/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_GC_SPACE_SPACE_TEST_H_ #define ART_RUNTIME_GC_SPACE_SPACE_TEST_H_ #include "zygote_space.h" #include #include "common_runtime_test.h" #include "globals.h" #include "UniquePtr.h" #include "mirror/array-inl.h" #include "mirror/object-inl.h" namespace art { namespace gc { namespace space { class SpaceTest : public CommonRuntimeTest { public: jobject byte_array_class_; SpaceTest() : byte_array_class_(nullptr) { } void AddSpace(ContinuousSpace* space) { // By passing true, AddSpace() does the revoke. Runtime::Current()->GetHeap()->AddSpace(space, true); } mirror::Class* GetByteArrayClass(Thread* self) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { SirtRef null_loader(self, nullptr); if (byte_array_class_ == nullptr) { mirror::Class* byte_array_class = Runtime::Current()->GetClassLinker()->FindClass(self, "[B", null_loader); EXPECT_TRUE(byte_array_class != nullptr); byte_array_class_ = self->GetJniEnv()->NewLocalRef(byte_array_class); EXPECT_TRUE(byte_array_class_ != nullptr); } return reinterpret_cast(self->DecodeJObject(byte_array_class_)); } mirror::Object* Alloc(space::MallocSpace* alloc_space, Thread* self, size_t bytes, size_t* bytes_allocated, size_t* usable_size) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { SirtRef byte_array_class(self, GetByteArrayClass(self)); mirror::Object* obj = alloc_space->Alloc(self, bytes, bytes_allocated, usable_size); if (obj != nullptr) { InstallClass(obj, byte_array_class.get(), bytes); } return obj; } mirror::Object* AllocWithGrowth(space::MallocSpace* alloc_space, Thread* self, size_t bytes, size_t* bytes_allocated, size_t* usable_size) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { SirtRef byte_array_class(self, GetByteArrayClass(self)); mirror::Object* obj = alloc_space->AllocWithGrowth(self, bytes, bytes_allocated, usable_size); if (obj != nullptr) { InstallClass(obj, byte_array_class.get(), bytes); } return obj; } void InstallClass(mirror::Object* o, mirror::Class* byte_array_class, size_t size) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { // Note the minimum size, which is the size of a zero-length byte array. EXPECT_GE(size, SizeOfZeroLengthByteArray()); EXPECT_TRUE(byte_array_class != nullptr); o->SetClass(byte_array_class); if (kUseBakerOrBrooksReadBarrier) { // Like the proper heap object allocation, install and verify // the correct read barrier pointer. if (kUseBrooksReadBarrier) { o->SetReadBarrierPointer(o); } o->AssertReadBarrierPointer(); } mirror::Array* arr = o->AsArray(); size_t header_size = SizeOfZeroLengthByteArray(); int32_t length = size - header_size; arr->SetLength(length); EXPECT_EQ(arr->SizeOf(), size); } static size_t SizeOfZeroLengthByteArray() { return mirror::Array::DataOffset(Primitive::ComponentSize(Primitive::kPrimByte)).Uint32Value(); } typedef MallocSpace* (*CreateSpaceFn)(const std::string& name, size_t initial_size, size_t growth_limit, size_t capacity, byte* requested_begin); void InitTestBody(CreateSpaceFn create_space); void ZygoteSpaceTestBody(CreateSpaceFn create_space); void AllocAndFreeTestBody(CreateSpaceFn create_space); void AllocAndFreeListTestBody(CreateSpaceFn create_space); void SizeFootPrintGrowthLimitAndTrimBody(MallocSpace* space, intptr_t object_size, int round, size_t growth_limit); void SizeFootPrintGrowthLimitAndTrimDriver(size_t object_size, CreateSpaceFn create_space); }; static inline size_t test_rand(size_t* seed) { *seed = *seed * 1103515245 + 12345; return *seed; } void SpaceTest::InitTestBody(CreateSpaceFn create_space) { { // Init < max == growth UniquePtr space(create_space("test", 16 * MB, 32 * MB, 32 * MB, nullptr)); EXPECT_TRUE(space.get() != nullptr); } { // Init == max == growth UniquePtr space(create_space("test", 16 * MB, 16 * MB, 16 * MB, nullptr)); EXPECT_TRUE(space.get() != nullptr); } { // Init > max == growth UniquePtr space(create_space("test", 32 * MB, 16 * MB, 16 * MB, nullptr)); EXPECT_TRUE(space.get() == nullptr); } { // Growth == init < max UniquePtr space(create_space("test", 16 * MB, 16 * MB, 32 * MB, nullptr)); EXPECT_TRUE(space.get() != nullptr); } { // Growth < init < max UniquePtr space(create_space("test", 16 * MB, 8 * MB, 32 * MB, nullptr)); EXPECT_TRUE(space.get() == nullptr); } { // Init < growth < max UniquePtr space(create_space("test", 8 * MB, 16 * MB, 32 * MB, nullptr)); EXPECT_TRUE(space.get() != nullptr); } { // Init < max < growth UniquePtr space(create_space("test", 8 * MB, 32 * MB, 16 * MB, nullptr)); EXPECT_TRUE(space.get() == nullptr); } } // TODO: This test is not very good, we should improve it. // The test should do more allocations before the creation of the ZygoteSpace, and then do // allocations after the ZygoteSpace is created. The test should also do some GCs to ensure that // the GC works with the ZygoteSpace. void SpaceTest::ZygoteSpaceTestBody(CreateSpaceFn create_space) { size_t dummy; MallocSpace* space(create_space("test", 4 * MB, 16 * MB, 16 * MB, nullptr)); ASSERT_TRUE(space != nullptr); // Make space findable to the heap, will also delete space when runtime is cleaned up AddSpace(space); Thread* self = Thread::Current(); ScopedObjectAccess soa(self); // Succeeds, fits without adjusting the footprint limit. size_t ptr1_bytes_allocated, ptr1_usable_size; SirtRef ptr1(self, Alloc(space, self, 1 * MB, &ptr1_bytes_allocated, &ptr1_usable_size)); EXPECT_TRUE(ptr1.get() != nullptr); EXPECT_LE(1U * MB, ptr1_bytes_allocated); EXPECT_LE(1U * MB, ptr1_usable_size); EXPECT_LE(ptr1_usable_size, ptr1_bytes_allocated); // Fails, requires a higher footprint limit. mirror::Object* ptr2 = Alloc(space, self, 8 * MB, &dummy, nullptr); EXPECT_TRUE(ptr2 == nullptr); // Succeeds, adjusts the footprint. size_t ptr3_bytes_allocated, ptr3_usable_size; SirtRef ptr3(self, AllocWithGrowth(space, self, 8 * MB, &ptr3_bytes_allocated, &ptr3_usable_size)); EXPECT_TRUE(ptr3.get() != nullptr); EXPECT_LE(8U * MB, ptr3_bytes_allocated); EXPECT_LE(8U * MB, ptr3_usable_size); EXPECT_LE(ptr3_usable_size, ptr3_bytes_allocated); // Fails, requires a higher footprint limit. mirror::Object* ptr4 = space->Alloc(self, 8 * MB, &dummy, nullptr); EXPECT_TRUE(ptr4 == nullptr); // Also fails, requires a higher allowed footprint. mirror::Object* ptr5 = space->AllocWithGrowth(self, 8 * MB, &dummy, nullptr); EXPECT_TRUE(ptr5 == nullptr); // Release some memory. size_t free3 = space->AllocationSize(ptr3.get(), nullptr); EXPECT_EQ(free3, ptr3_bytes_allocated); EXPECT_EQ(free3, space->Free(self, ptr3.reset(nullptr))); EXPECT_LE(8U * MB, free3); // Succeeds, now that memory has been freed. size_t ptr6_bytes_allocated, ptr6_usable_size; SirtRef ptr6(self, AllocWithGrowth(space, self, 9 * MB, &ptr6_bytes_allocated, &ptr6_usable_size)); EXPECT_TRUE(ptr6.get() != nullptr); EXPECT_LE(9U * MB, ptr6_bytes_allocated); EXPECT_LE(9U * MB, ptr6_usable_size); EXPECT_LE(ptr6_usable_size, ptr6_bytes_allocated); // Final clean up. size_t free1 = space->AllocationSize(ptr1.get(), nullptr); space->Free(self, ptr1.reset(nullptr)); EXPECT_LE(1U * MB, free1); // Make sure that the zygote space isn't directly at the start of the space. EXPECT_TRUE(space->Alloc(self, 1U * MB, &dummy, nullptr) != nullptr); gc::Heap* heap = Runtime::Current()->GetHeap(); space::Space* old_space = space; heap->RemoveSpace(old_space); space::ZygoteSpace* zygote_space = space->CreateZygoteSpace("alloc space", heap->IsLowMemoryMode(), &space); delete old_space; // Add the zygote space. AddSpace(zygote_space); // Make space findable to the heap, will also delete space when runtime is cleaned up AddSpace(space); // Succeeds, fits without adjusting the footprint limit. ptr1.reset(Alloc(space, self, 1 * MB, &ptr1_bytes_allocated, &ptr1_usable_size)); EXPECT_TRUE(ptr1.get() != nullptr); EXPECT_LE(1U * MB, ptr1_bytes_allocated); EXPECT_LE(1U * MB, ptr1_usable_size); EXPECT_LE(ptr1_usable_size, ptr1_bytes_allocated); // Fails, requires a higher footprint limit. ptr2 = Alloc(space, self, 8 * MB, &dummy, nullptr); EXPECT_TRUE(ptr2 == nullptr); // Succeeds, adjusts the footprint. ptr3.reset(AllocWithGrowth(space, self, 2 * MB, &ptr3_bytes_allocated, &ptr3_usable_size)); EXPECT_TRUE(ptr3.get() != nullptr); EXPECT_LE(2U * MB, ptr3_bytes_allocated); EXPECT_LE(2U * MB, ptr3_usable_size); EXPECT_LE(ptr3_usable_size, ptr3_bytes_allocated); space->Free(self, ptr3.reset(nullptr)); // Final clean up. free1 = space->AllocationSize(ptr1.get(), nullptr); space->Free(self, ptr1.reset(nullptr)); EXPECT_LE(1U * MB, free1); } void SpaceTest::AllocAndFreeTestBody(CreateSpaceFn create_space) { size_t dummy = 0; MallocSpace* space(create_space("test", 4 * MB, 16 * MB, 16 * MB, nullptr)); ASSERT_TRUE(space != nullptr); Thread* self = Thread::Current(); ScopedObjectAccess soa(self); // Make space findable to the heap, will also delete space when runtime is cleaned up AddSpace(space); // Succeeds, fits without adjusting the footprint limit. size_t ptr1_bytes_allocated, ptr1_usable_size; SirtRef ptr1(self, Alloc(space, self, 1 * MB, &ptr1_bytes_allocated, &ptr1_usable_size)); EXPECT_TRUE(ptr1.get() != nullptr); EXPECT_LE(1U * MB, ptr1_bytes_allocated); EXPECT_LE(1U * MB, ptr1_usable_size); EXPECT_LE(ptr1_usable_size, ptr1_bytes_allocated); // Fails, requires a higher footprint limit. mirror::Object* ptr2 = Alloc(space, self, 8 * MB, &dummy, nullptr); EXPECT_TRUE(ptr2 == nullptr); // Succeeds, adjusts the footprint. size_t ptr3_bytes_allocated, ptr3_usable_size; SirtRef ptr3(self, AllocWithGrowth(space, self, 8 * MB, &ptr3_bytes_allocated, &ptr3_usable_size)); EXPECT_TRUE(ptr3.get() != nullptr); EXPECT_LE(8U * MB, ptr3_bytes_allocated); EXPECT_LE(8U * MB, ptr3_usable_size); EXPECT_LE(ptr3_usable_size, ptr3_bytes_allocated); // Fails, requires a higher footprint limit. mirror::Object* ptr4 = Alloc(space, self, 8 * MB, &dummy, nullptr); EXPECT_TRUE(ptr4 == nullptr); // Also fails, requires a higher allowed footprint. mirror::Object* ptr5 = AllocWithGrowth(space, self, 8 * MB, &dummy, nullptr); EXPECT_TRUE(ptr5 == nullptr); // Release some memory. size_t free3 = space->AllocationSize(ptr3.get(), nullptr); EXPECT_EQ(free3, ptr3_bytes_allocated); space->Free(self, ptr3.reset(nullptr)); EXPECT_LE(8U * MB, free3); // Succeeds, now that memory has been freed. size_t ptr6_bytes_allocated, ptr6_usable_size; SirtRef ptr6(self, AllocWithGrowth(space, self, 9 * MB, &ptr6_bytes_allocated, &ptr6_usable_size)); EXPECT_TRUE(ptr6.get() != nullptr); EXPECT_LE(9U * MB, ptr6_bytes_allocated); EXPECT_LE(9U * MB, ptr6_usable_size); EXPECT_LE(ptr6_usable_size, ptr6_bytes_allocated); // Final clean up. size_t free1 = space->AllocationSize(ptr1.get(), nullptr); space->Free(self, ptr1.reset(nullptr)); EXPECT_LE(1U * MB, free1); } void SpaceTest::AllocAndFreeListTestBody(CreateSpaceFn create_space) { MallocSpace* space(create_space("test", 4 * MB, 16 * MB, 16 * MB, nullptr)); ASSERT_TRUE(space != nullptr); // Make space findable to the heap, will also delete space when runtime is cleaned up AddSpace(space); Thread* self = Thread::Current(); ScopedObjectAccess soa(self); // Succeeds, fits without adjusting the max allowed footprint. mirror::Object* lots_of_objects[1024]; for (size_t i = 0; i < arraysize(lots_of_objects); i++) { size_t allocation_size, usable_size; size_t size_of_zero_length_byte_array = SizeOfZeroLengthByteArray(); lots_of_objects[i] = Alloc(space, self, size_of_zero_length_byte_array, &allocation_size, &usable_size); EXPECT_TRUE(lots_of_objects[i] != nullptr); SirtRef obj(self, lots_of_objects[i]); lots_of_objects[i] = obj.get(); size_t computed_usable_size; EXPECT_EQ(allocation_size, space->AllocationSize(lots_of_objects[i], &computed_usable_size)); EXPECT_EQ(usable_size, computed_usable_size); } // Release memory. space->FreeList(self, arraysize(lots_of_objects), lots_of_objects); // Succeeds, fits by adjusting the max allowed footprint. for (size_t i = 0; i < arraysize(lots_of_objects); i++) { size_t allocation_size, usable_size; lots_of_objects[i] = AllocWithGrowth(space, self, 1024, &allocation_size, &usable_size); EXPECT_TRUE(lots_of_objects[i] != nullptr); SirtRef obj(self, lots_of_objects[i]); lots_of_objects[i] = obj.get(); size_t computed_usable_size; EXPECT_EQ(allocation_size, space->AllocationSize(lots_of_objects[i], &computed_usable_size)); EXPECT_EQ(usable_size, computed_usable_size); } // Release memory. space->FreeList(self, arraysize(lots_of_objects), lots_of_objects); } void SpaceTest::SizeFootPrintGrowthLimitAndTrimBody(MallocSpace* space, intptr_t object_size, int round, size_t growth_limit) { if (((object_size > 0 && object_size >= static_cast(growth_limit))) || ((object_size < 0 && -object_size >= static_cast(growth_limit)))) { // No allocation can succeed return; } // The space's footprint equals amount of resources requested from system size_t footprint = space->GetFootprint(); // The space must at least have its book keeping allocated EXPECT_GT(footprint, 0u); // But it shouldn't exceed the initial size EXPECT_LE(footprint, growth_limit); // space's size shouldn't exceed the initial size EXPECT_LE(space->Size(), growth_limit); // this invariant should always hold or else the space has grown to be larger than what the // space believes its size is (which will break invariants) EXPECT_GE(space->Size(), footprint); // Fill the space with lots of small objects up to the growth limit size_t max_objects = (growth_limit / (object_size > 0 ? object_size : 8)) + 1; UniquePtr lots_of_objects(new mirror::Object*[max_objects]); size_t last_object = 0; // last object for which allocation succeeded size_t amount_allocated = 0; // amount of space allocated Thread* self = Thread::Current(); ScopedObjectAccess soa(self); size_t rand_seed = 123456789; for (size_t i = 0; i < max_objects; i++) { size_t alloc_fails = 0; // number of failed allocations size_t max_fails = 30; // number of times we fail allocation before giving up for (; alloc_fails < max_fails; alloc_fails++) { size_t alloc_size; if (object_size > 0) { alloc_size = object_size; } else { alloc_size = test_rand(&rand_seed) % static_cast(-object_size); // Note the minimum size, which is the size of a zero-length byte array. size_t size_of_zero_length_byte_array = SizeOfZeroLengthByteArray(); if (alloc_size < size_of_zero_length_byte_array) { alloc_size = size_of_zero_length_byte_array; } } SirtRef object(self, nullptr); size_t bytes_allocated = 0; if (round <= 1) { object.reset(Alloc(space, self, alloc_size, &bytes_allocated, nullptr)); } else { object.reset(AllocWithGrowth(space, self, alloc_size, &bytes_allocated, nullptr)); } footprint = space->GetFootprint(); EXPECT_GE(space->Size(), footprint); // invariant if (object.get() != nullptr) { // allocation succeeded lots_of_objects[i] = object.get(); size_t allocation_size = space->AllocationSize(object.get(), nullptr); EXPECT_EQ(bytes_allocated, allocation_size); if (object_size > 0) { EXPECT_GE(allocation_size, static_cast(object_size)); } else { EXPECT_GE(allocation_size, 8u); } amount_allocated += allocation_size; break; } } if (alloc_fails == max_fails) { last_object = i; break; } } CHECK_NE(last_object, 0u); // we should have filled the space EXPECT_GT(amount_allocated, 0u); // We shouldn't have gone past the growth_limit EXPECT_LE(amount_allocated, growth_limit); EXPECT_LE(footprint, growth_limit); EXPECT_LE(space->Size(), growth_limit); // footprint and size should agree with amount allocated EXPECT_GE(footprint, amount_allocated); EXPECT_GE(space->Size(), amount_allocated); // Release storage in a semi-adhoc manner size_t free_increment = 96; while (true) { { ScopedThreadStateChange tsc(self, kNative); // Give the space a haircut. space->Trim(); } // Bounds sanity footprint = space->GetFootprint(); EXPECT_LE(amount_allocated, growth_limit); EXPECT_GE(footprint, amount_allocated); EXPECT_LE(footprint, growth_limit); EXPECT_GE(space->Size(), amount_allocated); EXPECT_LE(space->Size(), growth_limit); if (free_increment == 0) { break; } // Free some objects for (size_t i = 0; i < last_object; i += free_increment) { mirror::Object* object = lots_of_objects.get()[i]; if (object == nullptr) { continue; } size_t allocation_size = space->AllocationSize(object, nullptr); if (object_size > 0) { EXPECT_GE(allocation_size, static_cast(object_size)); } else { EXPECT_GE(allocation_size, 8u); } space->Free(self, object); lots_of_objects.get()[i] = nullptr; amount_allocated -= allocation_size; footprint = space->GetFootprint(); EXPECT_GE(space->Size(), footprint); // invariant } free_increment >>= 1; } // The space has become empty here before allocating a large object // below. For RosAlloc, revoke thread-local runs, which are kept // even when empty for a performance reason, so that they won't // cause the following large object allocation to fail due to // potential fragmentation. Note they are normally revoked at each // GC (but no GC here.) space->RevokeAllThreadLocalBuffers(); // All memory was released, try a large allocation to check freed memory is being coalesced SirtRef large_object(self, nullptr); size_t three_quarters_space = (growth_limit / 2) + (growth_limit / 4); size_t bytes_allocated = 0; if (round <= 1) { large_object.reset(Alloc(space, self, three_quarters_space, &bytes_allocated, nullptr)); } else { large_object.reset(AllocWithGrowth(space, self, three_quarters_space, &bytes_allocated, nullptr)); } EXPECT_TRUE(large_object.get() != nullptr); // Sanity check footprint footprint = space->GetFootprint(); EXPECT_LE(footprint, growth_limit); EXPECT_GE(space->Size(), footprint); EXPECT_LE(space->Size(), growth_limit); // Clean up space->Free(self, large_object.reset(nullptr)); // Sanity check footprint footprint = space->GetFootprint(); EXPECT_LE(footprint, growth_limit); EXPECT_GE(space->Size(), footprint); EXPECT_LE(space->Size(), growth_limit); } void SpaceTest::SizeFootPrintGrowthLimitAndTrimDriver(size_t object_size, CreateSpaceFn create_space) { if (object_size < SizeOfZeroLengthByteArray()) { // Too small for the object layout/model. return; } size_t initial_size = 4 * MB; size_t growth_limit = 8 * MB; size_t capacity = 16 * MB; MallocSpace* space(create_space("test", initial_size, growth_limit, capacity, nullptr)); ASSERT_TRUE(space != nullptr); // Basic sanity EXPECT_EQ(space->Capacity(), growth_limit); EXPECT_EQ(space->NonGrowthLimitCapacity(), capacity); // Make space findable to the heap, will also delete space when runtime is cleaned up AddSpace(space); // In this round we don't allocate with growth and therefore can't grow past the initial size. // This effectively makes the growth_limit the initial_size, so assert this. SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 1, initial_size); SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 2, growth_limit); // Remove growth limit space->ClearGrowthLimit(); EXPECT_EQ(space->Capacity(), capacity); SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 3, capacity); } #define TEST_SizeFootPrintGrowthLimitAndTrimStatic(name, spaceName, spaceFn, size) \ TEST_F(spaceName##StaticTest, SizeFootPrintGrowthLimitAndTrim_AllocationsOf_##name) { \ SizeFootPrintGrowthLimitAndTrimDriver(size, spaceFn); \ } #define TEST_SizeFootPrintGrowthLimitAndTrimRandom(name, spaceName, spaceFn, size) \ TEST_F(spaceName##RandomTest, SizeFootPrintGrowthLimitAndTrim_RandomAllocationsWithMax_##name) { \ SizeFootPrintGrowthLimitAndTrimDriver(-size, spaceFn); \ } #define TEST_SPACE_CREATE_FN_BASE(spaceName, spaceFn) \ class spaceName##BaseTest : public SpaceTest { \ }; \ \ TEST_F(spaceName##BaseTest, Init) { \ InitTestBody(spaceFn); \ } \ TEST_F(spaceName##BaseTest, ZygoteSpace) { \ ZygoteSpaceTestBody(spaceFn); \ } \ TEST_F(spaceName##BaseTest, AllocAndFree) { \ AllocAndFreeTestBody(spaceFn); \ } \ TEST_F(spaceName##BaseTest, AllocAndFreeList) { \ AllocAndFreeListTestBody(spaceFn); \ } #define TEST_SPACE_CREATE_FN_STATIC(spaceName, spaceFn) \ class spaceName##StaticTest : public SpaceTest { \ }; \ \ TEST_SizeFootPrintGrowthLimitAndTrimStatic(12B, spaceName, spaceFn, 12) \ TEST_SizeFootPrintGrowthLimitAndTrimStatic(16B, spaceName, spaceFn, 16) \ TEST_SizeFootPrintGrowthLimitAndTrimStatic(24B, spaceName, spaceFn, 24) \ TEST_SizeFootPrintGrowthLimitAndTrimStatic(32B, spaceName, spaceFn, 32) \ TEST_SizeFootPrintGrowthLimitAndTrimStatic(64B, spaceName, spaceFn, 64) \ TEST_SizeFootPrintGrowthLimitAndTrimStatic(128B, spaceName, spaceFn, 128) \ TEST_SizeFootPrintGrowthLimitAndTrimStatic(1KB, spaceName, spaceFn, 1 * KB) \ TEST_SizeFootPrintGrowthLimitAndTrimStatic(4KB, spaceName, spaceFn, 4 * KB) \ TEST_SizeFootPrintGrowthLimitAndTrimStatic(1MB, spaceName, spaceFn, 1 * MB) \ TEST_SizeFootPrintGrowthLimitAndTrimStatic(4MB, spaceName, spaceFn, 4 * MB) \ TEST_SizeFootPrintGrowthLimitAndTrimStatic(8MB, spaceName, spaceFn, 8 * MB) #define TEST_SPACE_CREATE_FN_RANDOM(spaceName, spaceFn) \ class spaceName##RandomTest : public SpaceTest { \ }; \ \ TEST_SizeFootPrintGrowthLimitAndTrimRandom(16B, spaceName, spaceFn, 16) \ TEST_SizeFootPrintGrowthLimitAndTrimRandom(24B, spaceName, spaceFn, 24) \ TEST_SizeFootPrintGrowthLimitAndTrimRandom(32B, spaceName, spaceFn, 32) \ TEST_SizeFootPrintGrowthLimitAndTrimRandom(64B, spaceName, spaceFn, 64) \ TEST_SizeFootPrintGrowthLimitAndTrimRandom(128B, spaceName, spaceFn, 128) \ TEST_SizeFootPrintGrowthLimitAndTrimRandom(1KB, spaceName, spaceFn, 1 * KB) \ TEST_SizeFootPrintGrowthLimitAndTrimRandom(4KB, spaceName, spaceFn, 4 * KB) \ TEST_SizeFootPrintGrowthLimitAndTrimRandom(1MB, spaceName, spaceFn, 1 * MB) \ TEST_SizeFootPrintGrowthLimitAndTrimRandom(4MB, spaceName, spaceFn, 4 * MB) \ TEST_SizeFootPrintGrowthLimitAndTrimRandom(8MB, spaceName, spaceFn, 8 * MB) } // namespace space } // namespace gc } // namespace art #endif // ART_RUNTIME_GC_SPACE_SPACE_TEST_H_