/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "heap.h" #define ATRACE_TAG ATRACE_TAG_DALVIK #include #include #include #include #include #include "base/stl_util.h" #include "cutils/sched_policy.h" #include "debugger.h" #include "gc/accounting/atomic_stack.h" #include "gc/accounting/card_table-inl.h" #include "gc/accounting/heap_bitmap-inl.h" #include "gc/accounting/mod_union_table-inl.h" #include "gc/accounting/space_bitmap-inl.h" #include "gc/collector/mark_sweep-inl.h" #include "gc/collector/partial_mark_sweep.h" #include "gc/collector/sticky_mark_sweep.h" #include "gc/space/image_space.h" #include "gc/space/large_object_space.h" #include "gc/space/space-inl.h" #include "image.h" #include "invoke_arg_array_builder.h" #include "mirror/class-inl.h" #include "mirror/field-inl.h" #include "mirror/object.h" #include "mirror/object-inl.h" #include "mirror/object_array-inl.h" #include "object_utils.h" #include "os.h" #include "ScopedLocalRef.h" #include "scoped_thread_state_change.h" #include "sirt_ref.h" #include "thread_list.h" #include "UniquePtr.h" #include "well_known_classes.h" namespace art { namespace gc { // When to create a log message about a slow GC, 100ms. static const uint64_t kSlowGcThreshold = MsToNs(100); // When to create a log message about a slow pause, 5ms. static const uint64_t kLongGcPauseThreshold = MsToNs(5); static const bool kDumpGcPerformanceOnShutdown = false; // Minimum amount of remaining bytes before a concurrent GC is triggered. static const size_t kMinConcurrentRemainingBytes = 128 * KB; const double Heap::kDefaultTargetUtilization = 0.5; static bool GenerateImage(const std::string& image_file_name) { const std::string boot_class_path_string(Runtime::Current()->GetBootClassPathString()); std::vector boot_class_path; Split(boot_class_path_string, ':', boot_class_path); if (boot_class_path.empty()) { LOG(FATAL) << "Failed to generate image because no boot class path specified"; } std::vector arg_vector; std::string dex2oat_string(GetAndroidRoot()); dex2oat_string += (kIsDebugBuild ? "/bin/dex2oatd" : "/bin/dex2oat"); const char* dex2oat = dex2oat_string.c_str(); arg_vector.push_back(strdup(dex2oat)); std::string image_option_string("--image="); image_option_string += image_file_name; const char* image_option = image_option_string.c_str(); arg_vector.push_back(strdup(image_option)); arg_vector.push_back(strdup("--runtime-arg")); arg_vector.push_back(strdup("-Xms64m")); arg_vector.push_back(strdup("--runtime-arg")); arg_vector.push_back(strdup("-Xmx64m")); for (size_t i = 0; i < boot_class_path.size(); i++) { std::string dex_file_option_string("--dex-file="); dex_file_option_string += boot_class_path[i]; const char* dex_file_option = dex_file_option_string.c_str(); arg_vector.push_back(strdup(dex_file_option)); } std::string oat_file_option_string("--oat-file="); oat_file_option_string += image_file_name; oat_file_option_string.erase(oat_file_option_string.size() - 3); oat_file_option_string += "oat"; const char* oat_file_option = oat_file_option_string.c_str(); arg_vector.push_back(strdup(oat_file_option)); std::string base_option_string(StringPrintf("--base=0x%x", ART_BASE_ADDRESS)); arg_vector.push_back(strdup(base_option_string.c_str())); if (kIsTargetBuild) { arg_vector.push_back(strdup("--image-classes-zip=/system/framework/framework.jar")); arg_vector.push_back(strdup("--image-classes=preloaded-classes")); } else { arg_vector.push_back(strdup("--host")); } std::string command_line(Join(arg_vector, ' ')); LOG(INFO) << command_line; arg_vector.push_back(NULL); char** argv = &arg_vector[0]; // fork and exec dex2oat pid_t pid = fork(); if (pid == 0) { // no allocation allowed between fork and exec // change process groups, so we don't get reaped by ProcessManager setpgid(0, 0); execv(dex2oat, argv); PLOG(FATAL) << "execv(" << dex2oat << ") failed"; return false; } else { STLDeleteElements(&arg_vector); // wait for dex2oat to finish int status; pid_t got_pid = TEMP_FAILURE_RETRY(waitpid(pid, &status, 0)); if (got_pid != pid) { PLOG(ERROR) << "waitpid failed: wanted " << pid << ", got " << got_pid; return false; } if (!WIFEXITED(status) || WEXITSTATUS(status) != 0) { LOG(ERROR) << dex2oat << " failed: " << command_line; return false; } } return true; } void Heap::UnReserveOatFileAddressRange() { oat_file_map_.reset(NULL); } Heap::Heap(size_t initial_size, size_t growth_limit, size_t min_free, size_t max_free, double target_utilization, size_t capacity, const std::string& original_image_file_name, bool concurrent_gc) : alloc_space_(NULL), card_table_(NULL), concurrent_gc_(concurrent_gc), have_zygote_space_(false), reference_queue_lock_(NULL), is_gc_running_(false), last_gc_type_(collector::kGcTypeNone), next_gc_type_(collector::kGcTypePartial), capacity_(capacity), growth_limit_(growth_limit), max_allowed_footprint_(initial_size), concurrent_start_bytes_(concurrent_gc ? initial_size - (kMinConcurrentRemainingBytes) : std::numeric_limits::max()), total_bytes_freed_ever_(0), total_objects_freed_ever_(0), large_object_threshold_(3 * kPageSize), num_bytes_allocated_(0), verify_missing_card_marks_(false), verify_system_weaks_(false), verify_pre_gc_heap_(false), verify_post_gc_heap_(false), verify_mod_union_table_(false), min_alloc_space_size_for_sticky_gc_(2 * MB), min_remaining_space_for_sticky_gc_(1 * MB), last_trim_time_ms_(0), allocation_rate_(0), max_allocation_stack_size_(kDesiredHeapVerification > kNoHeapVerification? KB : MB), reference_referent_offset_(0), reference_queue_offset_(0), reference_queueNext_offset_(0), reference_pendingNext_offset_(0), finalizer_reference_zombie_offset_(0), min_free_(min_free), max_free_(max_free), target_utilization_(target_utilization), total_wait_time_(0), measure_allocation_time_(false), total_allocation_time_(0), verify_object_mode_(kHeapVerificationNotPermitted) { if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) { LOG(INFO) << "Heap() entering"; } live_bitmap_.reset(new accounting::HeapBitmap(this)); mark_bitmap_.reset(new accounting::HeapBitmap(this)); // Requested begin for the alloc space, to follow the mapped image and oat files byte* requested_begin = NULL; std::string image_file_name(original_image_file_name); if (!image_file_name.empty()) { space::ImageSpace* image_space = NULL; if (OS::FileExists(image_file_name.c_str())) { // If the /system file exists, it should be up-to-date, don't try to generate image_space = space::ImageSpace::Create(image_file_name); } else { // If the /system file didn't exist, we need to use one from the dalvik-cache. // If the cache file exists, try to open, but if it fails, regenerate. // If it does not exist, generate. image_file_name = GetDalvikCacheFilenameOrDie(image_file_name); if (OS::FileExists(image_file_name.c_str())) { image_space = space::ImageSpace::Create(image_file_name); } if (image_space == NULL) { CHECK(GenerateImage(image_file_name)) << "Failed to generate image: " << image_file_name; image_space = space::ImageSpace::Create(image_file_name); } } CHECK(image_space != NULL) << "Failed to create space from " << image_file_name; AddContinuousSpace(image_space); // Oat files referenced by image files immediately follow them in memory, ensure alloc space // isn't going to get in the middle byte* oat_file_end_addr = image_space->GetImageHeader().GetOatFileEnd(); CHECK_GT(oat_file_end_addr, image_space->End()); // Reserve address range from image_space->End() to image_space->GetImageHeader().GetOatEnd() uintptr_t reserve_begin = RoundUp(reinterpret_cast(image_space->End()), kPageSize); uintptr_t reserve_end = RoundUp(reinterpret_cast(oat_file_end_addr), kPageSize); oat_file_map_.reset(MemMap::MapAnonymous("oat file reserve", reinterpret_cast(reserve_begin), reserve_end - reserve_begin, PROT_NONE)); if (oat_file_end_addr > requested_begin) { requested_begin = reinterpret_cast(RoundUp(reinterpret_cast(oat_file_end_addr), kPageSize)); } } // Allocate the large object space. const bool kUseFreeListSpaceForLOS = false; if (kUseFreeListSpaceForLOS) { large_object_space_ = space::FreeListSpace::Create("large object space", NULL, capacity); } else { large_object_space_ = space::LargeObjectMapSpace::Create("large object space"); } CHECK(large_object_space_ != NULL) << "Failed to create large object space"; AddDiscontinuousSpace(large_object_space_); alloc_space_ = space::DlMallocSpace::Create("alloc space", initial_size, growth_limit, capacity, requested_begin); CHECK(alloc_space_ != NULL) << "Failed to create alloc space"; alloc_space_->SetFootprintLimit(alloc_space_->Capacity()); AddContinuousSpace(alloc_space_); // Compute heap capacity. Continuous spaces are sorted in order of Begin(). byte* heap_begin = continuous_spaces_.front()->Begin(); size_t heap_capacity = continuous_spaces_.back()->End() - continuous_spaces_.front()->Begin(); if (continuous_spaces_.back()->IsDlMallocSpace()) { heap_capacity += continuous_spaces_.back()->AsDlMallocSpace()->NonGrowthLimitCapacity(); } // Mark image objects in the live bitmap // TODO: C++0x typedef std::vector::iterator It; for (It it = continuous_spaces_.begin(); it != continuous_spaces_.end(); ++it) { space::ContinuousSpace* space = *it; if (space->IsImageSpace()) { space::ImageSpace* image_space = space->AsImageSpace(); image_space->RecordImageAllocations(image_space->GetLiveBitmap()); } } // Allocate the card table. card_table_.reset(accounting::CardTable::Create(heap_begin, heap_capacity)); CHECK(card_table_.get() != NULL) << "Failed to create card table"; image_mod_union_table_.reset(new accounting::ModUnionTableToZygoteAllocspace(this)); CHECK(image_mod_union_table_.get() != NULL) << "Failed to create image mod-union table"; zygote_mod_union_table_.reset(new accounting::ModUnionTableCardCache(this)); CHECK(zygote_mod_union_table_.get() != NULL) << "Failed to create Zygote mod-union table"; // TODO: Count objects in the image space here. num_bytes_allocated_ = 0; // Default mark stack size in bytes. static const size_t default_mark_stack_size = 64 * KB; mark_stack_.reset(accounting::ObjectStack::Create("mark stack", default_mark_stack_size)); allocation_stack_.reset(accounting::ObjectStack::Create("allocation stack", max_allocation_stack_size_)); live_stack_.reset(accounting::ObjectStack::Create("live stack", max_allocation_stack_size_)); // It's still too early to take a lock because there are no threads yet, but we can create locks // now. We don't create it earlier to make it clear that you can't use locks during heap // initialization. gc_complete_lock_ = new Mutex("GC complete lock"); gc_complete_cond_.reset(new ConditionVariable("GC complete condition variable", *gc_complete_lock_)); // Create the reference queue lock, this is required so for parrallel object scanning in the GC. reference_queue_lock_ = new Mutex("reference queue lock"); last_gc_time_ns_ = NanoTime(); last_gc_size_ = GetBytesAllocated(); // Create our garbage collectors. for (size_t i = 0; i < 2; ++i) { const bool concurrent = i != 0; mark_sweep_collectors_.push_back(new collector::MarkSweep(this, concurrent)); mark_sweep_collectors_.push_back(new collector::PartialMarkSweep(this, concurrent)); mark_sweep_collectors_.push_back(new collector::StickyMarkSweep(this, concurrent)); } CHECK(max_allowed_footprint_ != 0); if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) { LOG(INFO) << "Heap() exiting"; } } void Heap::CreateThreadPool() { // TODO: Make sysconf(_SC_NPROCESSORS_CONF) be a helper function? // Use the number of processors - 1 since the thread doing the GC does work while its waiting for // workers to complete. thread_pool_.reset(new ThreadPool(1)); // new ThreadPool(sysconf(_SC_NPROCESSORS_CONF) - 1)); } void Heap::DeleteThreadPool() { thread_pool_.reset(NULL); } // Sort spaces based on begin address struct ContinuousSpaceSorter { bool operator ()(const space::ContinuousSpace* a, const space::ContinuousSpace* b) const { return a->Begin() < b->Begin(); } }; void Heap::AddContinuousSpace(space::ContinuousSpace* space) { WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); DCHECK(space != NULL); DCHECK(space->GetLiveBitmap() != NULL); live_bitmap_->AddContinuousSpaceBitmap(space->GetLiveBitmap()); DCHECK(space->GetMarkBitmap() != NULL); mark_bitmap_->AddContinuousSpaceBitmap(space->GetMarkBitmap()); continuous_spaces_.push_back(space); if (space->IsDlMallocSpace() && !space->IsLargeObjectSpace()) { alloc_space_ = space->AsDlMallocSpace(); } // Ensure that spaces remain sorted in increasing order of start address (required for CMS finger) std::sort(continuous_spaces_.begin(), continuous_spaces_.end(), ContinuousSpaceSorter()); // Ensure that ImageSpaces < ZygoteSpaces < AllocSpaces so that we can do address based checks to // avoid redundant marking. bool seen_zygote = false, seen_alloc = false; typedef std::vector::const_iterator It; for (It it = continuous_spaces_.begin(); it != continuous_spaces_.end(); ++it) { space::ContinuousSpace* space = *it; if (space->IsImageSpace()) { DCHECK(!seen_zygote); DCHECK(!seen_alloc); } else if (space->IsZygoteSpace()) { DCHECK(!seen_alloc); seen_zygote = true; } else if (space->IsDlMallocSpace()) { seen_alloc = true; } } } void Heap::AddDiscontinuousSpace(space::DiscontinuousSpace* space) { WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); DCHECK(space != NULL); DCHECK(space->GetLiveObjects() != NULL); live_bitmap_->AddDiscontinuousObjectSet(space->GetLiveObjects()); DCHECK(space->GetMarkObjects() != NULL); mark_bitmap_->AddDiscontinuousObjectSet(space->GetMarkObjects()); discontinuous_spaces_.push_back(space); } void Heap::DumpGcPerformanceInfo(std::ostream& os) { // Dump cumulative timings. os << "Dumping cumulative Gc timings\n"; uint64_t total_duration = 0; // Dump cumulative loggers for each GC type. // TODO: C++0x uint64_t total_paused_time = 0; typedef std::vector::const_iterator It; for (It it = mark_sweep_collectors_.begin(); it != mark_sweep_collectors_.end(); ++it) { collector::MarkSweep* collector = *it; CumulativeLogger& logger = collector->GetCumulativeTimings(); if (logger.GetTotalNs() != 0) { os << Dumpable(logger); const uint64_t total_ns = logger.GetTotalNs(); const uint64_t total_pause_ns = (*it)->GetTotalPausedTimeNs(); double seconds = NsToMs(logger.GetTotalNs()) / 1000.0; const uint64_t freed_bytes = collector->GetTotalFreedBytes(); const uint64_t freed_objects = collector->GetTotalFreedObjects(); os << collector->GetName() << " total time: " << PrettyDuration(total_ns) << "\n" << collector->GetName() << " paused time: " << PrettyDuration(total_pause_ns) << "\n" << collector->GetName() << " freed: " << freed_objects << " objects with total size " << PrettySize(freed_bytes) << "\n" << collector->GetName() << " throughput: " << freed_objects / seconds << "/s / " << PrettySize(freed_bytes / seconds) << "/s\n"; total_duration += total_ns; total_paused_time += total_pause_ns; } } uint64_t allocation_time = static_cast(total_allocation_time_) * kTimeAdjust; size_t total_objects_allocated = GetObjectsAllocatedEver(); size_t total_bytes_allocated = GetBytesAllocatedEver(); if (total_duration != 0) { const double total_seconds = double(total_duration / 1000) / 1000000.0; os << "Total time spent in GC: " << PrettyDuration(total_duration) << "\n"; os << "Mean GC size throughput: " << PrettySize(GetBytesFreedEver() / total_seconds) << "/s\n"; os << "Mean GC object throughput: " << (GetObjectsFreedEver() / total_seconds) << " objects/s\n"; } os << "Total number of allocations: " << total_objects_allocated << "\n"; os << "Total bytes allocated " << PrettySize(total_bytes_allocated) << "\n"; if (measure_allocation_time_) { os << "Total time spent allocating: " << PrettyDuration(allocation_time) << "\n"; os << "Mean allocation time: " << PrettyDuration(allocation_time / total_objects_allocated) << "\n"; } os << "Total mutator paused time: " << PrettyDuration(total_paused_time) << "\n"; os << "Total time waiting for GC to complete: " << PrettyDuration(total_wait_time_) << "\n"; } Heap::~Heap() { if (kDumpGcPerformanceOnShutdown) { DumpGcPerformanceInfo(LOG(INFO)); } STLDeleteElements(&mark_sweep_collectors_); // If we don't reset then the mark stack complains in it's destructor. allocation_stack_->Reset(); live_stack_->Reset(); VLOG(heap) << "~Heap()"; // We can't take the heap lock here because there might be a daemon thread suspended with the // heap lock held. We know though that no non-daemon threads are executing, and we know that // all daemon threads are suspended, and we also know that the threads list have been deleted, so // those threads can't resume. We're the only running thread, and we can do whatever we like... STLDeleteElements(&continuous_spaces_); STLDeleteElements(&discontinuous_spaces_); delete gc_complete_lock_; delete reference_queue_lock_; } space::ContinuousSpace* Heap::FindContinuousSpaceFromObject(const mirror::Object* obj, bool fail_ok) const { // TODO: C++0x auto typedef std::vector::const_iterator It; for (It it = continuous_spaces_.begin(), end = continuous_spaces_.end(); it != end; ++it) { if ((*it)->Contains(obj)) { return *it; } } if (!fail_ok) { LOG(FATAL) << "object " << reinterpret_cast(obj) << " not inside any spaces!"; } return NULL; } space::DiscontinuousSpace* Heap::FindDiscontinuousSpaceFromObject(const mirror::Object* obj, bool fail_ok) const { // TODO: C++0x auto typedef std::vector::const_iterator It; for (It it = discontinuous_spaces_.begin(), end = discontinuous_spaces_.end(); it != end; ++it) { if ((*it)->Contains(obj)) { return *it; } } if (!fail_ok) { LOG(FATAL) << "object " << reinterpret_cast(obj) << " not inside any spaces!"; } return NULL; } space::Space* Heap::FindSpaceFromObject(const mirror::Object* obj, bool fail_ok) const { space::Space* result = FindContinuousSpaceFromObject(obj, true); if (result != NULL) { return result; } return FindDiscontinuousSpaceFromObject(obj, true); } space::ImageSpace* Heap::GetImageSpace() const { // TODO: C++0x auto typedef std::vector::const_iterator It; for (It it = continuous_spaces_.begin(), end = continuous_spaces_.end(); it != end; ++it) { if ((*it)->IsImageSpace()) { return (*it)->AsImageSpace(); } } return NULL; } static void MSpaceChunkCallback(void* start, void* end, size_t used_bytes, void* arg) { size_t chunk_size = reinterpret_cast(end) - reinterpret_cast(start); if (used_bytes < chunk_size) { size_t chunk_free_bytes = chunk_size - used_bytes; size_t& max_contiguous_allocation = *reinterpret_cast(arg); max_contiguous_allocation = std::max(max_contiguous_allocation, chunk_free_bytes); } } mirror::Object* Heap::AllocObject(Thread* self, mirror::Class* c, size_t byte_count) { DCHECK(c == NULL || (c->IsClassClass() && byte_count >= sizeof(mirror::Class)) || (c->IsVariableSize() || c->GetObjectSize() == byte_count) || strlen(ClassHelper(c).GetDescriptor()) == 0); DCHECK_GE(byte_count, sizeof(mirror::Object)); mirror::Object* obj = NULL; size_t size = 0; uint64_t allocation_start = 0; if (measure_allocation_time_) { allocation_start = NanoTime() / kTimeAdjust; } // We need to have a zygote space or else our newly allocated large object can end up in the // Zygote resulting in it being prematurely freed. // We can only do this for primive objects since large objects will not be within the card table // range. This also means that we rely on SetClass not dirtying the object's card. if (byte_count >= large_object_threshold_ && have_zygote_space_ && c->IsPrimitiveArray()) { size = RoundUp(byte_count, kPageSize); obj = Allocate(self, large_object_space_, size); // Make sure that our large object didn't get placed anywhere within the space interval or else // it breaks the immune range. DCHECK(obj == NULL || reinterpret_cast(obj) < continuous_spaces_.front()->Begin() || reinterpret_cast(obj) >= continuous_spaces_.back()->End()); } else { obj = Allocate(self, alloc_space_, byte_count); // Ensure that we did not allocate into a zygote space. DCHECK(obj == NULL || !have_zygote_space_ || !FindSpaceFromObject(obj, false)->IsZygoteSpace()); size = alloc_space_->AllocationSize(obj); } if (LIKELY(obj != NULL)) { obj->SetClass(c); // Record allocation after since we want to use the atomic add for the atomic fence to guard // the SetClass since we do not want the class to appear NULL in another thread. RecordAllocation(size, obj); if (Dbg::IsAllocTrackingEnabled()) { Dbg::RecordAllocation(c, byte_count); } if (static_cast(num_bytes_allocated_) >= concurrent_start_bytes_) { // We already have a request pending, no reason to start more until we update // concurrent_start_bytes_. concurrent_start_bytes_ = std::numeric_limits::max(); // The SirtRef is necessary since the calls in RequestConcurrentGC are a safepoint. SirtRef ref(self, obj); RequestConcurrentGC(self); } VerifyObject(obj); if (measure_allocation_time_) { total_allocation_time_ += NanoTime() / kTimeAdjust - allocation_start; } return obj; } std::ostringstream oss; int64_t total_bytes_free = GetFreeMemory(); uint64_t alloc_space_size = alloc_space_->GetBytesAllocated(); uint64_t large_object_size = large_object_space_->GetObjectsAllocated(); oss << "Failed to allocate a " << byte_count << " byte allocation with " << total_bytes_free << " free bytes; allocation space size " << alloc_space_size << "; large object space size " << large_object_size; // If the allocation failed due to fragmentation, print out the largest continuous allocation. if (total_bytes_free >= byte_count) { size_t max_contiguous_allocation = 0; // TODO: C++0x auto typedef std::vector::const_iterator It; for (It it = continuous_spaces_.begin(), end = continuous_spaces_.end(); it != end; ++it) { space::ContinuousSpace* space = *it; if (space->IsDlMallocSpace()) { space->AsDlMallocSpace()->Walk(MSpaceChunkCallback, &max_contiguous_allocation); } } oss << "; failed due to fragmentation (largest possible contiguous allocation " << max_contiguous_allocation << " bytes)"; } self->ThrowOutOfMemoryError(oss.str().c_str()); return NULL; } bool Heap::IsHeapAddress(const mirror::Object* obj) { // Note: we deliberately don't take the lock here, and mustn't test anything that would // require taking the lock. if (obj == NULL) { return true; } if (UNLIKELY(!IsAligned(obj))) { return false; } return FindSpaceFromObject(obj, true) != NULL; } bool Heap::IsLiveObjectLocked(const mirror::Object* obj) { //Locks::heap_bitmap_lock_->AssertReaderHeld(Thread::Current()); if (obj == NULL) { return false; } if (UNLIKELY(!IsAligned(obj))) { return false; } space::ContinuousSpace* cont_space = FindContinuousSpaceFromObject(obj, true); if (cont_space != NULL) { if (cont_space->GetLiveBitmap()->Test(obj)) { return true; } } else { space::DiscontinuousSpace* disc_space = FindDiscontinuousSpaceFromObject(obj, true); if (disc_space != NULL) { if (disc_space->GetLiveObjects()->Test(obj)) { return true; } } } for (size_t i = 0; i < 5; ++i) { if (allocation_stack_->Contains(const_cast(obj)) || live_stack_->Contains(const_cast(obj))) { return true; } NanoSleep(MsToNs(10)); } return false; } void Heap::VerifyObjectImpl(const mirror::Object* obj) { if (Thread::Current() == NULL || Runtime::Current()->GetThreadList()->GetLockOwner() == Thread::Current()->GetTid()) { return; } VerifyObjectBody(obj); } void Heap::DumpSpaces() { // TODO: C++0x auto typedef std::vector::const_iterator It; for (It it = continuous_spaces_.begin(), end = continuous_spaces_.end(); it != end; ++it) { space::ContinuousSpace* space = *it; accounting::SpaceBitmap* live_bitmap = space->GetLiveBitmap(); accounting::SpaceBitmap* mark_bitmap = space->GetMarkBitmap(); LOG(INFO) << space << " " << *space << "\n" << live_bitmap << " " << *live_bitmap << "\n" << mark_bitmap << " " << *mark_bitmap; } typedef std::vector::const_iterator It2; for (It2 it = discontinuous_spaces_.begin(), end = discontinuous_spaces_.end(); it != end; ++it) { space::DiscontinuousSpace* space = *it; LOG(INFO) << space << " " << *space << "\n"; } } void Heap::VerifyObjectBody(const mirror::Object* obj) { if (UNLIKELY(!IsAligned(obj))) { LOG(FATAL) << "Object isn't aligned: " << obj; } if (UNLIKELY(GetObjectsAllocated() <= 10)) { // Ignore early dawn of the universe verifications. return; } const byte* raw_addr = reinterpret_cast(obj) + mirror::Object::ClassOffset().Int32Value(); const mirror::Class* c = *reinterpret_cast(raw_addr); if (UNLIKELY(c == NULL)) { LOG(FATAL) << "Null class in object: " << obj; } else if (UNLIKELY(!IsAligned(c))) { LOG(FATAL) << "Class isn't aligned: " << c << " in object: " << obj; } // Check obj.getClass().getClass() == obj.getClass().getClass().getClass() // Note: we don't use the accessors here as they have internal sanity checks // that we don't want to run raw_addr = reinterpret_cast(c) + mirror::Object::ClassOffset().Int32Value(); const mirror::Class* c_c = *reinterpret_cast(raw_addr); raw_addr = reinterpret_cast(c_c) + mirror::Object::ClassOffset().Int32Value(); const mirror::Class* c_c_c = *reinterpret_cast(raw_addr); CHECK_EQ(c_c, c_c_c); if (verify_object_mode_ != kVerifyAllFast) { // TODO: the bitmap tests below are racy if VerifyObjectBody is called without the // heap_bitmap_lock_. if (!IsLiveObjectLocked(obj)) { DumpSpaces(); LOG(FATAL) << "Object is dead: " << obj; } if (!IsLiveObjectLocked(c)) { LOG(FATAL) << "Class of object is dead: " << c << " in object: " << obj; } } } void Heap::VerificationCallback(mirror::Object* obj, void* arg) { DCHECK(obj != NULL); reinterpret_cast(arg)->VerifyObjectBody(obj); } void Heap::VerifyHeap() { ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); GetLiveBitmap()->Walk(Heap::VerificationCallback, this); } void Heap::RecordAllocation(size_t size, mirror::Object* obj) { DCHECK(obj != NULL); DCHECK_GT(size, 0u); num_bytes_allocated_ += size; if (Runtime::Current()->HasStatsEnabled()) { RuntimeStats* thread_stats = Thread::Current()->GetStats(); ++thread_stats->allocated_objects; thread_stats->allocated_bytes += size; // TODO: Update these atomically. RuntimeStats* global_stats = Runtime::Current()->GetStats(); ++global_stats->allocated_objects; global_stats->allocated_bytes += size; } // This is safe to do since the GC will never free objects which are neither in the allocation // stack or the live bitmap. while (!allocation_stack_->AtomicPushBack(obj)) { CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false); } } void Heap::RecordFree(size_t freed_objects, size_t freed_bytes) { DCHECK_LE(freed_bytes, static_cast(num_bytes_allocated_)); num_bytes_allocated_ -= freed_bytes; if (Runtime::Current()->HasStatsEnabled()) { RuntimeStats* thread_stats = Thread::Current()->GetStats(); thread_stats->freed_objects += freed_objects; thread_stats->freed_bytes += freed_bytes; // TODO: Do this concurrently. RuntimeStats* global_stats = Runtime::Current()->GetStats(); global_stats->freed_objects += freed_objects; global_stats->freed_bytes += freed_bytes; } } mirror::Object* Heap::TryToAllocate(Thread* self, space::AllocSpace* space, size_t alloc_size, bool grow) { // Should we try to use a CAS here and fix up num_bytes_allocated_ later with AllocationSize? if (num_bytes_allocated_ + alloc_size > max_allowed_footprint_) { // max_allowed_footprint_ <= growth_limit_ so it is safe to check in here. if (num_bytes_allocated_ + alloc_size > growth_limit_) { // Completely out of memory. return NULL; } } return space->Alloc(self, alloc_size); } mirror::Object* Heap::Allocate(Thread* self, space::AllocSpace* space, size_t alloc_size) { // Since allocation can cause a GC which will need to SuspendAll, make sure all allocations are // done in the runnable state where suspension is expected. DCHECK_EQ(self->GetState(), kRunnable); self->AssertThreadSuspensionIsAllowable(); mirror::Object* ptr = TryToAllocate(self, space, alloc_size, false); if (ptr != NULL) { return ptr; } // The allocation failed. If the GC is running, block until it completes, and then retry the // allocation. collector::GcType last_gc = WaitForConcurrentGcToComplete(self); if (last_gc != collector::kGcTypeNone) { // A GC was in progress and we blocked, retry allocation now that memory has been freed. ptr = TryToAllocate(self, space, alloc_size, false); if (ptr != NULL) { return ptr; } } // Loop through our different Gc types and try to Gc until we get enough free memory. for (size_t i = static_cast(last_gc) + 1; i < static_cast(collector::kGcTypeMax); ++i) { bool run_gc = false; collector::GcType gc_type = static_cast(i); switch (gc_type) { case collector::kGcTypeSticky: { const size_t alloc_space_size = alloc_space_->Size(); run_gc = alloc_space_size > min_alloc_space_size_for_sticky_gc_ && alloc_space_->Capacity() - alloc_space_size >= min_remaining_space_for_sticky_gc_; break; } case collector::kGcTypePartial: run_gc = have_zygote_space_; break; case collector::kGcTypeFull: run_gc = true; break; default: break; } if (run_gc) { // If we actually ran a different type of Gc than requested, we can skip the index forwards. collector::GcType gc_type_ran = CollectGarbageInternal(gc_type, kGcCauseForAlloc, false); DCHECK_GE(static_cast(gc_type_ran), i); i = static_cast(gc_type_ran); // Did we free sufficient memory for the allocation to succeed? ptr = TryToAllocate(self, space, alloc_size, false); if (ptr != NULL) { return ptr; } } } // Allocations have failed after GCs; this is an exceptional state. // Try harder, growing the heap if necessary. ptr = TryToAllocate(self, space, alloc_size, true); if (ptr != NULL) { return ptr; } // Most allocations should have succeeded by now, so the heap is really full, really fragmented, // or the requested size is really big. Do another GC, collecting SoftReferences this time. The // VM spec requires that all SoftReferences have been collected and cleared before throwing OOME. // OLD-TODO: wait for the finalizers from the previous GC to finish VLOG(gc) << "Forcing collection of SoftReferences for " << PrettySize(alloc_size) << " allocation"; // We don't need a WaitForConcurrentGcToComplete here either. CollectGarbageInternal(collector::kGcTypeFull, kGcCauseForAlloc, true); return TryToAllocate(self, space, alloc_size, true); } void Heap::SetTargetHeapUtilization(float target) { DCHECK_GT(target, 0.0f); // asserted in Java code DCHECK_LT(target, 1.0f); target_utilization_ = target; } size_t Heap::GetObjectsAllocated() const { size_t total = 0; typedef std::vector::const_iterator It; for (It it = continuous_spaces_.begin(), end = continuous_spaces_.end(); it != end; ++it) { space::ContinuousSpace* space = *it; if (space->IsDlMallocSpace()) { total += space->AsDlMallocSpace()->GetObjectsAllocated(); } } typedef std::vector::const_iterator It2; for (It2 it = discontinuous_spaces_.begin(), end = discontinuous_spaces_.end(); it != end; ++it) { space::DiscontinuousSpace* space = *it; total += space->AsLargeObjectSpace()->GetObjectsAllocated(); } return total; } size_t Heap::GetObjectsAllocatedEver() const { size_t total = 0; typedef std::vector::const_iterator It; for (It it = continuous_spaces_.begin(), end = continuous_spaces_.end(); it != end; ++it) { space::ContinuousSpace* space = *it; if (space->IsDlMallocSpace()) { total += space->AsDlMallocSpace()->GetTotalObjectsAllocated(); } } typedef std::vector::const_iterator It2; for (It2 it = discontinuous_spaces_.begin(), end = discontinuous_spaces_.end(); it != end; ++it) { space::DiscontinuousSpace* space = *it; total += space->AsLargeObjectSpace()->GetTotalObjectsAllocated(); } return total; } size_t Heap::GetBytesAllocatedEver() const { size_t total = 0; typedef std::vector::const_iterator It; for (It it = continuous_spaces_.begin(), end = continuous_spaces_.end(); it != end; ++it) { space::ContinuousSpace* space = *it; if (space->IsDlMallocSpace()) { total += space->AsDlMallocSpace()->GetTotalBytesAllocated(); } } typedef std::vector::const_iterator It2; for (It2 it = discontinuous_spaces_.begin(), end = discontinuous_spaces_.end(); it != end; ++it) { space::DiscontinuousSpace* space = *it; total += space->AsLargeObjectSpace()->GetTotalBytesAllocated(); } return total; } class InstanceCounter { public: InstanceCounter(const std::vector& classes, bool use_is_assignable_from, uint64_t* counts) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) : classes_(classes), use_is_assignable_from_(use_is_assignable_from), counts_(counts) { } void operator()(const mirror::Object* o) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { for (size_t i = 0; i < classes_.size(); ++i) { const mirror::Class* instance_class = o->GetClass(); if (use_is_assignable_from_) { if (instance_class != NULL && classes_[i]->IsAssignableFrom(instance_class)) { ++counts_[i]; } } else { if (instance_class == classes_[i]) { ++counts_[i]; } } } } private: const std::vector& classes_; bool use_is_assignable_from_; uint64_t* const counts_; DISALLOW_COPY_AND_ASSIGN(InstanceCounter); }; void Heap::CountInstances(const std::vector& classes, bool use_is_assignable_from, uint64_t* counts) { // We only want reachable instances, so do a GC. This also ensures that the alloc stack // is empty, so the live bitmap is the only place we need to look. Thread* self = Thread::Current(); self->TransitionFromRunnableToSuspended(kNative); CollectGarbage(false); self->TransitionFromSuspendedToRunnable(); InstanceCounter counter(classes, use_is_assignable_from, counts); ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); GetLiveBitmap()->Visit(counter); } class InstanceCollector { public: InstanceCollector(mirror::Class* c, int32_t max_count, std::vector& instances) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) : class_(c), max_count_(max_count), instances_(instances) { } void operator()(const mirror::Object* o) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { const mirror::Class* instance_class = o->GetClass(); if (instance_class == class_) { if (max_count_ == 0 || instances_.size() < max_count_) { instances_.push_back(const_cast(o)); } } } private: mirror::Class* class_; uint32_t max_count_; std::vector& instances_; DISALLOW_COPY_AND_ASSIGN(InstanceCollector); }; void Heap::GetInstances(mirror::Class* c, int32_t max_count, std::vector& instances) { // We only want reachable instances, so do a GC. This also ensures that the alloc stack // is empty, so the live bitmap is the only place we need to look. Thread* self = Thread::Current(); self->TransitionFromRunnableToSuspended(kNative); CollectGarbage(false); self->TransitionFromSuspendedToRunnable(); InstanceCollector collector(c, max_count, instances); ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); GetLiveBitmap()->Visit(collector); } class ReferringObjectsFinder { public: ReferringObjectsFinder(mirror::Object* object, int32_t max_count, std::vector& referring_objects) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) : object_(object), max_count_(max_count), referring_objects_(referring_objects) { } // For bitmap Visit. // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for // annotalysis on visitors. void operator()(const mirror::Object* o) const NO_THREAD_SAFETY_ANALYSIS { collector::MarkSweep::VisitObjectReferences(o, *this); } // For MarkSweep::VisitObjectReferences. void operator ()(const mirror::Object* referrer, const mirror::Object* object, const MemberOffset&, bool) const { if (object == object_ && (max_count_ == 0 || referring_objects_.size() < max_count_)) { referring_objects_.push_back(const_cast(referrer)); } } private: mirror::Object* object_; uint32_t max_count_; std::vector& referring_objects_; DISALLOW_COPY_AND_ASSIGN(ReferringObjectsFinder); }; void Heap::GetReferringObjects(mirror::Object* o, int32_t max_count, std::vector& referring_objects) { // We only want reachable instances, so do a GC. This also ensures that the alloc stack // is empty, so the live bitmap is the only place we need to look. Thread* self = Thread::Current(); self->TransitionFromRunnableToSuspended(kNative); CollectGarbage(false); self->TransitionFromSuspendedToRunnable(); ReferringObjectsFinder finder(o, max_count, referring_objects); ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); GetLiveBitmap()->Visit(finder); } void Heap::CollectGarbage(bool clear_soft_references) { // Even if we waited for a GC we still need to do another GC since weaks allocated during the // last GC will not have necessarily been cleared. Thread* self = Thread::Current(); WaitForConcurrentGcToComplete(self); CollectGarbageInternal(collector::kGcTypeFull, kGcCauseExplicit, clear_soft_references); } void Heap::PreZygoteFork() { static Mutex zygote_creation_lock_("zygote creation lock", kZygoteCreationLock); // Do this before acquiring the zygote creation lock so that we don't get lock order violations. CollectGarbage(false); Thread* self = Thread::Current(); MutexLock mu(self, zygote_creation_lock_); // Try to see if we have any Zygote spaces. if (have_zygote_space_) { return; } VLOG(heap) << "Starting PreZygoteFork with alloc space size " << PrettySize(alloc_space_->Size()); { // Flush the alloc stack. WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); FlushAllocStack(); } // Turns the current alloc space into a Zygote space and obtain the new alloc space composed // of the remaining available heap memory. space::DlMallocSpace* zygote_space = alloc_space_; alloc_space_ = zygote_space->CreateZygoteSpace(); alloc_space_->SetFootprintLimit(alloc_space_->Capacity()); // Change the GC retention policy of the zygote space to only collect when full. zygote_space->SetGcRetentionPolicy(space::kGcRetentionPolicyFullCollect); AddContinuousSpace(alloc_space_); have_zygote_space_ = true; // Reset the cumulative loggers since we now have a few additional timing phases. // TODO: C++0x typedef std::vector::const_iterator It; for (It it = mark_sweep_collectors_.begin(), end = mark_sweep_collectors_.end(); it != end; ++it) { (*it)->ResetCumulativeStatistics(); } } void Heap::FlushAllocStack() { MarkAllocStack(alloc_space_->GetLiveBitmap(), large_object_space_->GetLiveObjects(), allocation_stack_.get()); allocation_stack_->Reset(); } void Heap::MarkAllocStack(accounting::SpaceBitmap* bitmap, accounting::SpaceSetMap* large_objects, accounting::ObjectStack* stack) { mirror::Object** limit = stack->End(); for (mirror::Object** it = stack->Begin(); it != limit; ++it) { const mirror::Object* obj = *it; DCHECK(obj != NULL); if (LIKELY(bitmap->HasAddress(obj))) { bitmap->Set(obj); } else { large_objects->Set(obj); } } } void Heap::UnMarkAllocStack(accounting::SpaceBitmap* bitmap, accounting::SpaceSetMap* large_objects, accounting::ObjectStack* stack) { mirror::Object** limit = stack->End(); for (mirror::Object** it = stack->Begin(); it != limit; ++it) { const mirror::Object* obj = *it; DCHECK(obj != NULL); if (LIKELY(bitmap->HasAddress(obj))) { bitmap->Clear(obj); } else { large_objects->Clear(obj); } } } collector::GcType Heap::CollectGarbageInternal(collector::GcType gc_type, GcCause gc_cause, bool clear_soft_references) { Thread* self = Thread::Current(); switch (gc_cause) { case kGcCauseForAlloc: ATRACE_BEGIN("GC (alloc)"); break; case kGcCauseBackground: ATRACE_BEGIN("GC (background)"); break; case kGcCauseExplicit: ATRACE_BEGIN("GC (explicit)"); break; } ScopedThreadStateChange tsc(self, kWaitingPerformingGc); Locks::mutator_lock_->AssertNotHeld(self); if (self->IsHandlingStackOverflow()) { LOG(WARNING) << "Performing GC on a thread that is handling a stack overflow."; } // Ensure there is only one GC at a time. bool start_collect = false; while (!start_collect) { { MutexLock mu(self, *gc_complete_lock_); if (!is_gc_running_) { is_gc_running_ = true; start_collect = true; } } if (!start_collect) { WaitForConcurrentGcToComplete(self); // TODO: if another thread beat this one to do the GC, perhaps we should just return here? // Not doing at the moment to ensure soft references are cleared. } } gc_complete_lock_->AssertNotHeld(self); if (gc_cause == kGcCauseForAlloc && Runtime::Current()->HasStatsEnabled()) { ++Runtime::Current()->GetStats()->gc_for_alloc_count; ++Thread::Current()->GetStats()->gc_for_alloc_count; } uint64_t gc_start_time_ns = NanoTime(); uint64_t gc_start_size = GetBytesAllocated(); // Approximate allocation rate in bytes / second. if (UNLIKELY(gc_start_time_ns == last_gc_time_ns_)) { LOG(WARNING) << "Timers are broken (gc_start_time == last_gc_time_)."; } uint64_t ms_delta = NsToMs(gc_start_time_ns - last_gc_time_ns_); if (ms_delta != 0) { allocation_rate_ = ((gc_start_size - last_gc_size_) * 1000) / ms_delta; VLOG(heap) << "Allocation rate: " << PrettySize(allocation_rate_) << "/s"; } if (gc_type == collector::kGcTypeSticky && alloc_space_->Size() < min_alloc_space_size_for_sticky_gc_) { gc_type = collector::kGcTypePartial; } DCHECK_LT(gc_type, collector::kGcTypeMax); DCHECK_NE(gc_type, collector::kGcTypeNone); collector::MarkSweep* collector = NULL; typedef std::vector::iterator It; for (It it = mark_sweep_collectors_.begin(), end = mark_sweep_collectors_.end(); it != end; ++it) { collector::MarkSweep* cur_collector = *it; if (cur_collector->IsConcurrent() == concurrent_gc_ && cur_collector->GetGcType() == gc_type) { collector = cur_collector; break; } } CHECK(collector != NULL) << "Could not find garbage collector with concurrent=" << concurrent_gc_ << " and type=" << gc_type; collector->clear_soft_references_ = clear_soft_references; collector->Run(); total_objects_freed_ever_ += collector->GetFreedObjects(); total_bytes_freed_ever_ += collector->GetFreedBytes(); const size_t duration = collector->GetDurationNs(); std::vector pauses = collector->GetPauseTimes(); bool was_slow = duration > kSlowGcThreshold || (gc_cause == kGcCauseForAlloc && duration > kLongGcPauseThreshold); for (size_t i = 0; i < pauses.size(); ++i) { if (pauses[i] > kLongGcPauseThreshold) { was_slow = true; } } if (was_slow) { const size_t percent_free = GetPercentFree(); const size_t current_heap_size = GetBytesAllocated(); const size_t total_memory = GetTotalMemory(); std::ostringstream pause_string; for (size_t i = 0; i < pauses.size(); ++i) { pause_string << PrettyDuration((pauses[i] / 1000) * 1000) << ((i != pauses.size() - 1) ? ", " : ""); } LOG(INFO) << gc_cause << " " << collector->GetName() << "GC freed " << PrettySize(collector->GetFreedBytes()) << ", " << percent_free << "% free, " << PrettySize(current_heap_size) << "/" << PrettySize(total_memory) << ", " << "paused " << pause_string.str() << " total " << PrettyDuration((duration / 1000) * 1000); if (VLOG_IS_ON(heap)) { LOG(INFO) << Dumpable(collector->GetTimings()); } } { MutexLock mu(self, *gc_complete_lock_); is_gc_running_ = false; last_gc_type_ = gc_type; // Wake anyone who may have been waiting for the GC to complete. gc_complete_cond_->Broadcast(self); } // Inform DDMS that a GC completed. ATRACE_END(); Dbg::GcDidFinish(); return gc_type; } void Heap::UpdateAndMarkModUnion(collector::MarkSweep* mark_sweep, base::NewTimingLogger& timings, collector::GcType gc_type) { if (gc_type == collector::kGcTypeSticky) { // Don't need to do anything for mod union table in this case since we are only scanning dirty // cards. return; } // Update zygote mod union table. if (gc_type == collector::kGcTypePartial) { timings.NewSplit("UpdateZygoteModUnionTable"); zygote_mod_union_table_->Update(); timings.NewSplit("ZygoteMarkReferences"); zygote_mod_union_table_->MarkReferences(mark_sweep); } // Processes the cards we cleared earlier and adds their objects into the mod-union table. timings.NewSplit("UpdateModUnionTable"); image_mod_union_table_->Update(); // Scans all objects in the mod-union table. timings.NewSplit("MarkImageToAllocSpaceReferences"); image_mod_union_table_->MarkReferences(mark_sweep); } static void RootMatchesObjectVisitor(const mirror::Object* root, void* arg) { mirror::Object* obj = reinterpret_cast(arg); if (root == obj) { LOG(INFO) << "Object " << obj << " is a root"; } } class ScanVisitor { public: void operator ()(const mirror::Object* obj) const { LOG(INFO) << "Would have rescanned object " << obj; } }; // Verify a reference from an object. class VerifyReferenceVisitor { public: VerifyReferenceVisitor(Heap* heap) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) : heap_(heap), failed_(false) { } bool Failed() const { return failed_; } // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for smarter // analysis on visitors. void operator ()(const mirror::Object* obj, const mirror::Object* ref, const MemberOffset& offset, bool /* is_static */) const NO_THREAD_SAFETY_ANALYSIS { // Verify that the reference is live. if (UNLIKELY(ref != NULL && !IsLive(ref))) { accounting::CardTable* card_table = heap_->GetCardTable(); accounting::ObjectStack* alloc_stack = heap_->allocation_stack_.get(); accounting::ObjectStack* live_stack = heap_->live_stack_.get(); if (obj != NULL) { byte* card_addr = card_table->CardFromAddr(obj); LOG(ERROR) << "Object " << obj << " references dead object " << ref << " at offset " << offset << "\nIsDirty = " << (*card_addr == accounting::CardTable::kCardDirty) << "\nObj type " << PrettyTypeOf(obj) << "\nRef type " << PrettyTypeOf(ref); card_table->CheckAddrIsInCardTable(reinterpret_cast(obj)); void* cover_begin = card_table->AddrFromCard(card_addr); void* cover_end = reinterpret_cast(reinterpret_cast(cover_begin) + accounting::CardTable::kCardSize); LOG(ERROR) << "Card " << reinterpret_cast(card_addr) << " covers " << cover_begin << "-" << cover_end; accounting::SpaceBitmap* bitmap = heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(obj); // Print out how the object is live. if (bitmap != NULL && bitmap->Test(obj)) { LOG(ERROR) << "Object " << obj << " found in live bitmap"; } if (alloc_stack->Contains(const_cast(obj))) { LOG(ERROR) << "Object " << obj << " found in allocation stack"; } if (live_stack->Contains(const_cast(obj))) { LOG(ERROR) << "Object " << obj << " found in live stack"; } // Attempt to see if the card table missed the reference. ScanVisitor scan_visitor; byte* byte_cover_begin = reinterpret_cast(card_table->AddrFromCard(card_addr)); card_table->Scan(bitmap, byte_cover_begin, byte_cover_begin + accounting::CardTable::kCardSize, scan_visitor, VoidFunctor()); // Search to see if any of the roots reference our object. void* arg = const_cast(reinterpret_cast(obj)); Runtime::Current()->VisitRoots(&RootMatchesObjectVisitor, arg, false, false); // Search to see if any of the roots reference our reference. arg = const_cast(reinterpret_cast(ref)); Runtime::Current()->VisitRoots(&RootMatchesObjectVisitor, arg, false, false); } else { LOG(ERROR) << "Root references dead object " << ref << "\nRef type " << PrettyTypeOf(ref); } if (alloc_stack->Contains(const_cast(ref))) { LOG(ERROR) << "Reference " << ref << " found in allocation stack!"; } if (live_stack->Contains(const_cast(ref))) { LOG(ERROR) << "Reference " << ref << " found in live stack!"; } heap_->image_mod_union_table_->Dump(LOG(ERROR) << "Image mod-union table: "); heap_->zygote_mod_union_table_->Dump(LOG(ERROR) << "Zygote mod-union table: "); failed_ = true; } } bool IsLive(const mirror::Object* obj) const NO_THREAD_SAFETY_ANALYSIS { return heap_->IsLiveObjectLocked(obj); } static void VerifyRoots(const mirror::Object* root, void* arg) { VerifyReferenceVisitor* visitor = reinterpret_cast(arg); (*visitor)(NULL, root, MemberOffset(0), true); } private: Heap* const heap_; mutable bool failed_; }; // Verify all references within an object, for use with HeapBitmap::Visit. class VerifyObjectVisitor { public: VerifyObjectVisitor(Heap* heap) : heap_(heap), failed_(false) { } void operator ()(const mirror::Object* obj) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) { // Note: we are verifying the references in obj but not obj itself, this is because obj must // be live or else how did we find it in the live bitmap? VerifyReferenceVisitor visitor(heap_); collector::MarkSweep::VisitObjectReferences(obj, visitor); failed_ = failed_ || visitor.Failed(); } bool Failed() const { return failed_; } private: Heap* const heap_; mutable bool failed_; }; // Must do this with mutators suspended since we are directly accessing the allocation stacks. bool Heap::VerifyHeapReferences() { Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current()); // Lets sort our allocation stacks so that we can efficiently binary search them. allocation_stack_->Sort(); live_stack_->Sort(); // Perform the verification. VerifyObjectVisitor visitor(this); Runtime::Current()->VisitRoots(VerifyReferenceVisitor::VerifyRoots, &visitor, false, false); GetLiveBitmap()->Visit(visitor); // We don't want to verify the objects in the allocation stack since they themselves may be // pointing to dead objects if they are not reachable. if (visitor.Failed()) { DumpSpaces(); return false; } return true; } class VerifyReferenceCardVisitor { public: VerifyReferenceCardVisitor(Heap* heap, bool* failed) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) : heap_(heap), failed_(failed) { } // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for // annotalysis on visitors. void operator ()(const mirror::Object* obj, const mirror::Object* ref, const MemberOffset& offset, bool is_static) const NO_THREAD_SAFETY_ANALYSIS { // Filter out class references since changing an object's class does not mark the card as dirty. // Also handles large objects, since the only reference they hold is a class reference. if (ref != NULL && !ref->IsClass()) { accounting::CardTable* card_table = heap_->GetCardTable(); // If the object is not dirty and it is referencing something in the live stack other than // class, then it must be on a dirty card. if (!card_table->AddrIsInCardTable(obj)) { LOG(ERROR) << "Object " << obj << " is not in the address range of the card table"; *failed_ = true; } else if (!card_table->IsDirty(obj)) { // Card should be either kCardDirty if it got re-dirtied after we aged it, or // kCardDirty - 1 if it didnt get touched since we aged it. accounting::ObjectStack* live_stack = heap_->live_stack_.get(); if (live_stack->Contains(const_cast(ref))) { if (live_stack->Contains(const_cast(obj))) { LOG(ERROR) << "Object " << obj << " found in live stack"; } if (heap_->GetLiveBitmap()->Test(obj)) { LOG(ERROR) << "Object " << obj << " found in live bitmap"; } LOG(ERROR) << "Object " << obj << " " << PrettyTypeOf(obj) << " references " << ref << " " << PrettyTypeOf(ref) << " in live stack"; // Print which field of the object is dead. if (!obj->IsObjectArray()) { const mirror::Class* klass = is_static ? obj->AsClass() : obj->GetClass(); CHECK(klass != NULL); const mirror::ObjectArray* fields = is_static ? klass->GetSFields() : klass->GetIFields(); CHECK(fields != NULL); for (int32_t i = 0; i < fields->GetLength(); ++i) { const mirror::Field* cur = fields->Get(i); if (cur->GetOffset().Int32Value() == offset.Int32Value()) { LOG(ERROR) << (is_static ? "Static " : "") << "field in the live stack is " << PrettyField(cur); break; } } } else { const mirror::ObjectArray* object_array = obj->AsObjectArray(); for (int32_t i = 0; i < object_array->GetLength(); ++i) { if (object_array->Get(i) == ref) { LOG(ERROR) << (is_static ? "Static " : "") << "obj[" << i << "] = ref"; } } } *failed_ = true; } } } } private: Heap* const heap_; bool* const failed_; }; class VerifyLiveStackReferences { public: VerifyLiveStackReferences(Heap* heap) : heap_(heap), failed_(false) { } void operator ()(const mirror::Object* obj) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) { VerifyReferenceCardVisitor visitor(heap_, const_cast(&failed_)); collector::MarkSweep::VisitObjectReferences(obj, visitor); } bool Failed() const { return failed_; } private: Heap* const heap_; bool failed_; }; bool Heap::VerifyMissingCardMarks() { Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current()); // We need to sort the live stack since we binary search it. live_stack_->Sort(); VerifyLiveStackReferences visitor(this); GetLiveBitmap()->Visit(visitor); // We can verify objects in the live stack since none of these should reference dead objects. for (mirror::Object** it = live_stack_->Begin(); it != live_stack_->End(); ++it) { visitor(*it); } if (visitor.Failed()) { DumpSpaces(); return false; } return true; } void Heap::SwapStacks() { allocation_stack_.swap(live_stack_); // Sort the live stack so that we can quickly binary search it later. if (verify_object_mode_ > kNoHeapVerification) { live_stack_->Sort(); } } void Heap::ProcessCards(base::NewTimingLogger& timings) { // Clear cards and keep track of cards cleared in the mod-union table. typedef std::vector::iterator It; for (It it = continuous_spaces_.begin(), end = continuous_spaces_.end(); it != end; ++it) { space::ContinuousSpace* space = *it; if (space->IsImageSpace()) { timings.NewSplit("ModUnionClearCards"); image_mod_union_table_->ClearCards(space); } else if (space->IsZygoteSpace()) { timings.NewSplit("ZygoteModUnionClearCards"); zygote_mod_union_table_->ClearCards(space); } else { // No mod union table for the AllocSpace. Age the cards so that the GC knows that these cards // were dirty before the GC started. timings.NewSplit("AllocSpaceClearCards"); card_table_->ModifyCardsAtomic(space->Begin(), space->End(), AgeCardVisitor(), VoidFunctor()); } } } void Heap::PreGcVerification(collector::GarbageCollector* gc) { ThreadList* thread_list = Runtime::Current()->GetThreadList(); Thread* self = Thread::Current(); if (verify_pre_gc_heap_) { thread_list->SuspendAll(); { ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); if (!VerifyHeapReferences()) { LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed"; } } thread_list->ResumeAll(); } // Check that all objects which reference things in the live stack are on dirty cards. if (verify_missing_card_marks_) { thread_list->SuspendAll(); { ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); SwapStacks(); // Sort the live stack so that we can quickly binary search it later. if (!VerifyMissingCardMarks()) { LOG(FATAL) << "Pre " << gc->GetName() << " missing card mark verification failed"; } SwapStacks(); } thread_list->ResumeAll(); } if (verify_mod_union_table_) { thread_list->SuspendAll(); ReaderMutexLock reader_lock(self, *Locks::heap_bitmap_lock_); zygote_mod_union_table_->Update(); zygote_mod_union_table_->Verify(); image_mod_union_table_->Update(); image_mod_union_table_->Verify(); thread_list->ResumeAll(); } } void Heap::PreSweepingGcVerification(collector::GarbageCollector* gc) { ThreadList* thread_list = Runtime::Current()->GetThreadList(); // Called before sweeping occurs since we want to make sure we are not going so reclaim any // reachable objects. if (verify_post_gc_heap_) { Thread* self = Thread::Current(); CHECK_NE(self->GetState(), kRunnable); Locks::mutator_lock_->SharedUnlock(self); thread_list->SuspendAll(); { WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); // Swapping bound bitmaps does nothing. gc->SwapBitmaps(); if (!VerifyHeapReferences()) { LOG(FATAL) << "Post " << gc->GetName() << "GC verification failed"; } gc->SwapBitmaps(); } thread_list->ResumeAll(); Locks::mutator_lock_->SharedLock(self); } } void Heap::PostGcVerification(collector::GarbageCollector* gc) { Thread* self = Thread::Current(); if (verify_system_weaks_) { ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); collector::MarkSweep* mark_sweep = down_cast(gc); mark_sweep->VerifySystemWeaks(); } } collector::GcType Heap::WaitForConcurrentGcToComplete(Thread* self) { collector::GcType last_gc_type = collector::kGcTypeNone; if (concurrent_gc_) { ATRACE_BEGIN("GC: Wait For Concurrent"); bool do_wait; uint64_t wait_start = NanoTime(); { // Check if GC is running holding gc_complete_lock_. MutexLock mu(self, *gc_complete_lock_); do_wait = is_gc_running_; } if (do_wait) { uint64_t wait_time; // We must wait, change thread state then sleep on gc_complete_cond_; ScopedThreadStateChange tsc(Thread::Current(), kWaitingForGcToComplete); { MutexLock mu(self, *gc_complete_lock_); while (is_gc_running_) { gc_complete_cond_->Wait(self); } last_gc_type = last_gc_type_; wait_time = NanoTime() - wait_start;; total_wait_time_ += wait_time; } if (wait_time > kLongGcPauseThreshold) { LOG(INFO) << "WaitForConcurrentGcToComplete blocked for " << PrettyDuration(wait_time); } } ATRACE_END(); } return last_gc_type; } void Heap::DumpForSigQuit(std::ostream& os) { os << "Heap: " << GetPercentFree() << "% free, " << PrettySize(GetBytesAllocated()) << "/" << PrettySize(GetTotalMemory()) << "; " << GetObjectsAllocated() << " objects\n"; DumpGcPerformanceInfo(os); } size_t Heap::GetPercentFree() { return static_cast(100.0f * static_cast(GetFreeMemory()) / GetTotalMemory()); } void Heap::SetIdealFootprint(size_t max_allowed_footprint) { if (max_allowed_footprint > GetMaxMemory()) { VLOG(gc) << "Clamp target GC heap from " << PrettySize(max_allowed_footprint) << " to " << PrettySize(GetMaxMemory()); max_allowed_footprint = GetMaxMemory(); } max_allowed_footprint_ = max_allowed_footprint; } void Heap::GrowForUtilization(collector::GcType gc_type, uint64_t gc_duration) { // We know what our utilization is at this moment. // This doesn't actually resize any memory. It just lets the heap grow more when necessary. const size_t bytes_allocated = GetBytesAllocated(); last_gc_size_ = bytes_allocated; last_gc_time_ns_ = NanoTime(); size_t target_size; if (gc_type != collector::kGcTypeSticky) { // Grow the heap for non sticky GC. target_size = bytes_allocated / GetTargetHeapUtilization(); if (target_size > bytes_allocated + max_free_) { target_size = bytes_allocated + max_free_; } else if (target_size < bytes_allocated + min_free_) { target_size = bytes_allocated + min_free_; } next_gc_type_ = collector::kGcTypeSticky; } else { // Based on how close the current heap size is to the target size, decide // whether or not to do a partial or sticky GC next. if (bytes_allocated + min_free_ <= max_allowed_footprint_) { next_gc_type_ = collector::kGcTypeSticky; } else { next_gc_type_ = collector::kGcTypePartial; } // If we have freed enough memory, shrink the heap back down. if (bytes_allocated + max_free_ < max_allowed_footprint_) { target_size = bytes_allocated + max_free_; } else { target_size = std::max(bytes_allocated, max_allowed_footprint_); } } SetIdealFootprint(target_size); // Calculate when to perform the next ConcurrentGC. if (concurrent_gc_) { // Calculate the estimated GC duration. double gc_duration_seconds = NsToMs(gc_duration) / 1000.0; // Estimate how many remaining bytes we will have when we need to start the next GC. size_t remaining_bytes = allocation_rate_ * gc_duration_seconds; remaining_bytes = std::max(remaining_bytes, kMinConcurrentRemainingBytes); if (UNLIKELY(remaining_bytes > max_allowed_footprint_)) { // A never going to happen situation that from the estimated allocation rate we will exceed // the applications entire footprint with the given estimated allocation rate. Schedule // another GC straight away. concurrent_start_bytes_ = bytes_allocated; } else { // Start a concurrent GC when we get close to the estimated remaining bytes. When the // allocation rate is very high, remaining_bytes could tell us that we should start a GC // right away. concurrent_start_bytes_ = std::max(max_allowed_footprint_ - remaining_bytes, bytes_allocated); } DCHECK_LE(concurrent_start_bytes_, max_allowed_footprint_); DCHECK_LE(max_allowed_footprint_, growth_limit_); } } void Heap::ClearGrowthLimit() { growth_limit_ = capacity_; alloc_space_->ClearGrowthLimit(); } void Heap::SetReferenceOffsets(MemberOffset reference_referent_offset, MemberOffset reference_queue_offset, MemberOffset reference_queueNext_offset, MemberOffset reference_pendingNext_offset, MemberOffset finalizer_reference_zombie_offset) { reference_referent_offset_ = reference_referent_offset; reference_queue_offset_ = reference_queue_offset; reference_queueNext_offset_ = reference_queueNext_offset; reference_pendingNext_offset_ = reference_pendingNext_offset; finalizer_reference_zombie_offset_ = finalizer_reference_zombie_offset; CHECK_NE(reference_referent_offset_.Uint32Value(), 0U); CHECK_NE(reference_queue_offset_.Uint32Value(), 0U); CHECK_NE(reference_queueNext_offset_.Uint32Value(), 0U); CHECK_NE(reference_pendingNext_offset_.Uint32Value(), 0U); CHECK_NE(finalizer_reference_zombie_offset_.Uint32Value(), 0U); } mirror::Object* Heap::GetReferenceReferent(mirror::Object* reference) { DCHECK(reference != NULL); DCHECK_NE(reference_referent_offset_.Uint32Value(), 0U); return reference->GetFieldObject(reference_referent_offset_, true); } void Heap::ClearReferenceReferent(mirror::Object* reference) { DCHECK(reference != NULL); DCHECK_NE(reference_referent_offset_.Uint32Value(), 0U); reference->SetFieldObject(reference_referent_offset_, NULL, true); } // Returns true if the reference object has not yet been enqueued. bool Heap::IsEnqueuable(const mirror::Object* ref) { DCHECK(ref != NULL); const mirror::Object* queue = ref->GetFieldObject(reference_queue_offset_, false); const mirror::Object* queue_next = ref->GetFieldObject(reference_queueNext_offset_, false); return (queue != NULL) && (queue_next == NULL); } void Heap::EnqueueReference(mirror::Object* ref, mirror::Object** cleared_reference_list) { DCHECK(ref != NULL); CHECK(ref->GetFieldObject(reference_queue_offset_, false) != NULL); CHECK(ref->GetFieldObject(reference_queueNext_offset_, false) == NULL); EnqueuePendingReference(ref, cleared_reference_list); } void Heap::EnqueuePendingReference(mirror::Object* ref, mirror::Object** list) { DCHECK(ref != NULL); DCHECK(list != NULL); // TODO: Remove this lock, use atomic stacks for storing references. MutexLock mu(Thread::Current(), *reference_queue_lock_); if (*list == NULL) { ref->SetFieldObject(reference_pendingNext_offset_, ref, false); *list = ref; } else { mirror::Object* head = (*list)->GetFieldObject(reference_pendingNext_offset_, false); ref->SetFieldObject(reference_pendingNext_offset_, head, false); (*list)->SetFieldObject(reference_pendingNext_offset_, ref, false); } } mirror::Object* Heap::DequeuePendingReference(mirror::Object** list) { DCHECK(list != NULL); DCHECK(*list != NULL); mirror::Object* head = (*list)->GetFieldObject(reference_pendingNext_offset_, false); mirror::Object* ref; // Note: the following code is thread-safe because it is only called from ProcessReferences which // is single threaded. if (*list == head) { ref = *list; *list = NULL; } else { mirror::Object* next = head->GetFieldObject(reference_pendingNext_offset_, false); (*list)->SetFieldObject(reference_pendingNext_offset_, next, false); ref = head; } ref->SetFieldObject(reference_pendingNext_offset_, NULL, false); return ref; } void Heap::AddFinalizerReference(Thread* self, mirror::Object* object) { ScopedObjectAccess soa(self); JValue result; ArgArray arg_array(NULL, 0); arg_array.Append(reinterpret_cast(object)); soa.DecodeMethod(WellKnownClasses::java_lang_ref_FinalizerReference_add)->Invoke(self, arg_array.GetArray(), arg_array.GetNumBytes(), &result, 'V'); } void Heap::EnqueueClearedReferences(mirror::Object** cleared) { DCHECK(cleared != NULL); if (*cleared != NULL) { // When a runtime isn't started there are no reference queues to care about so ignore. if (LIKELY(Runtime::Current()->IsStarted())) { ScopedObjectAccess soa(Thread::Current()); JValue result; ArgArray arg_array(NULL, 0); arg_array.Append(reinterpret_cast(*cleared)); soa.DecodeMethod(WellKnownClasses::java_lang_ref_ReferenceQueue_add)->Invoke(soa.Self(), arg_array.GetArray(), arg_array.GetNumBytes(), &result, 'V'); } *cleared = NULL; } } void Heap::RequestConcurrentGC(Thread* self) { // Make sure that we can do a concurrent GC. Runtime* runtime = Runtime::Current(); DCHECK(concurrent_gc_); if (runtime == NULL || !runtime->IsFinishedStarting() || !runtime->IsConcurrentGcEnabled()) { return; } { MutexLock mu(self, *Locks::runtime_shutdown_lock_); if (runtime->IsShuttingDown()) { return; } } if (self->IsHandlingStackOverflow()) { return; } JNIEnv* env = self->GetJniEnv(); DCHECK(WellKnownClasses::java_lang_Daemons != NULL); DCHECK(WellKnownClasses::java_lang_Daemons_requestGC != NULL); env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons, WellKnownClasses::java_lang_Daemons_requestGC); CHECK(!env->ExceptionCheck()); } void Heap::ConcurrentGC(Thread* self) { { MutexLock mu(self, *Locks::runtime_shutdown_lock_); if (Runtime::Current()->IsShuttingDown()) { return; } } // Wait for any GCs currently running to finish. if (WaitForConcurrentGcToComplete(self) == collector::kGcTypeNone) { CollectGarbageInternal(next_gc_type_, kGcCauseBackground, false); } } void Heap::RequestHeapTrim() { // GC completed and now we must decide whether to request a heap trim (advising pages back to the // kernel) or not. Issuing a request will also cause trimming of the libc heap. As a trim scans // a space it will hold its lock and can become a cause of jank. // Note, the large object space self trims and the Zygote space was trimmed and unchanging since // forking. // We don't have a good measure of how worthwhile a trim might be. We can't use the live bitmap // because that only marks object heads, so a large array looks like lots of empty space. We // don't just call dlmalloc all the time, because the cost of an _attempted_ trim is proportional // to utilization (which is probably inversely proportional to how much benefit we can expect). // We could try mincore(2) but that's only a measure of how many pages we haven't given away, // not how much use we're making of those pages. uint64_t ms_time = MilliTime(); float utilization = static_cast(alloc_space_->GetBytesAllocated()) / alloc_space_->Size(); if ((utilization > 0.75f) || ((ms_time - last_trim_time_ms_) < 2 * 1000)) { // Don't bother trimming the alloc space if it's more than 75% utilized, or if a // heap trim occurred in the last two seconds. return; } Thread* self = Thread::Current(); { MutexLock mu(self, *Locks::runtime_shutdown_lock_); Runtime* runtime = Runtime::Current(); if (runtime == NULL || !runtime->IsFinishedStarting() || runtime->IsShuttingDown()) { // Heap trimming isn't supported without a Java runtime or Daemons (such as at dex2oat time) // Also: we do not wish to start a heap trim if the runtime is shutting down (a racy check // as we don't hold the lock while requesting the trim). return; } } SchedPolicy policy; get_sched_policy(self->GetTid(), &policy); if (policy == SP_FOREGROUND || policy == SP_AUDIO_APP) { // Don't trim the heap if we are a foreground or audio app. return; } last_trim_time_ms_ = ms_time; JNIEnv* env = self->GetJniEnv(); DCHECK(WellKnownClasses::java_lang_Daemons != NULL); DCHECK(WellKnownClasses::java_lang_Daemons_requestHeapTrim != NULL); env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons, WellKnownClasses::java_lang_Daemons_requestHeapTrim); CHECK(!env->ExceptionCheck()); } size_t Heap::Trim() { // Handle a requested heap trim on a thread outside of the main GC thread. return alloc_space_->Trim(); } } // namespace gc } // namespace art