/* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_GC_HEAP_H_ #define ART_RUNTIME_GC_HEAP_H_ #include #include #include #include "atomic.h" #include "base/timing_logger.h" #include "gc/accounting/atomic_stack.h" #include "gc/accounting/card_table.h" #include "gc/gc_cause.h" #include "gc/collector/gc_type.h" #include "gc/collector_type.h" #include "globals.h" #include "gtest/gtest.h" #include "jni.h" #include "object_callbacks.h" #include "offsets.h" #include "reference_queue.h" #include "safe_map.h" #include "thread_pool.h" #include "verify_object.h" namespace art { class ConditionVariable; class Mutex; class StackVisitor; class Thread; class TimingLogger; namespace mirror { class Class; class Object; } // namespace mirror namespace gc { namespace accounting { class HeapBitmap; class ModUnionTable; class ObjectSet; class RememberedSet; } // namespace accounting namespace collector { class GarbageCollector; class MarkSweep; class SemiSpace; } // namespace collector namespace space { class AllocSpace; class BumpPointerSpace; class DiscontinuousSpace; class DlMallocSpace; class ImageSpace; class LargeObjectSpace; class MallocSpace; class RosAllocSpace; class Space; class SpaceTest; class ContinuousMemMapAllocSpace; } // namespace space class AgeCardVisitor { public: byte operator()(byte card) const { if (card == accounting::CardTable::kCardDirty) { return card - 1; } else { return 0; } } }; // Different types of allocators. enum AllocatorType { kAllocatorTypeBumpPointer, // Use BumpPointer allocator, has entrypoints. kAllocatorTypeTLAB, // Use TLAB allocator, has entrypoints. kAllocatorTypeRosAlloc, // Use RosAlloc allocator, has entrypoints. kAllocatorTypeDlMalloc, // Use dlmalloc allocator, has entrypoints. kAllocatorTypeNonMoving, // Special allocator for non moving objects, doesn't have entrypoints. kAllocatorTypeLOS, // Large object space, also doesn't have entrypoints. }; // If true, use rosalloc/RosAllocSpace instead of dlmalloc/DlMallocSpace static constexpr bool kUseRosAlloc = true; // If true, use thread-local allocation stack. static constexpr bool kUseThreadLocalAllocationStack = true; // The process state passed in from the activity manager, used to determine when to do trimming // and compaction. enum ProcessState { kProcessStateJankPerceptible = 0, kProcessStateJankImperceptible = 1, }; std::ostream& operator<<(std::ostream& os, const ProcessState& process_state); class Heap { public: // If true, measure the total allocation time. static constexpr bool kMeasureAllocationTime = false; // Primitive arrays larger than this size are put in the large object space. static constexpr size_t kDefaultLargeObjectThreshold = 3 * kPageSize; static constexpr size_t kDefaultStartingSize = kPageSize; static constexpr size_t kDefaultInitialSize = 2 * MB; static constexpr size_t kDefaultMaximumSize = 32 * MB; static constexpr size_t kDefaultMaxFree = 2 * MB; static constexpr size_t kDefaultMinFree = kDefaultMaxFree / 4; static constexpr size_t kDefaultLongPauseLogThreshold = MsToNs(5); static constexpr size_t kDefaultLongGCLogThreshold = MsToNs(100); static constexpr size_t kDefaultTLABSize = 256 * KB; // Default target utilization. static constexpr double kDefaultTargetUtilization = 0.5; // Used so that we don't overflow the allocation time atomic integer. static constexpr size_t kTimeAdjust = 1024; // How often we allow heap trimming to happen (nanoseconds). static constexpr uint64_t kHeapTrimWait = MsToNs(5000); // How long we wait after a transition request to perform a collector transition (nanoseconds). static constexpr uint64_t kCollectorTransitionWait = MsToNs(5000); // Create a heap with the requested sizes. The possible empty // image_file_names names specify Spaces to load based on // ImageWriter output. explicit Heap(size_t initial_size, size_t growth_limit, size_t min_free, size_t max_free, double target_utilization, size_t capacity, const std::string& original_image_file_name, CollectorType post_zygote_collector_type, CollectorType background_collector_type, size_t parallel_gc_threads, size_t conc_gc_threads, bool low_memory_mode, size_t long_pause_threshold, size_t long_gc_threshold, bool ignore_max_footprint, bool use_tlab, bool verify_pre_gc_heap, bool verify_post_gc_heap, bool verify_pre_gc_rosalloc, bool verify_post_gc_rosalloc); ~Heap(); // Allocates and initializes storage for an object instance. template mirror::Object* AllocObject(Thread* self, mirror::Class* klass, size_t num_bytes, const PreFenceVisitor& pre_fence_visitor = VoidFunctor()) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return AllocObjectWithAllocator(self, klass, num_bytes, GetCurrentAllocator(), pre_fence_visitor); } template mirror::Object* AllocNonMovableObject(Thread* self, mirror::Class* klass, size_t num_bytes, const PreFenceVisitor& pre_fence_visitor = VoidFunctor()) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return AllocObjectWithAllocator(self, klass, num_bytes, GetCurrentNonMovingAllocator(), pre_fence_visitor); } template ALWAYS_INLINE mirror::Object* AllocObjectWithAllocator( Thread* self, mirror::Class* klass, size_t byte_count, AllocatorType allocator, const PreFenceVisitor& pre_fence_visitor = VoidFunctor()) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); AllocatorType GetCurrentAllocator() const { return current_allocator_; } AllocatorType GetCurrentNonMovingAllocator() const { return current_non_moving_allocator_; } // Visit all of the live objects in the heap. void VisitObjects(ObjectCallback callback, void* arg) SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_); void SwapSemiSpaces() EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_); void CheckPreconditionsForAllocObject(mirror::Class* c, size_t byte_count) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); void ThrowOutOfMemoryError(size_t byte_count, bool large_object_allocation); void RegisterNativeAllocation(JNIEnv* env, int bytes); void RegisterNativeFree(JNIEnv* env, int bytes); // Change the allocator, updates entrypoints. void ChangeAllocator(AllocatorType allocator) EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_) LOCKS_EXCLUDED(Locks::runtime_shutdown_lock_); // Transition the garbage collector during runtime, may copy objects from one space to another. void TransitionCollector(CollectorType collector_type); // Change the collector to be one of the possible options (MS, CMS, SS). void ChangeCollector(CollectorType collector_type) EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_); // The given reference is believed to be to an object in the Java heap, check the soundness of it. // TODO: NO_THREAD_SAFETY_ANALYSIS since we call this everywhere and it is impossible to find a // proper lock ordering for it. void VerifyObjectBody(mirror::Object* o) NO_THREAD_SAFETY_ANALYSIS; // Check sanity of all live references. void VerifyHeap() LOCKS_EXCLUDED(Locks::heap_bitmap_lock_); bool VerifyHeapReferences() EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_); bool VerifyMissingCardMarks() EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_); // A weaker test than IsLiveObject or VerifyObject that doesn't require the heap lock, // and doesn't abort on error, allowing the caller to report more // meaningful diagnostics. bool IsValidObjectAddress(const mirror::Object* obj) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Faster alternative to IsHeapAddress since finding if an object is in the large object space is // very slow. bool IsNonDiscontinuousSpaceHeapAddress(const mirror::Object* obj) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Returns true if 'obj' is a live heap object, false otherwise (including for invalid addresses). // Requires the heap lock to be held. bool IsLiveObjectLocked(mirror::Object* obj, bool search_allocation_stack = true, bool search_live_stack = true, bool sorted = false) SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_); // Returns true if there is any chance that the object (obj) will move. bool IsMovableObject(const mirror::Object* obj) const; // Returns true if an object is in the temp space, if this happens its usually indicative of // compaction related errors. bool IsInTempSpace(const mirror::Object* obj) const; // Enables us to compacting GC until objects are released. void IncrementDisableMovingGC(Thread* self); void DecrementDisableMovingGC(Thread* self); // Initiates an explicit garbage collection. void CollectGarbage(bool clear_soft_references); // Does a concurrent GC, should only be called by the GC daemon thread // through runtime. void ConcurrentGC(Thread* self) LOCKS_EXCLUDED(Locks::runtime_shutdown_lock_); // Implements VMDebug.countInstancesOfClass and JDWP VM_InstanceCount. // The boolean decides whether to use IsAssignableFrom or == when comparing classes. void CountInstances(const std::vector& classes, bool use_is_assignable_from, uint64_t* counts) LOCKS_EXCLUDED(Locks::heap_bitmap_lock_) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Implements JDWP RT_Instances. void GetInstances(mirror::Class* c, int32_t max_count, std::vector& instances) LOCKS_EXCLUDED(Locks::heap_bitmap_lock_) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Implements JDWP OR_ReferringObjects. void GetReferringObjects(mirror::Object* o, int32_t max_count, std::vector& referring_objects) LOCKS_EXCLUDED(Locks::heap_bitmap_lock_) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Removes the growth limit on the alloc space so it may grow to its maximum capacity. Used to // implement dalvik.system.VMRuntime.clearGrowthLimit. void ClearGrowthLimit(); // Target ideal heap utilization ratio, implements // dalvik.system.VMRuntime.getTargetHeapUtilization. double GetTargetHeapUtilization() const { return target_utilization_; } // Data structure memory usage tracking. void RegisterGCAllocation(size_t bytes); void RegisterGCDeAllocation(size_t bytes); // Set target ideal heap utilization ratio, implements // dalvik.system.VMRuntime.setTargetHeapUtilization. void SetTargetHeapUtilization(float target); // For the alloc space, sets the maximum number of bytes that the heap is allowed to allocate // from the system. Doesn't allow the space to exceed its growth limit. void SetIdealFootprint(size_t max_allowed_footprint); // Blocks the caller until the garbage collector becomes idle and returns the type of GC we // waited for. collector::GcType WaitForGcToComplete(Thread* self) LOCKS_EXCLUDED(gc_complete_lock_); // Update the heap's process state to a new value, may cause compaction to occur. void UpdateProcessState(ProcessState process_state); const std::vector& GetContinuousSpaces() const { return continuous_spaces_; } const std::vector& GetDiscontinuousSpaces() const { return discontinuous_spaces_; } static mirror::Object* PreserveSoftReferenceCallback(mirror::Object* obj, void* arg); void ProcessSoftReferences(TimingLogger& timings, bool clear_soft, IsMarkedCallback* is_marked_callback, MarkObjectCallback* mark_object_callback, ProcessMarkStackCallback* process_mark_stack_callback, void* arg) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_); void ProcessReferences(TimingLogger& timings, bool clear_soft, IsMarkedCallback* is_marked_callback, MarkObjectCallback* mark_object_callback, ProcessMarkStackCallback* process_mark_stack_callback, void* arg) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_); // Enable verification of object references when the runtime is sufficiently initialized. void EnableObjectValidation() { verify_object_mode_ = kVerifyObjectSupport; if (verify_object_mode_ > kVerifyObjectModeDisabled) { VerifyHeap(); } } // Disable object reference verification for image writing. void DisableObjectValidation() { verify_object_mode_ = kVerifyObjectModeDisabled; } // Other checks may be performed if we know the heap should be in a sane state. bool IsObjectValidationEnabled() const { return verify_object_mode_ > kVerifyObjectModeDisabled; } // Returns true if low memory mode is enabled. bool IsLowMemoryMode() const { return low_memory_mode_; } // Freed bytes can be negative in cases where we copy objects from a compacted space to a // free-list backed space. void RecordFree(ssize_t freed_objects, ssize_t freed_bytes); // Must be called if a field of an Object in the heap changes, and before any GC safe-point. // The call is not needed if NULL is stored in the field. void WriteBarrierField(const mirror::Object* dst, MemberOffset /*offset*/, const mirror::Object* /*new_value*/) { card_table_->MarkCard(dst); } // Write barrier for array operations that update many field positions void WriteBarrierArray(const mirror::Object* dst, int /*start_offset*/, size_t /*length TODO: element_count or byte_count?*/) { card_table_->MarkCard(dst); } void WriteBarrierEveryFieldOf(const mirror::Object* obj) { card_table_->MarkCard(obj); } accounting::CardTable* GetCardTable() const { return card_table_.get(); } void AddFinalizerReference(Thread* self, mirror::Object* object); // Returns the number of bytes currently allocated. size_t GetBytesAllocated() const { return num_bytes_allocated_; } // Returns the number of objects currently allocated. size_t GetObjectsAllocated() const LOCKS_EXCLUDED(Locks::heap_bitmap_lock_); // Returns the total number of objects allocated since the heap was created. size_t GetObjectsAllocatedEver() const; // Returns the total number of bytes allocated since the heap was created. size_t GetBytesAllocatedEver() const; // Returns the total number of objects freed since the heap was created. size_t GetObjectsFreedEver() const { return total_objects_freed_ever_; } // Returns the total number of bytes freed since the heap was created. size_t GetBytesFreedEver() const { return total_bytes_freed_ever_; } // Implements java.lang.Runtime.maxMemory, returning the maximum amount of memory a program can // consume. For a regular VM this would relate to the -Xmx option and would return -1 if no Xmx // were specified. Android apps start with a growth limit (small heap size) which is // cleared/extended for large apps. size_t GetMaxMemory() const { return growth_limit_; } // Implements java.lang.Runtime.totalMemory, returning the amount of memory consumed by an // application. size_t GetTotalMemory() const; // Implements java.lang.Runtime.freeMemory. size_t GetFreeMemory() const { return GetTotalMemory() - num_bytes_allocated_; } // Get the space that corresponds to an object's address. Current implementation searches all // spaces in turn. If fail_ok is false then failing to find a space will cause an abort. // TODO: consider using faster data structure like binary tree. space::ContinuousSpace* FindContinuousSpaceFromObject(const mirror::Object*, bool fail_ok) const; space::DiscontinuousSpace* FindDiscontinuousSpaceFromObject(const mirror::Object*, bool fail_ok) const; space::Space* FindSpaceFromObject(const mirror::Object*, bool fail_ok) const; void DumpForSigQuit(std::ostream& os); // Do a pending heap transition or trim. void DoPendingTransitionOrTrim() LOCKS_EXCLUDED(heap_trim_request_lock_); // Trim the managed and native heaps by releasing unused memory back to the OS. void Trim() LOCKS_EXCLUDED(heap_trim_request_lock_); void RevokeThreadLocalBuffers(Thread* thread); void RevokeAllThreadLocalBuffers(); void PreGcRosAllocVerification(TimingLogger* timings) EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_); void PostGcRosAllocVerification(TimingLogger* timings) EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_); accounting::HeapBitmap* GetLiveBitmap() SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) { return live_bitmap_.get(); } accounting::HeapBitmap* GetMarkBitmap() SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) { return mark_bitmap_.get(); } accounting::ObjectStack* GetLiveStack() SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) { return live_stack_.get(); } void PreZygoteFork() NO_THREAD_SAFETY_ANALYSIS; // Mark and empty stack. void FlushAllocStack() EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_); // Revoke all the thread-local allocation stacks. void RevokeAllThreadLocalAllocationStacks(Thread* self) EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_) LOCKS_EXCLUDED(Locks::runtime_shutdown_lock_, Locks::thread_list_lock_); // Mark all the objects in the allocation stack in the specified bitmap. void MarkAllocStack(accounting::SpaceBitmap* bitmap1, accounting::SpaceBitmap* bitmap2, accounting::ObjectSet* large_objects, accounting::ObjectStack* stack) EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_); // Mark the specified allocation stack as live. void MarkAllocStackAsLive(accounting::ObjectStack* stack) EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_); // Unbind any bound bitmaps. void UnBindBitmaps() EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_); // DEPRECATED: Should remove in "near" future when support for multiple image spaces is added. // Assumes there is only one image space. space::ImageSpace* GetImageSpace() const; // Permenantly disable compaction. void DisableCompaction(); space::DlMallocSpace* GetDlMallocSpace() const { return dlmalloc_space_; } space::RosAllocSpace* GetRosAllocSpace() const { return rosalloc_space_; } space::MallocSpace* GetNonMovingSpace() const { return non_moving_space_; } space::LargeObjectSpace* GetLargeObjectsSpace() const { return large_object_space_; } // Returns the free list space that may contain movable objects (the // one that's not the non-moving space), either rosalloc_space_ or // dlmalloc_space_. space::MallocSpace* GetPrimaryFreeListSpace() { if (kUseRosAlloc) { DCHECK(rosalloc_space_ != nullptr); // reinterpret_cast is necessary as the space class hierarchy // isn't known (#included) yet here. return reinterpret_cast(rosalloc_space_); } else { DCHECK(dlmalloc_space_ != nullptr); return reinterpret_cast(dlmalloc_space_); } } void DumpSpaces(std::ostream& stream = LOG(INFO)); // Dump object should only be used by the signal handler. void DumpObject(std::ostream& stream, mirror::Object* obj) NO_THREAD_SAFETY_ANALYSIS; // Safe version of pretty type of which check to make sure objects are heap addresses. std::string SafeGetClassDescriptor(mirror::Class* klass) NO_THREAD_SAFETY_ANALYSIS; std::string SafePrettyTypeOf(mirror::Object* obj) NO_THREAD_SAFETY_ANALYSIS; // GC performance measuring void DumpGcPerformanceInfo(std::ostream& os); // Returns true if we currently care about pause times. bool CareAboutPauseTimes() const { return process_state_ == kProcessStateJankPerceptible; } // Thread pool. void CreateThreadPool(); void DeleteThreadPool(); ThreadPool* GetThreadPool() { return thread_pool_.get(); } size_t GetParallelGCThreadCount() const { return parallel_gc_threads_; } size_t GetConcGCThreadCount() const { return conc_gc_threads_; } accounting::ModUnionTable* FindModUnionTableFromSpace(space::Space* space); void AddModUnionTable(accounting::ModUnionTable* mod_union_table); accounting::RememberedSet* FindRememberedSetFromSpace(space::Space* space); void AddRememberedSet(accounting::RememberedSet* remembered_set); void RemoveRememberedSet(space::Space* space); bool IsCompilingBoot() const; bool HasImageSpace() const; private: void Compact(space::ContinuousMemMapAllocSpace* target_space, space::ContinuousMemMapAllocSpace* source_space); void FinishGC(Thread* self, collector::GcType gc_type) LOCKS_EXCLUDED(gc_complete_lock_); static ALWAYS_INLINE bool AllocatorHasAllocationStack(AllocatorType allocator_type) { return allocator_type != kAllocatorTypeBumpPointer && allocator_type != kAllocatorTypeTLAB; } static ALWAYS_INLINE bool AllocatorMayHaveConcurrentGC(AllocatorType allocator_type) { return AllocatorHasAllocationStack(allocator_type); } static bool IsCompactingGC(CollectorType collector_type) { return collector_type == kCollectorTypeSS || collector_type == kCollectorTypeGSS; } bool ShouldAllocLargeObject(mirror::Class* c, size_t byte_count) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); ALWAYS_INLINE void CheckConcurrentGC(Thread* self, size_t new_num_bytes_allocated, mirror::Object** obj) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // We don't force this to be inlined since it is a slow path. template mirror::Object* AllocLargeObject(Thread* self, mirror::Class* klass, size_t byte_count, const PreFenceVisitor& pre_fence_visitor) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Handles Allocate()'s slow allocation path with GC involved after // an initial allocation attempt failed. mirror::Object* AllocateInternalWithGc(Thread* self, AllocatorType allocator, size_t num_bytes, size_t* bytes_allocated, size_t* usable_size, mirror::Class** klass) LOCKS_EXCLUDED(Locks::thread_suspend_count_lock_) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Allocate into a specific space. mirror::Object* AllocateInto(Thread* self, space::AllocSpace* space, mirror::Class* c, size_t bytes) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Try to allocate a number of bytes, this function never does any GCs. Needs to be inlined so // that the switch statement is constant optimized in the entrypoints. template ALWAYS_INLINE mirror::Object* TryToAllocate(Thread* self, AllocatorType allocator_type, size_t alloc_size, size_t* bytes_allocated, size_t* usable_size) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); void ThrowOutOfMemoryError(Thread* self, size_t byte_count, bool large_object_allocation) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); template bool IsOutOfMemoryOnAllocation(AllocatorType allocator_type, size_t alloc_size); // Returns true if the address passed in is within the address range of a continuous space. bool IsValidContinuousSpaceObjectAddress(const mirror::Object* obj) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); void EnqueueClearedReferences(); // Returns true if the reference object has not yet been enqueued. void DelayReferenceReferent(mirror::Class* klass, mirror::Reference* ref, IsMarkedCallback is_marked_callback, void* arg) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Run the finalizers. void RunFinalization(JNIEnv* env); // Blocks the caller until the garbage collector becomes idle and returns the type of GC we // waited for. collector::GcType WaitForGcToCompleteLocked(Thread* self) EXCLUSIVE_LOCKS_REQUIRED(gc_complete_lock_); void RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time) LOCKS_EXCLUDED(heap_trim_request_lock_); void RequestHeapTrim() LOCKS_EXCLUDED(Locks::runtime_shutdown_lock_); void RequestConcurrentGC(Thread* self) LOCKS_EXCLUDED(Locks::runtime_shutdown_lock_); bool IsGCRequestPending() const; // Sometimes CollectGarbageInternal decides to run a different Gc than you requested. Returns // which type of Gc was actually ran. collector::GcType CollectGarbageInternal(collector::GcType gc_plan, GcCause gc_cause, bool clear_soft_references) LOCKS_EXCLUDED(gc_complete_lock_, Locks::heap_bitmap_lock_, Locks::thread_suspend_count_lock_); void PreGcVerification(collector::GarbageCollector* gc); void PreSweepingGcVerification(collector::GarbageCollector* gc) EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_); void PostGcVerification(collector::GarbageCollector* gc) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Update the watermark for the native allocated bytes based on the current number of native // bytes allocated and the target utilization ratio. void UpdateMaxNativeFootprint(); // Given the current contents of the alloc space, increase the allowed heap footprint to match // the target utilization ratio. This should only be called immediately after a full garbage // collection. void GrowForUtilization(collector::GcType gc_type, uint64_t gc_duration); size_t GetPercentFree(); void AddSpace(space::Space* space, bool set_as_default = true) LOCKS_EXCLUDED(Locks::heap_bitmap_lock_); void RemoveSpace(space::Space* space) LOCKS_EXCLUDED(Locks::heap_bitmap_lock_); static void VerificationCallback(mirror::Object* obj, void* arg) SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_); // Swap the allocation stack with the live stack. void SwapStacks(Thread* self); // Clear cards and update the mod union table. void ProcessCards(TimingLogger& timings, bool use_rem_sets); // Signal the heap trim daemon that there is something to do, either a heap transition or heap // trim. void SignalHeapTrimDaemon(Thread* self); // Push an object onto the allocation stack. void PushOnAllocationStack(Thread* self, mirror::Object* obj); // All-known continuous spaces, where objects lie within fixed bounds. std::vector continuous_spaces_; // All-known discontinuous spaces, where objects may be placed throughout virtual memory. std::vector discontinuous_spaces_; // All-known alloc spaces, where objects may be or have been allocated. std::vector alloc_spaces_; // A space where non-movable objects are allocated, when compaction is enabled it contains // Classes, ArtMethods, ArtFields, and non moving objects. space::MallocSpace* non_moving_space_; // Space which we use for the kAllocatorTypeROSAlloc. space::RosAllocSpace* rosalloc_space_; // Space which we use for the kAllocatorTypeDlMalloc. space::DlMallocSpace* dlmalloc_space_; // The main space is the space which the GC copies to and from on process state updates. This // space is typically either the dlmalloc_space_ or the rosalloc_space_. space::MallocSpace* main_space_; // The large object space we are currently allocating into. space::LargeObjectSpace* large_object_space_; // The card table, dirtied by the write barrier. UniquePtr card_table_; // A mod-union table remembers all of the references from the it's space to other spaces. SafeMap mod_union_tables_; // A remembered set remembers all of the references from the it's space to the target space. SafeMap remembered_sets_; // Keep the free list allocator mem map lying around when we transition to background so that we // don't have to worry about virtual address space fragmentation. UniquePtr allocator_mem_map_; // The mem-map which we will use for the non-moving space after the zygote is done forking: UniquePtr post_zygote_non_moving_space_mem_map_; // What kind of concurrency behavior is the runtime after? Currently true for concurrent mark // sweep GC, false for other GC types. bool concurrent_gc_; // The current collector type. CollectorType collector_type_; // Which collector we will switch to after zygote fork. CollectorType post_zygote_collector_type_; // Which collector we will use when the app is notified of a transition to background. CollectorType background_collector_type_; // Desired collector type, heap trimming daemon transitions the heap if it is != collector_type_. CollectorType desired_collector_type_; // Lock which guards heap trim requests. Mutex* heap_trim_request_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER; // When we want to perform the next heap trim (nano seconds). uint64_t last_trim_time_ GUARDED_BY(heap_trim_request_lock_); // When we want to perform the next heap transition (nano seconds). uint64_t heap_transition_target_time_ GUARDED_BY(heap_trim_request_lock_); // If we have a heap trim request pending. bool heap_trim_request_pending_ GUARDED_BY(heap_trim_request_lock_); // How many GC threads we may use for paused parts of garbage collection. const size_t parallel_gc_threads_; // How many GC threads we may use for unpaused parts of garbage collection. const size_t conc_gc_threads_; // Boolean for if we are in low memory mode. const bool low_memory_mode_; // If we get a pause longer than long pause log threshold, then we print out the GC after it // finishes. const size_t long_pause_log_threshold_; // If we get a GC longer than long GC log threshold, then we print out the GC after it finishes. const size_t long_gc_log_threshold_; // If we ignore the max footprint it lets the heap grow until it hits the heap capacity, this is // useful for benchmarking since it reduces time spent in GC to a low %. const bool ignore_max_footprint_; // If we have a zygote space. bool have_zygote_space_; // Minimum allocation size of large object. size_t large_object_threshold_; // Guards access to the state of GC, associated conditional variable is used to signal when a GC // completes. Mutex* gc_complete_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER; UniquePtr gc_complete_cond_ GUARDED_BY(gc_complete_lock_); // Reference queues. ReferenceQueue soft_reference_queue_; ReferenceQueue weak_reference_queue_; ReferenceQueue finalizer_reference_queue_; ReferenceQueue phantom_reference_queue_; ReferenceQueue cleared_references_; // True while the garbage collector is running. volatile CollectorType collector_type_running_ GUARDED_BY(gc_complete_lock_); // Last Gc type we ran. Used by WaitForConcurrentGc to know which Gc was waited on. volatile collector::GcType last_gc_type_ GUARDED_BY(gc_complete_lock_); collector::GcType next_gc_type_; // Maximum size that the heap can reach. const size_t capacity_; // The size the heap is limited to. This is initially smaller than capacity, but for largeHeap // programs it is "cleared" making it the same as capacity. size_t growth_limit_; // When the number of bytes allocated exceeds the footprint TryAllocate returns NULL indicating // a GC should be triggered. size_t max_allowed_footprint_; // The watermark at which a concurrent GC is requested by registerNativeAllocation. size_t native_footprint_gc_watermark_; // The watermark at which a GC is performed inside of registerNativeAllocation. size_t native_footprint_limit_; // Whether or not we need to run finalizers in the next native allocation. bool native_need_to_run_finalization_; // Whether or not we currently care about pause times. ProcessState process_state_; // When num_bytes_allocated_ exceeds this amount then a concurrent GC should be requested so that // it completes ahead of an allocation failing. size_t concurrent_start_bytes_; // Since the heap was created, how many bytes have been freed. size_t total_bytes_freed_ever_; // Since the heap was created, how many objects have been freed. size_t total_objects_freed_ever_; // Number of bytes allocated. Adjusted after each allocation and free. Atomic num_bytes_allocated_; // Bytes which are allocated and managed by native code but still need to be accounted for. Atomic native_bytes_allocated_; // Data structure GC overhead. Atomic gc_memory_overhead_; // Heap verification flags. const bool verify_missing_card_marks_; const bool verify_system_weaks_; const bool verify_pre_gc_heap_; const bool verify_post_gc_heap_; const bool verify_mod_union_table_; bool verify_pre_gc_rosalloc_; bool verify_post_gc_rosalloc_; // RAII that temporarily disables the rosalloc verification during // the zygote fork. class ScopedDisableRosAllocVerification { private: Heap* heap_; bool orig_verify_pre_gc_; bool orig_verify_post_gc_; public: explicit ScopedDisableRosAllocVerification(Heap* heap) : heap_(heap), orig_verify_pre_gc_(heap_->verify_pre_gc_rosalloc_), orig_verify_post_gc_(heap_->verify_post_gc_rosalloc_) { heap_->verify_pre_gc_rosalloc_ = false; heap_->verify_post_gc_rosalloc_ = false; } ~ScopedDisableRosAllocVerification() { heap_->verify_pre_gc_rosalloc_ = orig_verify_pre_gc_; heap_->verify_post_gc_rosalloc_ = orig_verify_post_gc_; } }; // Parallel GC data structures. UniquePtr thread_pool_; // The nanosecond time at which the last GC ended. uint64_t last_gc_time_ns_; // How many bytes were allocated at the end of the last GC. uint64_t last_gc_size_; // Estimated allocation rate (bytes / second). Computed between the time of the last GC cycle // and the start of the current one. uint64_t allocation_rate_; // For a GC cycle, a bitmap that is set corresponding to the UniquePtr live_bitmap_ GUARDED_BY(Locks::heap_bitmap_lock_); UniquePtr mark_bitmap_ GUARDED_BY(Locks::heap_bitmap_lock_); // Mark stack that we reuse to avoid re-allocating the mark stack. UniquePtr mark_stack_; // Allocation stack, new allocations go here so that we can do sticky mark bits. This enables us // to use the live bitmap as the old mark bitmap. const size_t max_allocation_stack_size_; UniquePtr allocation_stack_; // Second allocation stack so that we can process allocation with the heap unlocked. UniquePtr live_stack_; // Allocator type. AllocatorType current_allocator_; const AllocatorType current_non_moving_allocator_; // Which GCs we run in order when we an allocation fails. std::vector gc_plan_; // Bump pointer spaces. space::BumpPointerSpace* bump_pointer_space_; // Temp space is the space which the semispace collector copies to. space::BumpPointerSpace* temp_space_; // Minimum free guarantees that you always have at least min_free_ free bytes after growing for // utilization, regardless of target utilization ratio. size_t min_free_; // The ideal maximum free size, when we grow the heap for utilization. size_t max_free_; // Target ideal heap utilization ratio double target_utilization_; // Total time which mutators are paused or waiting for GC to complete. uint64_t total_wait_time_; // Total number of objects allocated in microseconds. AtomicInteger total_allocation_time_; // The current state of heap verification, may be enabled or disabled. VerifyObjectMode verify_object_mode_; // Compacting GC disable count, prevents compacting GC from running iff > 0. size_t disable_moving_gc_count_ GUARDED_BY(gc_complete_lock_); std::vector garbage_collectors_; collector::SemiSpace* semi_space_collector_; const bool running_on_valgrind_; const bool use_tlab_; friend class collector::MarkSweep; friend class collector::SemiSpace; friend class ReferenceQueue; friend class VerifyReferenceCardVisitor; friend class VerifyReferenceVisitor; friend class VerifyObjectVisitor; friend class ScopedHeapLock; friend class space::SpaceTest; class AllocationTimer { private: Heap* heap_; mirror::Object** allocated_obj_ptr_; uint64_t allocation_start_time_; public: AllocationTimer(Heap* heap, mirror::Object** allocated_obj_ptr); ~AllocationTimer(); }; DISALLOW_IMPLICIT_CONSTRUCTORS(Heap); }; } // namespace gc } // namespace art #endif // ART_RUNTIME_GC_HEAP_H_