/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "mark_sweep.h" #include #include #include #include #include "base/bounded_fifo.h" #include "base/logging.h" #include "base/macros.h" #include "base/mutex-inl.h" #include "base/timing_logger.h" #include "gc/accounting/card_table-inl.h" #include "gc/accounting/heap_bitmap-inl.h" #include "gc/accounting/mod_union_table.h" #include "gc/accounting/space_bitmap-inl.h" #include "gc/heap.h" #include "gc/reference_processor.h" #include "gc/space/image_space.h" #include "gc/space/large_object_space.h" #include "gc/space/space-inl.h" #include "mark_sweep-inl.h" #include "mirror/art_field-inl.h" #include "mirror/object-inl.h" #include "runtime.h" #include "scoped_thread_state_change.h" #include "thread-inl.h" #include "thread_list.h" using ::art::mirror::Object; namespace art { namespace gc { namespace collector { // Performance options. static constexpr bool kUseRecursiveMark = false; static constexpr bool kUseMarkStackPrefetch = true; static constexpr size_t kSweepArrayChunkFreeSize = 1024; static constexpr bool kPreCleanCards = true; // Parallelism options. static constexpr bool kParallelCardScan = true; static constexpr bool kParallelRecursiveMark = true; // Don't attempt to parallelize mark stack processing unless the mark stack is at least n // elements. This is temporary until we reduce the overhead caused by allocating tasks, etc.. Not // having this can add overhead in ProcessReferences since we may end up doing many calls of // ProcessMarkStack with very small mark stacks. static constexpr size_t kMinimumParallelMarkStackSize = 128; static constexpr bool kParallelProcessMarkStack = true; // Profiling and information flags. static constexpr bool kProfileLargeObjects = false; static constexpr bool kMeasureOverhead = false; static constexpr bool kCountTasks = false; static constexpr bool kCountJavaLangRefs = false; static constexpr bool kCountMarkedObjects = false; // Turn off kCheckLocks when profiling the GC since it slows the GC down by up to 40%. static constexpr bool kCheckLocks = kDebugLocking; static constexpr bool kVerifyRootsMarked = kIsDebugBuild; // If true, revoke the rosalloc thread-local buffers at the // checkpoint, as opposed to during the pause. static constexpr bool kRevokeRosAllocThreadLocalBuffersAtCheckpoint = true; void MarkSweep::BindBitmaps() { TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); // Mark all of the spaces we never collect as immune. for (const auto& space : GetHeap()->GetContinuousSpaces()) { if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect) { CHECK(immune_region_.AddContinuousSpace(space)) << "Failed to add space " << *space; } } } MarkSweep::MarkSweep(Heap* heap, bool is_concurrent, const std::string& name_prefix) : GarbageCollector(heap, name_prefix + (is_concurrent ? "concurrent mark sweep": "mark sweep")), current_space_bitmap_(nullptr), mark_bitmap_(nullptr), mark_stack_(nullptr), gc_barrier_(new Barrier(0)), mark_stack_lock_("mark sweep mark stack lock", kMarkSweepMarkStackLock), is_concurrent_(is_concurrent), live_stack_freeze_size_(0) { std::string error_msg; MemMap* mem_map = MemMap::MapAnonymous( "mark sweep sweep array free buffer", nullptr, RoundUp(kSweepArrayChunkFreeSize * sizeof(mirror::Object*), kPageSize), PROT_READ | PROT_WRITE, false, &error_msg); CHECK(mem_map != nullptr) << "Couldn't allocate sweep array free buffer: " << error_msg; sweep_array_free_buffer_mem_map_.reset(mem_map); } void MarkSweep::InitializePhase() { TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); mark_stack_ = heap_->GetMarkStack(); DCHECK(mark_stack_ != nullptr); immune_region_.Reset(); class_count_.StoreRelaxed(0); array_count_.StoreRelaxed(0); other_count_.StoreRelaxed(0); large_object_test_.StoreRelaxed(0); large_object_mark_.StoreRelaxed(0); overhead_time_ .StoreRelaxed(0); work_chunks_created_.StoreRelaxed(0); work_chunks_deleted_.StoreRelaxed(0); reference_count_.StoreRelaxed(0); mark_null_count_.StoreRelaxed(0); mark_immune_count_.StoreRelaxed(0); mark_fastpath_count_.StoreRelaxed(0); mark_slowpath_count_.StoreRelaxed(0); { // TODO: I don't think we should need heap bitmap lock to Get the mark bitmap. ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); mark_bitmap_ = heap_->GetMarkBitmap(); } if (!GetCurrentIteration()->GetClearSoftReferences()) { // Always clear soft references if a non-sticky collection. GetCurrentIteration()->SetClearSoftReferences(GetGcType() != collector::kGcTypeSticky); } } void MarkSweep::RunPhases() { Thread* self = Thread::Current(); InitializePhase(); Locks::mutator_lock_->AssertNotHeld(self); if (IsConcurrent()) { GetHeap()->PreGcVerification(this); { ReaderMutexLock mu(self, *Locks::mutator_lock_); MarkingPhase(); } ScopedPause pause(this); GetHeap()->PrePauseRosAllocVerification(this); PausePhase(); RevokeAllThreadLocalBuffers(); } else { ScopedPause pause(this); GetHeap()->PreGcVerificationPaused(this); MarkingPhase(); GetHeap()->PrePauseRosAllocVerification(this); PausePhase(); RevokeAllThreadLocalBuffers(); } { // Sweeping always done concurrently, even for non concurrent mark sweep. ReaderMutexLock mu(self, *Locks::mutator_lock_); ReclaimPhase(); } GetHeap()->PostGcVerification(this); FinishPhase(); } void MarkSweep::ProcessReferences(Thread* self) { WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); GetHeap()->GetReferenceProcessor()->ProcessReferences( true, GetTimings(), GetCurrentIteration()->GetClearSoftReferences(), &HeapReferenceMarkedCallback, &MarkObjectCallback, &ProcessMarkStackCallback, this); } void MarkSweep::PausePhase() { TimingLogger::ScopedTiming t("(Paused)PausePhase", GetTimings()); Thread* self = Thread::Current(); Locks::mutator_lock_->AssertExclusiveHeld(self); if (IsConcurrent()) { // Handle the dirty objects if we are a concurrent GC. WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); // Re-mark root set. ReMarkRoots(); // Scan dirty objects, this is only required if we are not doing concurrent GC. RecursiveMarkDirtyObjects(true, accounting::CardTable::kCardDirty); } { TimingLogger::ScopedTiming t2("SwapStacks", GetTimings()); WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); heap_->SwapStacks(self); live_stack_freeze_size_ = heap_->GetLiveStack()->Size(); // Need to revoke all the thread local allocation stacks since we just swapped the allocation // stacks and don't want anybody to allocate into the live stack. RevokeAllThreadLocalAllocationStacks(self); } heap_->PreSweepingGcVerification(this); // Disallow new system weaks to prevent a race which occurs when someone adds a new system // weak before we sweep them. Since this new system weak may not be marked, the GC may // incorrectly sweep it. This also fixes a race where interning may attempt to return a strong // reference to a string that is about to be swept. Runtime::Current()->DisallowNewSystemWeaks(); // Enable the reference processing slow path, needs to be done with mutators paused since there // is no lock in the GetReferent fast path. GetHeap()->GetReferenceProcessor()->EnableSlowPath(); } void MarkSweep::PreCleanCards() { // Don't do this for non concurrent GCs since they don't have any dirty cards. if (kPreCleanCards && IsConcurrent()) { TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); Thread* self = Thread::Current(); CHECK(!Locks::mutator_lock_->IsExclusiveHeld(self)); // Process dirty cards and add dirty cards to mod union tables, also ages cards. heap_->ProcessCards(GetTimings(), false); // The checkpoint root marking is required to avoid a race condition which occurs if the // following happens during a reference write: // 1. mutator dirties the card (write barrier) // 2. GC ages the card (the above ProcessCards call) // 3. GC scans the object (the RecursiveMarkDirtyObjects call below) // 4. mutator writes the value (corresponding to the write barrier in 1.) // This causes the GC to age the card but not necessarily mark the reference which the mutator // wrote into the object stored in the card. // Having the checkpoint fixes this issue since it ensures that the card mark and the // reference write are visible to the GC before the card is scanned (this is due to locks being // acquired / released in the checkpoint code). // The other roots are also marked to help reduce the pause. MarkRootsCheckpoint(self, false); MarkNonThreadRoots(); MarkConcurrentRoots( static_cast(kVisitRootFlagClearRootLog | kVisitRootFlagNewRoots)); // Process the newly aged cards. RecursiveMarkDirtyObjects(false, accounting::CardTable::kCardDirty - 1); // TODO: Empty allocation stack to reduce the number of objects we need to test / mark as live // in the next GC. } } void MarkSweep::RevokeAllThreadLocalAllocationStacks(Thread* self) { if (kUseThreadLocalAllocationStack) { TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); Locks::mutator_lock_->AssertExclusiveHeld(self); heap_->RevokeAllThreadLocalAllocationStacks(self); } } void MarkSweep::MarkingPhase() { TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); Thread* self = Thread::Current(); BindBitmaps(); FindDefaultSpaceBitmap(); // Process dirty cards and add dirty cards to mod union tables. heap_->ProcessCards(GetTimings(), false); WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); MarkRoots(self); MarkReachableObjects(); // Pre-clean dirtied cards to reduce pauses. PreCleanCards(); } void MarkSweep::UpdateAndMarkModUnion() { for (const auto& space : heap_->GetContinuousSpaces()) { if (immune_region_.ContainsSpace(space)) { const char* name = space->IsZygoteSpace() ? "UpdateAndMarkZygoteModUnionTable" : "UpdateAndMarkImageModUnionTable"; TimingLogger::ScopedTiming t(name, GetTimings()); accounting::ModUnionTable* mod_union_table = heap_->FindModUnionTableFromSpace(space); CHECK(mod_union_table != nullptr); mod_union_table->UpdateAndMarkReferences(MarkHeapReferenceCallback, this); } } } void MarkSweep::MarkReachableObjects() { UpdateAndMarkModUnion(); // Recursively mark all the non-image bits set in the mark bitmap. RecursiveMark(); } void MarkSweep::ReclaimPhase() { TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); Thread* self = Thread::Current(); // Process the references concurrently. ProcessReferences(self); SweepSystemWeaks(self); Runtime::Current()->AllowNewSystemWeaks(); { WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); // Reclaim unmarked objects. Sweep(false); // Swap the live and mark bitmaps for each space which we modified space. This is an // optimization that enables us to not clear live bits inside of the sweep. Only swaps unbound // bitmaps. SwapBitmaps(); // Unbind the live and mark bitmaps. GetHeap()->UnBindBitmaps(); } } void MarkSweep::FindDefaultSpaceBitmap() { TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); for (const auto& space : GetHeap()->GetContinuousSpaces()) { accounting::ContinuousSpaceBitmap* bitmap = space->GetMarkBitmap(); // We want to have the main space instead of non moving if possible. if (bitmap != nullptr && space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) { current_space_bitmap_ = bitmap; // If we are not the non moving space exit the loop early since this will be good enough. if (space != heap_->GetNonMovingSpace()) { break; } } } if (current_space_bitmap_ == nullptr) { heap_->DumpSpaces(); LOG(FATAL) << "Could not find a default mark bitmap"; } } void MarkSweep::ExpandMarkStack() { ResizeMarkStack(mark_stack_->Capacity() * 2); } void MarkSweep::ResizeMarkStack(size_t new_size) { // Rare case, no need to have Thread::Current be a parameter. if (UNLIKELY(mark_stack_->Size() < mark_stack_->Capacity())) { // Someone else acquired the lock and expanded the mark stack before us. return; } std::vector temp(mark_stack_->Begin(), mark_stack_->End()); CHECK_LE(mark_stack_->Size(), new_size); mark_stack_->Resize(new_size); for (const auto& obj : temp) { mark_stack_->PushBack(obj); } } inline void MarkSweep::MarkObjectNonNullParallel(Object* obj) { DCHECK(obj != nullptr); if (MarkObjectParallel(obj)) { MutexLock mu(Thread::Current(), mark_stack_lock_); if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) { ExpandMarkStack(); } // The object must be pushed on to the mark stack. mark_stack_->PushBack(obj); } } mirror::Object* MarkSweep::MarkObjectCallback(mirror::Object* obj, void* arg) { MarkSweep* mark_sweep = reinterpret_cast(arg); mark_sweep->MarkObject(obj); return obj; } void MarkSweep::MarkHeapReferenceCallback(mirror::HeapReference* ref, void* arg) { reinterpret_cast(arg)->MarkObject(ref->AsMirrorPtr()); } bool MarkSweep::HeapReferenceMarkedCallback(mirror::HeapReference* ref, void* arg) { return reinterpret_cast(arg)->IsMarked(ref->AsMirrorPtr()); } class MarkSweepMarkObjectSlowPath { public: explicit MarkSweepMarkObjectSlowPath(MarkSweep* mark_sweep) : mark_sweep_(mark_sweep) { } void operator()(const Object* obj) const ALWAYS_INLINE { if (kProfileLargeObjects) { // TODO: Differentiate between marking and testing somehow. ++mark_sweep_->large_object_test_; ++mark_sweep_->large_object_mark_; } space::LargeObjectSpace* large_object_space = mark_sweep_->GetHeap()->GetLargeObjectsSpace(); if (UNLIKELY(obj == nullptr || !IsAligned(obj) || (kIsDebugBuild && !large_object_space->Contains(obj)))) { LOG(ERROR) << "Tried to mark " << obj << " not contained by any spaces"; LOG(ERROR) << "Attempting see if it's a bad root"; mark_sweep_->VerifyRoots(); LOG(FATAL) << "Can't mark invalid object"; } } private: MarkSweep* const mark_sweep_; }; inline void MarkSweep::MarkObjectNonNull(Object* obj) { DCHECK(obj != nullptr); if (kUseBakerOrBrooksReadBarrier) { // Verify all the objects have the correct pointer installed. obj->AssertReadBarrierPointer(); } if (immune_region_.ContainsObject(obj)) { if (kCountMarkedObjects) { ++mark_immune_count_; } DCHECK(mark_bitmap_->Test(obj)); } else if (LIKELY(current_space_bitmap_->HasAddress(obj))) { if (kCountMarkedObjects) { ++mark_fastpath_count_; } if (UNLIKELY(!current_space_bitmap_->Set(obj))) { PushOnMarkStack(obj); // This object was not previously marked. } } else { if (kCountMarkedObjects) { ++mark_slowpath_count_; } MarkSweepMarkObjectSlowPath visitor(this); // TODO: We already know that the object is not in the current_space_bitmap_ but MarkBitmap::Set // will check again. if (!mark_bitmap_->Set(obj, visitor)) { PushOnMarkStack(obj); // Was not already marked, push. } } } inline void MarkSweep::PushOnMarkStack(Object* obj) { if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) { // Lock is not needed but is here anyways to please annotalysis. MutexLock mu(Thread::Current(), mark_stack_lock_); ExpandMarkStack(); } // The object must be pushed on to the mark stack. mark_stack_->PushBack(obj); } inline bool MarkSweep::MarkObjectParallel(const Object* obj) { DCHECK(obj != nullptr); if (kUseBakerOrBrooksReadBarrier) { // Verify all the objects have the correct pointer installed. obj->AssertReadBarrierPointer(); } if (immune_region_.ContainsObject(obj)) { DCHECK(IsMarked(obj)); return false; } // Try to take advantage of locality of references within a space, failing this find the space // the hard way. accounting::ContinuousSpaceBitmap* object_bitmap = current_space_bitmap_; if (LIKELY(object_bitmap->HasAddress(obj))) { return !object_bitmap->AtomicTestAndSet(obj); } MarkSweepMarkObjectSlowPath visitor(this); return !mark_bitmap_->AtomicTestAndSet(obj, visitor); } // Used to mark objects when processing the mark stack. If an object is null, it is not marked. inline void MarkSweep::MarkObject(Object* obj) { if (obj != nullptr) { MarkObjectNonNull(obj); } else if (kCountMarkedObjects) { ++mark_null_count_; } } void MarkSweep::MarkRootParallelCallback(Object** root, void* arg, uint32_t /*thread_id*/, RootType /*root_type*/) { reinterpret_cast(arg)->MarkObjectNonNullParallel(*root); } void MarkSweep::VerifyRootMarked(Object** root, void* arg, uint32_t /*thread_id*/, RootType /*root_type*/) { CHECK(reinterpret_cast(arg)->IsMarked(*root)); } void MarkSweep::MarkRootCallback(Object** root, void* arg, uint32_t /*thread_id*/, RootType /*root_type*/) { reinterpret_cast(arg)->MarkObjectNonNull(*root); } void MarkSweep::VerifyRootCallback(const Object* root, void* arg, size_t vreg, const StackVisitor* visitor, RootType root_type) { reinterpret_cast(arg)->VerifyRoot(root, vreg, visitor, root_type); } void MarkSweep::VerifyRoot(const Object* root, size_t vreg, const StackVisitor* visitor, RootType root_type) { // See if the root is on any space bitmap. if (heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(root) == nullptr) { space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace(); if (!large_object_space->Contains(root)) { LOG(ERROR) << "Found invalid root: " << root << " with type " << root_type; if (visitor != NULL) { LOG(ERROR) << visitor->DescribeLocation() << " in VReg: " << vreg; } } } } void MarkSweep::VerifyRoots() { Runtime::Current()->GetThreadList()->VerifyRoots(VerifyRootCallback, this); } void MarkSweep::MarkRoots(Thread* self) { TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); if (Locks::mutator_lock_->IsExclusiveHeld(self)) { // If we exclusively hold the mutator lock, all threads must be suspended. Runtime::Current()->VisitRoots(MarkRootCallback, this); RevokeAllThreadLocalAllocationStacks(self); } else { MarkRootsCheckpoint(self, kRevokeRosAllocThreadLocalBuffersAtCheckpoint); // At this point the live stack should no longer have any mutators which push into it. MarkNonThreadRoots(); MarkConcurrentRoots( static_cast(kVisitRootFlagAllRoots | kVisitRootFlagStartLoggingNewRoots)); } } void MarkSweep::MarkNonThreadRoots() { TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); Runtime::Current()->VisitNonThreadRoots(MarkRootCallback, this); } void MarkSweep::MarkConcurrentRoots(VisitRootFlags flags) { TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); // Visit all runtime roots and clear dirty flags. Runtime::Current()->VisitConcurrentRoots(MarkRootCallback, this, flags); } class ScanObjectVisitor { public: explicit ScanObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE : mark_sweep_(mark_sweep) {} void operator()(Object* obj) const ALWAYS_INLINE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) { if (kCheckLocks) { Locks::mutator_lock_->AssertSharedHeld(Thread::Current()); Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current()); } mark_sweep_->ScanObject(obj); } private: MarkSweep* const mark_sweep_; }; class DelayReferenceReferentVisitor { public: explicit DelayReferenceReferentVisitor(MarkSweep* collector) : collector_(collector) { } void operator()(mirror::Class* klass, mirror::Reference* ref) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) { collector_->DelayReferenceReferent(klass, ref); } private: MarkSweep* const collector_; }; template class MarkStackTask : public Task { public: MarkStackTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, size_t mark_stack_size, Object** mark_stack) : mark_sweep_(mark_sweep), thread_pool_(thread_pool), mark_stack_pos_(mark_stack_size) { // We may have to copy part of an existing mark stack when another mark stack overflows. if (mark_stack_size != 0) { DCHECK(mark_stack != NULL); // TODO: Check performance? std::copy(mark_stack, mark_stack + mark_stack_size, mark_stack_); } if (kCountTasks) { ++mark_sweep_->work_chunks_created_; } } static const size_t kMaxSize = 1 * KB; protected: class MarkObjectParallelVisitor { public: explicit MarkObjectParallelVisitor(MarkStackTask* chunk_task, MarkSweep* mark_sweep) ALWAYS_INLINE : chunk_task_(chunk_task), mark_sweep_(mark_sweep) {} void operator()(Object* obj, MemberOffset offset, bool /* static */) const ALWAYS_INLINE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { mirror::Object* ref = obj->GetFieldObject(offset); if (ref != nullptr && mark_sweep_->MarkObjectParallel(ref)) { if (kUseFinger) { android_memory_barrier(); if (reinterpret_cast(ref) >= static_cast(mark_sweep_->atomic_finger_.LoadRelaxed())) { return; } } chunk_task_->MarkStackPush(ref); } } private: MarkStackTask* const chunk_task_; MarkSweep* const mark_sweep_; }; class ScanObjectParallelVisitor { public: explicit ScanObjectParallelVisitor(MarkStackTask* chunk_task) ALWAYS_INLINE : chunk_task_(chunk_task) {} // No thread safety analysis since multiple threads will use this visitor. void operator()(Object* obj) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) { MarkSweep* const mark_sweep = chunk_task_->mark_sweep_; MarkObjectParallelVisitor mark_visitor(chunk_task_, mark_sweep); DelayReferenceReferentVisitor ref_visitor(mark_sweep); mark_sweep->ScanObjectVisit(obj, mark_visitor, ref_visitor); } private: MarkStackTask* const chunk_task_; }; virtual ~MarkStackTask() { // Make sure that we have cleared our mark stack. DCHECK_EQ(mark_stack_pos_, 0U); if (kCountTasks) { ++mark_sweep_->work_chunks_deleted_; } } MarkSweep* const mark_sweep_; ThreadPool* const thread_pool_; // Thread local mark stack for this task. Object* mark_stack_[kMaxSize]; // Mark stack position. size_t mark_stack_pos_; void MarkStackPush(Object* obj) ALWAYS_INLINE { if (UNLIKELY(mark_stack_pos_ == kMaxSize)) { // Mark stack overflow, give 1/2 the stack to the thread pool as a new work task. mark_stack_pos_ /= 2; auto* task = new MarkStackTask(thread_pool_, mark_sweep_, kMaxSize - mark_stack_pos_, mark_stack_ + mark_stack_pos_); thread_pool_->AddTask(Thread::Current(), task); } DCHECK(obj != nullptr); DCHECK_LT(mark_stack_pos_, kMaxSize); mark_stack_[mark_stack_pos_++] = obj; } virtual void Finalize() { delete this; } // Scans all of the objects virtual void Run(Thread* self) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) { ScanObjectParallelVisitor visitor(this); // TODO: Tune this. static const size_t kFifoSize = 4; BoundedFifoPowerOfTwo prefetch_fifo; for (;;) { Object* obj = nullptr; if (kUseMarkStackPrefetch) { while (mark_stack_pos_ != 0 && prefetch_fifo.size() < kFifoSize) { Object* obj = mark_stack_[--mark_stack_pos_]; DCHECK(obj != nullptr); __builtin_prefetch(obj); prefetch_fifo.push_back(obj); } if (UNLIKELY(prefetch_fifo.empty())) { break; } obj = prefetch_fifo.front(); prefetch_fifo.pop_front(); } else { if (UNLIKELY(mark_stack_pos_ == 0)) { break; } obj = mark_stack_[--mark_stack_pos_]; } DCHECK(obj != nullptr); visitor(obj); } } }; class CardScanTask : public MarkStackTask { public: CardScanTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, accounting::ContinuousSpaceBitmap* bitmap, byte* begin, byte* end, byte minimum_age, size_t mark_stack_size, Object** mark_stack_obj) : MarkStackTask(thread_pool, mark_sweep, mark_stack_size, mark_stack_obj), bitmap_(bitmap), begin_(begin), end_(end), minimum_age_(minimum_age) { } protected: accounting::ContinuousSpaceBitmap* const bitmap_; byte* const begin_; byte* const end_; const byte minimum_age_; virtual void Finalize() { delete this; } virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS { ScanObjectParallelVisitor visitor(this); accounting::CardTable* card_table = mark_sweep_->GetHeap()->GetCardTable(); size_t cards_scanned = card_table->Scan(bitmap_, begin_, end_, visitor, minimum_age_); VLOG(heap) << "Parallel scanning cards " << reinterpret_cast(begin_) << " - " << reinterpret_cast(end_) << " = " << cards_scanned; // Finish by emptying our local mark stack. MarkStackTask::Run(self); } }; size_t MarkSweep::GetThreadCount(bool paused) const { if (heap_->GetThreadPool() == nullptr || !heap_->CareAboutPauseTimes()) { return 1; } if (paused) { return heap_->GetParallelGCThreadCount() + 1; } else { return heap_->GetConcGCThreadCount() + 1; } } void MarkSweep::ScanGrayObjects(bool paused, byte minimum_age) { accounting::CardTable* card_table = GetHeap()->GetCardTable(); ThreadPool* thread_pool = GetHeap()->GetThreadPool(); size_t thread_count = GetThreadCount(paused); // The parallel version with only one thread is faster for card scanning, TODO: fix. if (kParallelCardScan && thread_count > 1) { Thread* self = Thread::Current(); // Can't have a different split for each space since multiple spaces can have their cards being // scanned at the same time. TimingLogger::ScopedTiming t(paused ? "(Paused)ScanGrayObjects" : __FUNCTION__, GetTimings()); // Try to take some of the mark stack since we can pass this off to the worker tasks. Object** mark_stack_begin = mark_stack_->Begin(); Object** mark_stack_end = mark_stack_->End(); const size_t mark_stack_size = mark_stack_end - mark_stack_begin; // Estimated number of work tasks we will create. const size_t mark_stack_tasks = GetHeap()->GetContinuousSpaces().size() * thread_count; DCHECK_NE(mark_stack_tasks, 0U); const size_t mark_stack_delta = std::min(CardScanTask::kMaxSize / 2, mark_stack_size / mark_stack_tasks + 1); for (const auto& space : GetHeap()->GetContinuousSpaces()) { if (space->GetMarkBitmap() == nullptr) { continue; } byte* card_begin = space->Begin(); byte* card_end = space->End(); // Align up the end address. For example, the image space's end // may not be card-size-aligned. card_end = AlignUp(card_end, accounting::CardTable::kCardSize); DCHECK(IsAligned(card_begin)); DCHECK(IsAligned(card_end)); // Calculate how many bytes of heap we will scan, const size_t address_range = card_end - card_begin; // Calculate how much address range each task gets. const size_t card_delta = RoundUp(address_range / thread_count + 1, accounting::CardTable::kCardSize); // Create the worker tasks for this space. while (card_begin != card_end) { // Add a range of cards. size_t addr_remaining = card_end - card_begin; size_t card_increment = std::min(card_delta, addr_remaining); // Take from the back of the mark stack. size_t mark_stack_remaining = mark_stack_end - mark_stack_begin; size_t mark_stack_increment = std::min(mark_stack_delta, mark_stack_remaining); mark_stack_end -= mark_stack_increment; mark_stack_->PopBackCount(static_cast(mark_stack_increment)); DCHECK_EQ(mark_stack_end, mark_stack_->End()); // Add the new task to the thread pool. auto* task = new CardScanTask(thread_pool, this, space->GetMarkBitmap(), card_begin, card_begin + card_increment, minimum_age, mark_stack_increment, mark_stack_end); thread_pool->AddTask(self, task); card_begin += card_increment; } } // Note: the card scan below may dirty new cards (and scan them) // as a side effect when a Reference object is encountered and // queued during the marking. See b/11465268. thread_pool->SetMaxActiveWorkers(thread_count - 1); thread_pool->StartWorkers(self); thread_pool->Wait(self, true, true); thread_pool->StopWorkers(self); } else { for (const auto& space : GetHeap()->GetContinuousSpaces()) { if (space->GetMarkBitmap() != nullptr) { // Image spaces are handled properly since live == marked for them. const char* name = nullptr; switch (space->GetGcRetentionPolicy()) { case space::kGcRetentionPolicyNeverCollect: name = paused ? "(Paused)ScanGrayImageSpaceObjects" : "ScanGrayImageSpaceObjects"; break; case space::kGcRetentionPolicyFullCollect: name = paused ? "(Paused)ScanGrayZygoteSpaceObjects" : "ScanGrayZygoteSpaceObjects"; break; case space::kGcRetentionPolicyAlwaysCollect: name = paused ? "(Paused)ScanGrayAllocSpaceObjects" : "ScanGrayAllocSpaceObjects"; break; default: LOG(FATAL) << "Unreachable"; } TimingLogger::ScopedTiming t(name, GetTimings()); ScanObjectVisitor visitor(this); card_table->Scan(space->GetMarkBitmap(), space->Begin(), space->End(), visitor, minimum_age); } } } } class RecursiveMarkTask : public MarkStackTask { public: RecursiveMarkTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, accounting::ContinuousSpaceBitmap* bitmap, uintptr_t begin, uintptr_t end) : MarkStackTask(thread_pool, mark_sweep, 0, NULL), bitmap_(bitmap), begin_(begin), end_(end) { } protected: accounting::ContinuousSpaceBitmap* const bitmap_; const uintptr_t begin_; const uintptr_t end_; virtual void Finalize() { delete this; } // Scans all of the objects virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS { ScanObjectParallelVisitor visitor(this); bitmap_->VisitMarkedRange(begin_, end_, visitor); // Finish by emptying our local mark stack. MarkStackTask::Run(self); } }; // Populates the mark stack based on the set of marked objects and // recursively marks until the mark stack is emptied. void MarkSweep::RecursiveMark() { TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); // RecursiveMark will build the lists of known instances of the Reference classes. See // DelayReferenceReferent for details. if (kUseRecursiveMark) { const bool partial = GetGcType() == kGcTypePartial; ScanObjectVisitor scan_visitor(this); auto* self = Thread::Current(); ThreadPool* thread_pool = heap_->GetThreadPool(); size_t thread_count = GetThreadCount(false); const bool parallel = kParallelRecursiveMark && thread_count > 1; mark_stack_->Reset(); for (const auto& space : GetHeap()->GetContinuousSpaces()) { if ((space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) || (!partial && space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect)) { current_space_bitmap_ = space->GetMarkBitmap(); if (current_space_bitmap_ == nullptr) { continue; } if (parallel) { // We will use the mark stack the future. // CHECK(mark_stack_->IsEmpty()); // This function does not handle heap end increasing, so we must use the space end. uintptr_t begin = reinterpret_cast(space->Begin()); uintptr_t end = reinterpret_cast(space->End()); atomic_finger_.StoreRelaxed(AtomicInteger::MaxValue()); // Create a few worker tasks. const size_t n = thread_count * 2; while (begin != end) { uintptr_t start = begin; uintptr_t delta = (end - begin) / n; delta = RoundUp(delta, KB); if (delta < 16 * KB) delta = end - begin; begin += delta; auto* task = new RecursiveMarkTask(thread_pool, this, current_space_bitmap_, start, begin); thread_pool->AddTask(self, task); } thread_pool->SetMaxActiveWorkers(thread_count - 1); thread_pool->StartWorkers(self); thread_pool->Wait(self, true, true); thread_pool->StopWorkers(self); } else { // This function does not handle heap end increasing, so we must use the space end. uintptr_t begin = reinterpret_cast(space->Begin()); uintptr_t end = reinterpret_cast(space->End()); current_space_bitmap_->VisitMarkedRange(begin, end, scan_visitor); } } } } ProcessMarkStack(false); } mirror::Object* MarkSweep::IsMarkedCallback(mirror::Object* object, void* arg) { if (reinterpret_cast(arg)->IsMarked(object)) { return object; } return nullptr; } void MarkSweep::RecursiveMarkDirtyObjects(bool paused, byte minimum_age) { ScanGrayObjects(paused, minimum_age); ProcessMarkStack(paused); } void MarkSweep::ReMarkRoots() { TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current()); Runtime::Current()->VisitRoots( MarkRootCallback, this, static_cast(kVisitRootFlagNewRoots | kVisitRootFlagStopLoggingNewRoots | kVisitRootFlagClearRootLog)); if (kVerifyRootsMarked) { TimingLogger::ScopedTiming t("(Paused)VerifyRoots", GetTimings()); Runtime::Current()->VisitRoots(VerifyRootMarked, this); } } void MarkSweep::SweepSystemWeaks(Thread* self) { TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); Runtime::Current()->SweepSystemWeaks(IsMarkedCallback, this); } mirror::Object* MarkSweep::VerifySystemWeakIsLiveCallback(Object* obj, void* arg) { reinterpret_cast(arg)->VerifyIsLive(obj); // We don't actually want to sweep the object, so lets return "marked" return obj; } void MarkSweep::VerifyIsLive(const Object* obj) { if (!heap_->GetLiveBitmap()->Test(obj)) { if (std::find(heap_->allocation_stack_->Begin(), heap_->allocation_stack_->End(), obj) == heap_->allocation_stack_->End()) { // Object not found! heap_->DumpSpaces(); LOG(FATAL) << "Found dead object " << obj; } } } void MarkSweep::VerifySystemWeaks() { TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); // Verify system weaks, uses a special object visitor which returns the input object. Runtime::Current()->SweepSystemWeaks(VerifySystemWeakIsLiveCallback, this); } class CheckpointMarkThreadRoots : public Closure { public: explicit CheckpointMarkThreadRoots(MarkSweep* mark_sweep, bool revoke_ros_alloc_thread_local_buffers_at_checkpoint) : mark_sweep_(mark_sweep), revoke_ros_alloc_thread_local_buffers_at_checkpoint_( revoke_ros_alloc_thread_local_buffers_at_checkpoint) { } virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS { ATRACE_BEGIN("Marking thread roots"); // Note: self is not necessarily equal to thread since thread may be suspended. Thread* self = Thread::Current(); CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc) << thread->GetState() << " thread " << thread << " self " << self; thread->VisitRoots(MarkSweep::MarkRootParallelCallback, mark_sweep_); ATRACE_END(); if (revoke_ros_alloc_thread_local_buffers_at_checkpoint_) { ATRACE_BEGIN("RevokeRosAllocThreadLocalBuffers"); mark_sweep_->GetHeap()->RevokeRosAllocThreadLocalBuffers(thread); ATRACE_END(); } mark_sweep_->GetBarrier().Pass(self); } private: MarkSweep* const mark_sweep_; const bool revoke_ros_alloc_thread_local_buffers_at_checkpoint_; }; void MarkSweep::MarkRootsCheckpoint(Thread* self, bool revoke_ros_alloc_thread_local_buffers_at_checkpoint) { TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); CheckpointMarkThreadRoots check_point(this, revoke_ros_alloc_thread_local_buffers_at_checkpoint); ThreadList* thread_list = Runtime::Current()->GetThreadList(); // Request the check point is run on all threads returning a count of the threads that must // run through the barrier including self. size_t barrier_count = thread_list->RunCheckpoint(&check_point); // Release locks then wait for all mutator threads to pass the barrier. // TODO: optimize to not release locks when there are no threads to wait for. Locks::heap_bitmap_lock_->ExclusiveUnlock(self); Locks::mutator_lock_->SharedUnlock(self); { ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun); gc_barrier_->Increment(self, barrier_count); } Locks::mutator_lock_->SharedLock(self); Locks::heap_bitmap_lock_->ExclusiveLock(self); } void MarkSweep::SweepArray(accounting::ObjectStack* allocations, bool swap_bitmaps) { TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); Thread* self = Thread::Current(); mirror::Object** chunk_free_buffer = reinterpret_cast( sweep_array_free_buffer_mem_map_->BaseBegin()); size_t chunk_free_pos = 0; ObjectBytePair freed; ObjectBytePair freed_los; // How many objects are left in the array, modified after each space is swept. Object** objects = allocations->Begin(); size_t count = allocations->Size(); // Change the order to ensure that the non-moving space last swept as an optimization. std::vector sweep_spaces; space::ContinuousSpace* non_moving_space = nullptr; for (space::ContinuousSpace* space : heap_->GetContinuousSpaces()) { if (space->IsAllocSpace() && !immune_region_.ContainsSpace(space) && space->GetLiveBitmap() != nullptr) { if (space == heap_->GetNonMovingSpace()) { non_moving_space = space; } else { sweep_spaces.push_back(space); } } } // Unlikely to sweep a significant amount of non_movable objects, so we do these after the after // the other alloc spaces as an optimization. if (non_moving_space != nullptr) { sweep_spaces.push_back(non_moving_space); } // Start by sweeping the continuous spaces. for (space::ContinuousSpace* space : sweep_spaces) { space::AllocSpace* alloc_space = space->AsAllocSpace(); accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap(); accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap(); if (swap_bitmaps) { std::swap(live_bitmap, mark_bitmap); } Object** out = objects; for (size_t i = 0; i < count; ++i) { Object* obj = objects[i]; if (kUseThreadLocalAllocationStack && obj == nullptr) { continue; } if (space->HasAddress(obj)) { // This object is in the space, remove it from the array and add it to the sweep buffer // if needed. if (!mark_bitmap->Test(obj)) { if (chunk_free_pos >= kSweepArrayChunkFreeSize) { TimingLogger::ScopedTiming t("FreeList", GetTimings()); freed.objects += chunk_free_pos; freed.bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer); chunk_free_pos = 0; } chunk_free_buffer[chunk_free_pos++] = obj; } } else { *(out++) = obj; } } if (chunk_free_pos > 0) { TimingLogger::ScopedTiming t("FreeList", GetTimings()); freed.objects += chunk_free_pos; freed.bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer); chunk_free_pos = 0; } // All of the references which space contained are no longer in the allocation stack, update // the count. count = out - objects; } // Handle the large object space. space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace(); accounting::LargeObjectBitmap* large_live_objects = large_object_space->GetLiveBitmap(); accounting::LargeObjectBitmap* large_mark_objects = large_object_space->GetMarkBitmap(); if (swap_bitmaps) { std::swap(large_live_objects, large_mark_objects); } for (size_t i = 0; i < count; ++i) { Object* obj = objects[i]; // Handle large objects. if (kUseThreadLocalAllocationStack && obj == nullptr) { continue; } if (!large_mark_objects->Test(obj)) { ++freed_los.objects; freed_los.bytes += large_object_space->Free(self, obj); } } { TimingLogger::ScopedTiming t("RecordFree", GetTimings()); RecordFree(freed); RecordFreeLOS(freed_los); t.NewTiming("ResetStack"); allocations->Reset(); } sweep_array_free_buffer_mem_map_->MadviseDontNeedAndZero(); } void MarkSweep::Sweep(bool swap_bitmaps) { TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); // Ensure that nobody inserted items in the live stack after we swapped the stacks. CHECK_GE(live_stack_freeze_size_, GetHeap()->GetLiveStack()->Size()); { TimingLogger::ScopedTiming t2("MarkAllocStackAsLive", GetTimings()); // Mark everything allocated since the last as GC live so that we can sweep concurrently, // knowing that new allocations won't be marked as live. accounting::ObjectStack* live_stack = heap_->GetLiveStack(); heap_->MarkAllocStackAsLive(live_stack); live_stack->Reset(); DCHECK(mark_stack_->IsEmpty()); } for (const auto& space : GetHeap()->GetContinuousSpaces()) { if (space->IsContinuousMemMapAllocSpace()) { space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace(); TimingLogger::ScopedTiming split( alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepMallocSpace", GetTimings()); RecordFree(alloc_space->Sweep(swap_bitmaps)); } } SweepLargeObjects(swap_bitmaps); } void MarkSweep::SweepLargeObjects(bool swap_bitmaps) { TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings()); RecordFreeLOS(heap_->GetLargeObjectsSpace()->Sweep(swap_bitmaps)); } // Process the "referent" field in a java.lang.ref.Reference. If the referent has not yet been // marked, put it on the appropriate list in the heap for later processing. void MarkSweep::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* ref) { if (kCountJavaLangRefs) { ++reference_count_; } heap_->GetReferenceProcessor()->DelayReferenceReferent(klass, ref, &HeapReferenceMarkedCallback, this); } class MarkObjectVisitor { public: explicit MarkObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE : mark_sweep_(mark_sweep) { } void operator()(Object* obj, MemberOffset offset, bool /* is_static */) const ALWAYS_INLINE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) { if (kCheckLocks) { Locks::mutator_lock_->AssertSharedHeld(Thread::Current()); Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current()); } mark_sweep_->MarkObject(obj->GetFieldObject(offset)); } private: MarkSweep* const mark_sweep_; }; // Scans an object reference. Determines the type of the reference // and dispatches to a specialized scanning routine. void MarkSweep::ScanObject(Object* obj) { MarkObjectVisitor mark_visitor(this); DelayReferenceReferentVisitor ref_visitor(this); ScanObjectVisit(obj, mark_visitor, ref_visitor); } void MarkSweep::ProcessMarkStackCallback(void* arg) { reinterpret_cast(arg)->ProcessMarkStack(false); } void MarkSweep::ProcessMarkStackParallel(size_t thread_count) { Thread* self = Thread::Current(); ThreadPool* thread_pool = GetHeap()->GetThreadPool(); const size_t chunk_size = std::min(mark_stack_->Size() / thread_count + 1, static_cast(MarkStackTask::kMaxSize)); CHECK_GT(chunk_size, 0U); // Split the current mark stack up into work tasks. for (mirror::Object **it = mark_stack_->Begin(), **end = mark_stack_->End(); it < end; ) { const size_t delta = std::min(static_cast(end - it), chunk_size); thread_pool->AddTask(self, new MarkStackTask(thread_pool, this, delta, it)); it += delta; } thread_pool->SetMaxActiveWorkers(thread_count - 1); thread_pool->StartWorkers(self); thread_pool->Wait(self, true, true); thread_pool->StopWorkers(self); mark_stack_->Reset(); CHECK_EQ(work_chunks_created_.LoadSequentiallyConsistent(), work_chunks_deleted_.LoadSequentiallyConsistent()) << " some of the work chunks were leaked"; } // Scan anything that's on the mark stack. void MarkSweep::ProcessMarkStack(bool paused) { TimingLogger::ScopedTiming t(paused ? "(Paused)ProcessMarkStack" : __FUNCTION__, GetTimings()); size_t thread_count = GetThreadCount(paused); if (kParallelProcessMarkStack && thread_count > 1 && mark_stack_->Size() >= kMinimumParallelMarkStackSize) { ProcessMarkStackParallel(thread_count); } else { // TODO: Tune this. static const size_t kFifoSize = 4; BoundedFifoPowerOfTwo prefetch_fifo; for (;;) { Object* obj = NULL; if (kUseMarkStackPrefetch) { while (!mark_stack_->IsEmpty() && prefetch_fifo.size() < kFifoSize) { Object* obj = mark_stack_->PopBack(); DCHECK(obj != NULL); __builtin_prefetch(obj); prefetch_fifo.push_back(obj); } if (prefetch_fifo.empty()) { break; } obj = prefetch_fifo.front(); prefetch_fifo.pop_front(); } else { if (mark_stack_->IsEmpty()) { break; } obj = mark_stack_->PopBack(); } DCHECK(obj != nullptr); ScanObject(obj); } } } inline bool MarkSweep::IsMarked(const Object* object) const { if (immune_region_.ContainsObject(object)) { return true; } if (current_space_bitmap_->HasAddress(object)) { return current_space_bitmap_->Test(object); } return mark_bitmap_->Test(object); } void MarkSweep::FinishPhase() { TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); if (kCountScannedTypes) { VLOG(gc) << "MarkSweep scanned classes=" << class_count_.LoadRelaxed() << " arrays=" << array_count_.LoadRelaxed() << " other=" << other_count_.LoadRelaxed(); } if (kCountTasks) { VLOG(gc) << "Total number of work chunks allocated: " << work_chunks_created_.LoadRelaxed(); } if (kMeasureOverhead) { VLOG(gc) << "Overhead time " << PrettyDuration(overhead_time_.LoadRelaxed()); } if (kProfileLargeObjects) { VLOG(gc) << "Large objects tested " << large_object_test_.LoadRelaxed() << " marked " << large_object_mark_.LoadRelaxed(); } if (kCountJavaLangRefs) { VLOG(gc) << "References scanned " << reference_count_.LoadRelaxed(); } if (kCountMarkedObjects) { VLOG(gc) << "Marked: null=" << mark_null_count_.LoadRelaxed() << " immune=" << mark_immune_count_.LoadRelaxed() << " fastpath=" << mark_fastpath_count_.LoadRelaxed() << " slowpath=" << mark_slowpath_count_.LoadRelaxed(); } CHECK(mark_stack_->IsEmpty()); // Ensure that the mark stack is empty. mark_stack_->Reset(); WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); heap_->ClearMarkedObjects(); } void MarkSweep::RevokeAllThreadLocalBuffers() { if (kRevokeRosAllocThreadLocalBuffersAtCheckpoint && IsConcurrent()) { // If concurrent, rosalloc thread-local buffers are revoked at the // thread checkpoint. Bump pointer space thread-local buffers must // not be in use. GetHeap()->AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked(); } else { TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); GetHeap()->RevokeAllThreadLocalBuffers(); } } } // namespace collector } // namespace gc } // namespace art