << "looking for dex pc for return pc " << std::hex << return_pc; const void* code = Runtime::Current()->GetInstrumentation()->GetQuickCodeFor(method_obj); uint32_t sought_offset = return_pc - reinterpret_cast(code); VLOG(signals) << "pc offset: " << std::hex << sought_offset; } uint32_t dexpc = method_obj->ToDexPc(return_pc, false); VLOG(signals) << "dexpc: " << dexpc; return !check_dex_pc || dexpc != DexFile::kDexNoIndex; } FaultHandler::FaultHandler(FaultManager* manager) : manager_(manager) { } // // Null pointer fault handler // NullPointerHandler::NullPointerHandler(FaultManager* manager) : FaultHandler(manager) { manager_->AddHandler(this, true); } // // Suspension fault handler // SuspensionHandler::SuspensionHandler(FaultManager* manager) : FaultHandler(manager) { manager_->AddHandler(this, true); } // // Stack overflow fault handler // StackOverflowHandler::StackOverflowHandler(FaultManager* manager) : FaultHandler(manager) { manager_->AddHandler(this, true); } // // Stack trace handler, used to help get a stack trace from SIGSEGV inside of compiled code. // JavaStackTraceHandler::JavaStackTraceHandler(FaultManager* manager) : FaultHandler(manager) { manager_->AddHandler(this, false); } bool JavaStackTraceHandler::Action(int sig, siginfo_t* siginfo, void* context) { // Make sure that we are in the generated code, but we may not have a dex pc. if (manager_->IsInGeneratedCode(context, false)) { LOG(ERROR) << "Dumping java stack trace for crash in generated code"; mirror::ArtMethod* method = nullptr; uintptr_t return_pc = 0; uintptr_t sp = 0; manager_->GetMethodAndReturnPCAndSP(context, &method, &return_pc, &sp); Thread* self = Thread::Current(); // Inside of generated code, sp[0] is the method, so sp is the frame. StackReference* frame = reinterpret_cast*>(sp); self->SetTopOfStack(frame, 0); // Since we don't necessarily have a dex pc, pass in 0. self->DumpJavaStack(LOG(ERROR)); } return false; // Return false since we want to propagate the fault to the main signal handler. } } // namespace art