/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "instrumentation.h" #include #include "atomic.h" #include "base/unix_file/fd_file.h" #include "class_linker.h" #include "debugger.h" #include "dex_file-inl.h" #include "entrypoints/quick/quick_alloc_entrypoints.h" #include "interpreter/interpreter.h" #include "mirror/art_method-inl.h" #include "mirror/class-inl.h" #include "mirror/dex_cache.h" #include "mirror/object_array-inl.h" #include "mirror/object-inl.h" #include "nth_caller_visitor.h" #if !defined(ART_USE_PORTABLE_COMPILER) #include "entrypoints/quick/quick_entrypoints.h" #endif #include "object_utils.h" #include "os.h" #include "scoped_thread_state_change.h" #include "thread.h" #include "thread_list.h" namespace art { namespace instrumentation { const bool kVerboseInstrumentation = false; // Do we want to deoptimize for method entry and exit listeners or just try to intercept // invocations? Deoptimization forces all code to run in the interpreter and considerably hurts the // application's performance. static constexpr bool kDeoptimizeForAccurateMethodEntryExitListeners = false; static bool InstallStubsClassVisitor(mirror::Class* klass, void* arg) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { Instrumentation* instrumentation = reinterpret_cast(arg); return instrumentation->InstallStubsForClass(klass); } Instrumentation::Instrumentation() : instrumentation_stubs_installed_(false), entry_exit_stubs_installed_(false), interpreter_stubs_installed_(false), interpret_only_(false), forced_interpret_only_(false), have_method_entry_listeners_(false), have_method_exit_listeners_(false), have_method_unwind_listeners_(false), have_dex_pc_listeners_(false), have_field_read_listeners_(false), have_field_write_listeners_(false), have_exception_caught_listeners_(false), deoptimized_methods_lock_("deoptimized methods lock"), deoptimization_enabled_(false), interpreter_handler_table_(kMainHandlerTable), quick_alloc_entry_points_instrumentation_counter_(0) { } bool Instrumentation::InstallStubsForClass(mirror::Class* klass) { for (size_t i = 0, e = klass->NumDirectMethods(); i < e; i++) { InstallStubsForMethod(klass->GetDirectMethod(i)); } for (size_t i = 0, e = klass->NumVirtualMethods(); i < e; i++) { InstallStubsForMethod(klass->GetVirtualMethod(i)); } return true; } static void UpdateEntrypoints(mirror::ArtMethod* method, const void* quick_code, const void* portable_code, bool have_portable_code) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { method->SetEntryPointFromPortableCompiledCode(portable_code); method->SetEntryPointFromQuickCompiledCode(quick_code); bool portable_enabled = method->IsPortableCompiled(); if (have_portable_code && !portable_enabled) { method->SetIsPortableCompiled(); } else if (portable_enabled) { method->ClearIsPortableCompiled(); } if (!method->IsResolutionMethod()) { if (quick_code == GetQuickToInterpreterBridge() || quick_code == GetQuickToInterpreterBridgeTrampoline(Runtime::Current()->GetClassLinker()) || (quick_code == GetQuickResolutionTrampoline(Runtime::Current()->GetClassLinker()) && Runtime::Current()->GetInstrumentation()->IsForcedInterpretOnly() && !method->IsNative() && !method->IsProxyMethod())) { if (kIsDebugBuild) { if (quick_code == GetQuickToInterpreterBridge()) { DCHECK(portable_code == GetPortableToInterpreterBridge()); } else if (quick_code == GetQuickResolutionTrampoline(Runtime::Current()->GetClassLinker())) { DCHECK(portable_code == GetPortableResolutionTrampoline(Runtime::Current()->GetClassLinker())); } } DCHECK(!method->IsNative()) << PrettyMethod(method); DCHECK(!method->IsProxyMethod()) << PrettyMethod(method); method->SetEntryPointFromInterpreter(art::interpreter::artInterpreterToInterpreterBridge); } else { method->SetEntryPointFromInterpreter(art::artInterpreterToCompiledCodeBridge); } } } void Instrumentation::InstallStubsForMethod(mirror::ArtMethod* method) { if (method->IsAbstract() || method->IsProxyMethod()) { // Do not change stubs for these methods. return; } const void* new_portable_code; const void* new_quick_code; bool uninstall = !entry_exit_stubs_installed_ && !interpreter_stubs_installed_; ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); bool is_class_initialized = method->GetDeclaringClass()->IsInitialized(); bool have_portable_code = false; if (uninstall) { if ((forced_interpret_only_ || IsDeoptimized(method)) && !method->IsNative()) { new_portable_code = GetPortableToInterpreterBridge(); new_quick_code = GetQuickToInterpreterBridge(); } else if (is_class_initialized || !method->IsStatic() || method->IsConstructor()) { new_portable_code = class_linker->GetPortableOatCodeFor(method, &have_portable_code); new_quick_code = class_linker->GetQuickOatCodeFor(method); } else { new_portable_code = GetPortableResolutionTrampoline(class_linker); new_quick_code = GetQuickResolutionTrampoline(class_linker); } } else { // !uninstall if ((interpreter_stubs_installed_ || IsDeoptimized(method)) && !method->IsNative()) { new_portable_code = GetPortableToInterpreterBridge(); new_quick_code = GetQuickToInterpreterBridge(); } else { // Do not overwrite resolution trampoline. When the trampoline initializes the method's // class, all its static methods code will be set to the instrumentation entry point. // For more details, see ClassLinker::FixupStaticTrampolines. if (is_class_initialized || !method->IsStatic() || method->IsConstructor()) { // Do not overwrite interpreter to prevent from posting method entry/exit events twice. new_portable_code = class_linker->GetPortableOatCodeFor(method, &have_portable_code); new_quick_code = class_linker->GetQuickOatCodeFor(method); DCHECK(new_quick_code != GetQuickToInterpreterBridgeTrampoline(class_linker)); if (entry_exit_stubs_installed_ && new_quick_code != GetQuickToInterpreterBridge()) { DCHECK(new_portable_code != GetPortableToInterpreterBridge()); new_portable_code = GetPortableToInterpreterBridge(); new_quick_code = GetQuickInstrumentationEntryPoint(); } } else { new_portable_code = GetPortableResolutionTrampoline(class_linker); new_quick_code = GetQuickResolutionTrampoline(class_linker); } } } UpdateEntrypoints(method, new_quick_code, new_portable_code, have_portable_code); } // Places the instrumentation exit pc as the return PC for every quick frame. This also allows // deoptimization of quick frames to interpreter frames. // Since we may already have done this previously, we need to push new instrumentation frame before // existing instrumentation frames. static void InstrumentationInstallStack(Thread* thread, void* arg) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { struct InstallStackVisitor : public StackVisitor { InstallStackVisitor(Thread* thread, Context* context, uintptr_t instrumentation_exit_pc) : StackVisitor(thread, context), instrumentation_stack_(thread->GetInstrumentationStack()), existing_instrumentation_frames_count_(instrumentation_stack_->size()), instrumentation_exit_pc_(instrumentation_exit_pc), reached_existing_instrumentation_frames_(false), instrumentation_stack_depth_(0), last_return_pc_(0) { } virtual bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { mirror::ArtMethod* m = GetMethod(); if (GetCurrentQuickFrame() == NULL) { if (kVerboseInstrumentation) { LOG(INFO) << " Ignoring a shadow frame. Frame " << GetFrameId() << " Method=" << PrettyMethod(m); } return true; // Ignore shadow frames. } if (m == NULL) { if (kVerboseInstrumentation) { LOG(INFO) << " Skipping upcall. Frame " << GetFrameId(); } last_return_pc_ = 0; return true; // Ignore upcalls. } if (m->IsRuntimeMethod()) { if (kVerboseInstrumentation) { LOG(INFO) << " Skipping runtime method. Frame " << GetFrameId(); } last_return_pc_ = GetReturnPc(); return true; // Ignore unresolved methods since they will be instrumented after resolution. } if (kVerboseInstrumentation) { LOG(INFO) << " Installing exit stub in " << DescribeLocation(); } uintptr_t return_pc = GetReturnPc(); if (return_pc == instrumentation_exit_pc_) { // We've reached a frame which has already been installed with instrumentation exit stub. // We should have already installed instrumentation on previous frames. reached_existing_instrumentation_frames_ = true; CHECK_LT(instrumentation_stack_depth_, instrumentation_stack_->size()); const InstrumentationStackFrame& frame = instrumentation_stack_->at(instrumentation_stack_depth_); CHECK_EQ(m, frame.method_) << "Expected " << PrettyMethod(m) << ", Found " << PrettyMethod(frame.method_); return_pc = frame.return_pc_; if (kVerboseInstrumentation) { LOG(INFO) << "Ignoring already instrumented " << frame.Dump(); } } else { CHECK_NE(return_pc, 0U); CHECK(!reached_existing_instrumentation_frames_); InstrumentationStackFrame instrumentation_frame(GetThisObject(), m, return_pc, GetFrameId(), false); if (kVerboseInstrumentation) { LOG(INFO) << "Pushing frame " << instrumentation_frame.Dump(); } // Insert frame before old ones so we do not corrupt the instrumentation stack. auto it = instrumentation_stack_->end() - existing_instrumentation_frames_count_; instrumentation_stack_->insert(it, instrumentation_frame); SetReturnPc(instrumentation_exit_pc_); } dex_pcs_.push_back(m->ToDexPc(last_return_pc_)); last_return_pc_ = return_pc; ++instrumentation_stack_depth_; return true; // Continue. } std::deque* const instrumentation_stack_; const size_t existing_instrumentation_frames_count_; std::vector dex_pcs_; const uintptr_t instrumentation_exit_pc_; bool reached_existing_instrumentation_frames_; size_t instrumentation_stack_depth_; uintptr_t last_return_pc_; }; if (kVerboseInstrumentation) { std::string thread_name; thread->GetThreadName(thread_name); LOG(INFO) << "Installing exit stubs in " << thread_name; } Instrumentation* instrumentation = reinterpret_cast(arg); UniquePtr context(Context::Create()); uintptr_t instrumentation_exit_pc = GetQuickInstrumentationExitPc(); InstallStackVisitor visitor(thread, context.get(), instrumentation_exit_pc); visitor.WalkStack(true); CHECK_EQ(visitor.dex_pcs_.size(), thread->GetInstrumentationStack()->size()); if (instrumentation->ShouldNotifyMethodEnterExitEvents()) { // Create method enter events for all methods currently on the thread's stack. We only do this // if no debugger is attached to prevent from posting events twice. typedef std::deque::const_reverse_iterator It; for (It it = thread->GetInstrumentationStack()->rbegin(), end = thread->GetInstrumentationStack()->rend(); it != end; ++it) { mirror::Object* this_object = (*it).this_object_; mirror::ArtMethod* method = (*it).method_; uint32_t dex_pc = visitor.dex_pcs_.back(); visitor.dex_pcs_.pop_back(); instrumentation->MethodEnterEvent(thread, this_object, method, dex_pc); } } thread->VerifyStack(); } // Removes the instrumentation exit pc as the return PC for every quick frame. static void InstrumentationRestoreStack(Thread* thread, void* arg) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { struct RestoreStackVisitor : public StackVisitor { RestoreStackVisitor(Thread* thread, uintptr_t instrumentation_exit_pc, Instrumentation* instrumentation) : StackVisitor(thread, NULL), thread_(thread), instrumentation_exit_pc_(instrumentation_exit_pc), instrumentation_(instrumentation), instrumentation_stack_(thread->GetInstrumentationStack()), frames_removed_(0) {} virtual bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { if (instrumentation_stack_->size() == 0) { return false; // Stop. } mirror::ArtMethod* m = GetMethod(); if (GetCurrentQuickFrame() == NULL) { if (kVerboseInstrumentation) { LOG(INFO) << " Ignoring a shadow frame. Frame " << GetFrameId() << " Method=" << PrettyMethod(m); } return true; // Ignore shadow frames. } if (m == NULL) { if (kVerboseInstrumentation) { LOG(INFO) << " Skipping upcall. Frame " << GetFrameId(); } return true; // Ignore upcalls. } bool removed_stub = false; // TODO: make this search more efficient? const size_t frameId = GetFrameId(); for (const InstrumentationStackFrame& instrumentation_frame : *instrumentation_stack_) { if (instrumentation_frame.frame_id_ == frameId) { if (kVerboseInstrumentation) { LOG(INFO) << " Removing exit stub in " << DescribeLocation(); } if (instrumentation_frame.interpreter_entry_) { CHECK(m == Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs)); } else { CHECK(m == instrumentation_frame.method_) << PrettyMethod(m); } SetReturnPc(instrumentation_frame.return_pc_); if (instrumentation_->ShouldNotifyMethodEnterExitEvents()) { // Create the method exit events. As the methods didn't really exit the result is 0. // We only do this if no debugger is attached to prevent from posting events twice. instrumentation_->MethodExitEvent(thread_, instrumentation_frame.this_object_, m, GetDexPc(), JValue()); } frames_removed_++; removed_stub = true; break; } } if (!removed_stub) { if (kVerboseInstrumentation) { LOG(INFO) << " No exit stub in " << DescribeLocation(); } } return true; // Continue. } Thread* const thread_; const uintptr_t instrumentation_exit_pc_; Instrumentation* const instrumentation_; std::deque* const instrumentation_stack_; size_t frames_removed_; }; if (kVerboseInstrumentation) { std::string thread_name; thread->GetThreadName(thread_name); LOG(INFO) << "Removing exit stubs in " << thread_name; } std::deque* stack = thread->GetInstrumentationStack(); if (stack->size() > 0) { Instrumentation* instrumentation = reinterpret_cast(arg); uintptr_t instrumentation_exit_pc = GetQuickInstrumentationExitPc(); RestoreStackVisitor visitor(thread, instrumentation_exit_pc, instrumentation); visitor.WalkStack(true); CHECK_EQ(visitor.frames_removed_, stack->size()); while (stack->size() > 0) { stack->pop_front(); } } } void Instrumentation::AddListener(InstrumentationListener* listener, uint32_t events) { Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current()); if ((events & kMethodEntered) != 0) { method_entry_listeners_.push_back(listener); have_method_entry_listeners_ = true; } if ((events & kMethodExited) != 0) { method_exit_listeners_.push_back(listener); have_method_exit_listeners_ = true; } if ((events & kMethodUnwind) != 0) { method_unwind_listeners_.push_back(listener); have_method_unwind_listeners_ = true; } if ((events & kDexPcMoved) != 0) { dex_pc_listeners_.push_back(listener); have_dex_pc_listeners_ = true; } if ((events & kFieldRead) != 0) { field_read_listeners_.push_back(listener); have_field_read_listeners_ = true; } if ((events & kFieldWritten) != 0) { field_write_listeners_.push_back(listener); have_field_write_listeners_ = true; } if ((events & kExceptionCaught) != 0) { exception_caught_listeners_.push_back(listener); have_exception_caught_listeners_ = true; } UpdateInterpreterHandlerTable(); } void Instrumentation::RemoveListener(InstrumentationListener* listener, uint32_t events) { Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current()); if ((events & kMethodEntered) != 0) { bool contains = std::find(method_entry_listeners_.begin(), method_entry_listeners_.end(), listener) != method_entry_listeners_.end(); if (contains) { method_entry_listeners_.remove(listener); } have_method_entry_listeners_ = method_entry_listeners_.size() > 0; } if ((events & kMethodExited) != 0) { bool contains = std::find(method_exit_listeners_.begin(), method_exit_listeners_.end(), listener) != method_exit_listeners_.end(); if (contains) { method_exit_listeners_.remove(listener); } have_method_exit_listeners_ = method_exit_listeners_.size() > 0; } if ((events & kMethodUnwind) != 0) { method_unwind_listeners_.remove(listener); } if ((events & kDexPcMoved) != 0) { bool contains = std::find(dex_pc_listeners_.begin(), dex_pc_listeners_.end(), listener) != dex_pc_listeners_.end(); if (contains) { dex_pc_listeners_.remove(listener); } have_dex_pc_listeners_ = dex_pc_listeners_.size() > 0; } if ((events & kFieldRead) != 0) { bool contains = std::find(field_read_listeners_.begin(), field_read_listeners_.end(), listener) != field_read_listeners_.end(); if (contains) { field_read_listeners_.remove(listener); } have_field_read_listeners_ = field_read_listeners_.size() > 0; } if ((events & kFieldWritten) != 0) { bool contains = std::find(field_write_listeners_.begin(), field_write_listeners_.end(), listener) != field_write_listeners_.end(); if (contains) { field_write_listeners_.remove(listener); } have_field_write_listeners_ = field_write_listeners_.size() > 0; } if ((events & kExceptionCaught) != 0) { exception_caught_listeners_.remove(listener); have_exception_caught_listeners_ = exception_caught_listeners_.size() > 0; } UpdateInterpreterHandlerTable(); } void Instrumentation::ConfigureStubs(bool require_entry_exit_stubs, bool require_interpreter) { interpret_only_ = require_interpreter || forced_interpret_only_; // Compute what level of instrumentation is required and compare to current. int desired_level, current_level; if (require_interpreter) { desired_level = 2; } else if (require_entry_exit_stubs) { desired_level = 1; } else { desired_level = 0; } if (interpreter_stubs_installed_) { current_level = 2; } else if (entry_exit_stubs_installed_) { current_level = 1; } else { current_level = 0; } if (desired_level == current_level) { // We're already set. return; } Thread* const self = Thread::Current(); Runtime* runtime = Runtime::Current(); Locks::thread_list_lock_->AssertNotHeld(self); if (desired_level > 0) { if (require_interpreter) { interpreter_stubs_installed_ = true; } else { CHECK(require_entry_exit_stubs); entry_exit_stubs_installed_ = true; } runtime->GetClassLinker()->VisitClasses(InstallStubsClassVisitor, this); instrumentation_stubs_installed_ = true; MutexLock mu(self, *Locks::thread_list_lock_); runtime->GetThreadList()->ForEach(InstrumentationInstallStack, this); } else { interpreter_stubs_installed_ = false; entry_exit_stubs_installed_ = false; runtime->GetClassLinker()->VisitClasses(InstallStubsClassVisitor, this); // Restore stack only if there is no method currently deoptimized. bool empty; { ReaderMutexLock mu(self, deoptimized_methods_lock_); empty = deoptimized_methods_.empty(); // Avoid lock violation. } if (empty) { instrumentation_stubs_installed_ = false; MutexLock mu(self, *Locks::thread_list_lock_); Runtime::Current()->GetThreadList()->ForEach(InstrumentationRestoreStack, this); } } } static void ResetQuickAllocEntryPointsForThread(Thread* thread, void* arg) { thread->ResetQuickAllocEntryPointsForThread(); } void Instrumentation::SetEntrypointsInstrumented(bool instrumented) { Runtime* runtime = Runtime::Current(); ThreadList* tl = runtime->GetThreadList(); if (runtime->IsStarted()) { tl->SuspendAll(); } { MutexLock mu(Thread::Current(), *Locks::runtime_shutdown_lock_); SetQuickAllocEntryPointsInstrumented(instrumented); ResetQuickAllocEntryPoints(); } if (runtime->IsStarted()) { tl->ResumeAll(); } } void Instrumentation::InstrumentQuickAllocEntryPoints() { // TODO: the read of quick_alloc_entry_points_instrumentation_counter_ is racey and this code // should be guarded by a lock. DCHECK_GE(quick_alloc_entry_points_instrumentation_counter_.Load(), 0); const bool enable_instrumentation = quick_alloc_entry_points_instrumentation_counter_.FetchAndAdd(1) == 0; if (enable_instrumentation) { SetEntrypointsInstrumented(true); } } void Instrumentation::UninstrumentQuickAllocEntryPoints() { // TODO: the read of quick_alloc_entry_points_instrumentation_counter_ is racey and this code // should be guarded by a lock. DCHECK_GT(quick_alloc_entry_points_instrumentation_counter_.Load(), 0); const bool disable_instrumentation = quick_alloc_entry_points_instrumentation_counter_.FetchAndSub(1) == 1; if (disable_instrumentation) { SetEntrypointsInstrumented(false); } } void Instrumentation::ResetQuickAllocEntryPoints() { Runtime* runtime = Runtime::Current(); if (runtime->IsStarted()) { MutexLock mu(Thread::Current(), *Locks::thread_list_lock_); runtime->GetThreadList()->ForEach(ResetQuickAllocEntryPointsForThread, NULL); } } void Instrumentation::UpdateMethodsCode(mirror::ArtMethod* method, const void* quick_code, const void* portable_code, bool have_portable_code) const { const void* new_portable_code; const void* new_quick_code; bool new_have_portable_code; if (LIKELY(!instrumentation_stubs_installed_)) { new_portable_code = portable_code; new_quick_code = quick_code; new_have_portable_code = have_portable_code; } else { if ((interpreter_stubs_installed_ || IsDeoptimized(method)) && !method->IsNative()) { new_portable_code = GetPortableToInterpreterBridge(); new_quick_code = GetQuickToInterpreterBridge(); new_have_portable_code = false; } else if (quick_code == GetQuickResolutionTrampoline(Runtime::Current()->GetClassLinker()) || quick_code == GetQuickToInterpreterBridgeTrampoline(Runtime::Current()->GetClassLinker()) || quick_code == GetQuickToInterpreterBridge()) { DCHECK((portable_code == GetPortableResolutionTrampoline(Runtime::Current()->GetClassLinker())) || (portable_code == GetPortableToInterpreterBridge())); new_portable_code = portable_code; new_quick_code = quick_code; new_have_portable_code = have_portable_code; } else if (entry_exit_stubs_installed_) { new_quick_code = GetQuickInstrumentationEntryPoint(); new_portable_code = GetPortableToInterpreterBridge(); new_have_portable_code = false; } else { new_portable_code = portable_code; new_quick_code = quick_code; new_have_portable_code = have_portable_code; } } UpdateEntrypoints(method, new_quick_code, new_portable_code, new_have_portable_code); } void Instrumentation::Deoptimize(mirror::ArtMethod* method) { CHECK(!method->IsNative()); CHECK(!method->IsProxyMethod()); CHECK(!method->IsAbstract()); Thread* self = Thread::Current(); std::pair::iterator, bool> pair; { WriterMutexLock mu(self, deoptimized_methods_lock_); pair = deoptimized_methods_.insert(method); } bool already_deoptimized = !pair.second; CHECK(!already_deoptimized) << "Method " << PrettyMethod(method) << " is already deoptimized"; if (!interpreter_stubs_installed_) { UpdateEntrypoints(method, GetQuickToInterpreterBridge(), GetPortableToInterpreterBridge(), false); // Install instrumentation exit stub and instrumentation frames. We may already have installed // these previously so it will only cover the newly created frames. instrumentation_stubs_installed_ = true; MutexLock mu(self, *Locks::thread_list_lock_); Runtime::Current()->GetThreadList()->ForEach(InstrumentationInstallStack, this); } } void Instrumentation::Undeoptimize(mirror::ArtMethod* method) { CHECK(!method->IsNative()); CHECK(!method->IsProxyMethod()); CHECK(!method->IsAbstract()); Thread* self = Thread::Current(); bool empty; { WriterMutexLock mu(self, deoptimized_methods_lock_); auto it = deoptimized_methods_.find(method); CHECK(it != deoptimized_methods_.end()) << "Method " << PrettyMethod(method) << " is not deoptimized"; deoptimized_methods_.erase(it); empty = deoptimized_methods_.empty(); } // Restore code and possibly stack only if we did not deoptimize everything. if (!interpreter_stubs_installed_) { // Restore its code or resolution trampoline. ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); if (method->IsStatic() && !method->IsConstructor() && !method->GetDeclaringClass()->IsInitialized()) { UpdateEntrypoints(method, GetQuickResolutionTrampoline(class_linker), GetPortableResolutionTrampoline(class_linker), false); } else { bool have_portable_code = false; const void* quick_code = class_linker->GetQuickOatCodeFor(method); const void* portable_code = class_linker->GetPortableOatCodeFor(method, &have_portable_code); UpdateEntrypoints(method, quick_code, portable_code, have_portable_code); } // If there is no deoptimized method left, we can restore the stack of each thread. if (empty) { MutexLock mu(self, *Locks::thread_list_lock_); Runtime::Current()->GetThreadList()->ForEach(InstrumentationRestoreStack, this); instrumentation_stubs_installed_ = false; } } } bool Instrumentation::IsDeoptimized(mirror::ArtMethod* method) const { ReaderMutexLock mu(Thread::Current(), deoptimized_methods_lock_); DCHECK(method != nullptr); return deoptimized_methods_.find(method) != deoptimized_methods_.end(); } void Instrumentation::EnableDeoptimization() { ReaderMutexLock mu(Thread::Current(), deoptimized_methods_lock_); CHECK(deoptimized_methods_.empty()); CHECK_EQ(deoptimization_enabled_, false); deoptimization_enabled_ = true; } void Instrumentation::DisableDeoptimization() { CHECK_EQ(deoptimization_enabled_, true); // If we deoptimized everything, undo it. if (interpreter_stubs_installed_) { UndeoptimizeEverything(); } // Undeoptimized selected methods. while (true) { mirror::ArtMethod* method; { ReaderMutexLock mu(Thread::Current(), deoptimized_methods_lock_); if (deoptimized_methods_.empty()) { break; } method = *deoptimized_methods_.begin(); } Undeoptimize(method); } deoptimization_enabled_ = false; } // Indicates if instrumentation should notify method enter/exit events to the listeners. bool Instrumentation::ShouldNotifyMethodEnterExitEvents() const { return !deoptimization_enabled_ && !interpreter_stubs_installed_; } void Instrumentation::DeoptimizeEverything() { CHECK(!interpreter_stubs_installed_); ConfigureStubs(false, true); } void Instrumentation::UndeoptimizeEverything() { CHECK(interpreter_stubs_installed_); ConfigureStubs(false, false); } void Instrumentation::EnableMethodTracing() { bool require_interpreter = kDeoptimizeForAccurateMethodEntryExitListeners; ConfigureStubs(!require_interpreter, require_interpreter); } void Instrumentation::DisableMethodTracing() { ConfigureStubs(false, false); } const void* Instrumentation::GetQuickCodeFor(mirror::ArtMethod* method) const { Runtime* runtime = Runtime::Current(); if (LIKELY(!instrumentation_stubs_installed_)) { const void* code = method->GetEntryPointFromQuickCompiledCode(); DCHECK(code != nullptr); if (LIKELY(code != GetQuickResolutionTrampoline(runtime->GetClassLinker())) && LIKELY(code != GetQuickToInterpreterBridgeTrampoline(runtime->GetClassLinker())) && LIKELY(code != GetQuickToInterpreterBridge())) { return code; } } return runtime->GetClassLinker()->GetQuickOatCodeFor(method); } void Instrumentation::MethodEnterEventImpl(Thread* thread, mirror::Object* this_object, mirror::ArtMethod* method, uint32_t dex_pc) const { auto it = method_entry_listeners_.begin(); bool is_end = (it == method_entry_listeners_.end()); // Implemented this way to prevent problems caused by modification of the list while iterating. while (!is_end) { InstrumentationListener* cur = *it; ++it; is_end = (it == method_entry_listeners_.end()); cur->MethodEntered(thread, this_object, method, dex_pc); } } void Instrumentation::MethodExitEventImpl(Thread* thread, mirror::Object* this_object, mirror::ArtMethod* method, uint32_t dex_pc, const JValue& return_value) const { auto it = method_exit_listeners_.begin(); bool is_end = (it == method_exit_listeners_.end()); // Implemented this way to prevent problems caused by modification of the list while iterating. while (!is_end) { InstrumentationListener* cur = *it; ++it; is_end = (it == method_exit_listeners_.end()); cur->MethodExited(thread, this_object, method, dex_pc, return_value); } } void Instrumentation::MethodUnwindEvent(Thread* thread, mirror::Object* this_object, mirror::ArtMethod* method, uint32_t dex_pc) const { if (have_method_unwind_listeners_) { for (InstrumentationListener* listener : method_unwind_listeners_) { listener->MethodUnwind(thread, this_object, method, dex_pc); } } } void Instrumentation::DexPcMovedEventImpl(Thread* thread, mirror::Object* this_object, mirror::ArtMethod* method, uint32_t dex_pc) const { // TODO: STL copy-on-write collection? The copy below is due to the debug listener having an // action where it can remove itself as a listener and break the iterator. The copy only works // around the problem and in general we may have to move to something like reference counting to // ensure listeners are deleted correctly. std::list copy(dex_pc_listeners_); for (InstrumentationListener* listener : copy) { listener->DexPcMoved(thread, this_object, method, dex_pc); } } void Instrumentation::FieldReadEventImpl(Thread* thread, mirror::Object* this_object, mirror::ArtMethod* method, uint32_t dex_pc, mirror::ArtField* field) const { if (have_field_read_listeners_) { // TODO: same comment than DexPcMovedEventImpl. std::list copy(field_read_listeners_); for (InstrumentationListener* listener : copy) { listener->FieldRead(thread, this_object, method, dex_pc, field); } } } void Instrumentation::FieldWriteEventImpl(Thread* thread, mirror::Object* this_object, mirror::ArtMethod* method, uint32_t dex_pc, mirror::ArtField* field, const JValue& field_value) const { if (have_field_write_listeners_) { // TODO: same comment than DexPcMovedEventImpl. std::list copy(field_write_listeners_); for (InstrumentationListener* listener : copy) { listener->FieldWritten(thread, this_object, method, dex_pc, field, field_value); } } } void Instrumentation::ExceptionCaughtEvent(Thread* thread, const ThrowLocation& throw_location, mirror::ArtMethod* catch_method, uint32_t catch_dex_pc, mirror::Throwable* exception_object) const { if (have_exception_caught_listeners_) { DCHECK_EQ(thread->GetException(NULL), exception_object); thread->ClearException(); // TODO: The copy below is due to the debug listener having an action where it can remove // itself as a listener and break the iterator. The copy only works around the problem. std::list copy(exception_caught_listeners_); for (InstrumentationListener* listener : copy) { listener->ExceptionCaught(thread, throw_location, catch_method, catch_dex_pc, exception_object); } thread->SetException(throw_location, exception_object); } } static void CheckStackDepth(Thread* self, const InstrumentationStackFrame& instrumentation_frame, int delta) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { size_t frame_id = StackVisitor::ComputeNumFrames(self) + delta; if (frame_id != instrumentation_frame.frame_id_) { LOG(ERROR) << "Expected frame_id=" << frame_id << " but found " << instrumentation_frame.frame_id_; StackVisitor::DescribeStack(self); CHECK_EQ(frame_id, instrumentation_frame.frame_id_); } } void Instrumentation::PushInstrumentationStackFrame(Thread* self, mirror::Object* this_object, mirror::ArtMethod* method, uintptr_t lr, bool interpreter_entry) { // We have a callee-save frame meaning this value is guaranteed to never be 0. size_t frame_id = StackVisitor::ComputeNumFrames(self); std::deque* stack = self->GetInstrumentationStack(); if (kVerboseInstrumentation) { LOG(INFO) << "Entering " << PrettyMethod(method) << " from PC " << reinterpret_cast(lr); } instrumentation::InstrumentationStackFrame instrumentation_frame(this_object, method, lr, frame_id, interpreter_entry); stack->push_front(instrumentation_frame); MethodEnterEvent(self, this_object, method, 0); } uint64_t Instrumentation::PopInstrumentationStackFrame(Thread* self, uintptr_t* return_pc, uint64_t gpr_result, uint64_t fpr_result) { // Do the pop. std::deque* stack = self->GetInstrumentationStack(); CHECK_GT(stack->size(), 0U); InstrumentationStackFrame instrumentation_frame = stack->front(); stack->pop_front(); // Set return PC and check the sanity of the stack. *return_pc = instrumentation_frame.return_pc_; CheckStackDepth(self, instrumentation_frame, 0); mirror::ArtMethod* method = instrumentation_frame.method_; char return_shorty = MethodHelper(method).GetShorty()[0]; JValue return_value; if (return_shorty == 'V') { return_value.SetJ(0); } else if (return_shorty == 'F' || return_shorty == 'D') { return_value.SetJ(fpr_result); } else { return_value.SetJ(gpr_result); } // TODO: improve the dex pc information here, requires knowledge of current PC as opposed to // return_pc. uint32_t dex_pc = DexFile::kDexNoIndex; mirror::Object* this_object = instrumentation_frame.this_object_; MethodExitEvent(self, this_object, instrumentation_frame.method_, dex_pc, return_value); // Deoptimize if the caller needs to continue execution in the interpreter. Do nothing if we get // back to an upcall. NthCallerVisitor visitor(self, 1, true); visitor.WalkStack(true); bool deoptimize = (visitor.caller != NULL) && (interpreter_stubs_installed_ || IsDeoptimized(visitor.caller)); if (deoptimize && kVerboseInstrumentation) { LOG(INFO) << "Deoptimizing into " << PrettyMethod(visitor.caller); } if (deoptimize) { if (kVerboseInstrumentation) { LOG(INFO) << "Deoptimizing from " << PrettyMethod(method) << " result is " << std::hex << return_value.GetJ(); } self->SetDeoptimizationReturnValue(return_value); return static_cast(GetQuickDeoptimizationEntryPoint()) | (static_cast(*return_pc) << 32); } else { if (kVerboseInstrumentation) { LOG(INFO) << "Returning from " << PrettyMethod(method) << " to PC " << reinterpret_cast(*return_pc); } return *return_pc; } } void Instrumentation::PopMethodForUnwind(Thread* self, bool is_deoptimization) const { // Do the pop. std::deque* stack = self->GetInstrumentationStack(); CHECK_GT(stack->size(), 0U); InstrumentationStackFrame instrumentation_frame = stack->front(); // TODO: bring back CheckStackDepth(self, instrumentation_frame, 2); stack->pop_front(); mirror::ArtMethod* method = instrumentation_frame.method_; if (is_deoptimization) { if (kVerboseInstrumentation) { LOG(INFO) << "Popping for deoptimization " << PrettyMethod(method); } } else { if (kVerboseInstrumentation) { LOG(INFO) << "Popping for unwind " << PrettyMethod(method); } // Notify listeners of method unwind. // TODO: improve the dex pc information here, requires knowledge of current PC as opposed to // return_pc. uint32_t dex_pc = DexFile::kDexNoIndex; MethodUnwindEvent(self, instrumentation_frame.this_object_, method, dex_pc); } } void Instrumentation::VisitRoots(RootCallback* callback, void* arg) { WriterMutexLock mu(Thread::Current(), deoptimized_methods_lock_); if (deoptimized_methods_.empty()) { return; } std::set new_deoptimized_methods; for (mirror::ArtMethod* method : deoptimized_methods_) { DCHECK(method != nullptr); callback(reinterpret_cast(&method), arg, 0, kRootVMInternal); new_deoptimized_methods.insert(method); } deoptimized_methods_ = new_deoptimized_methods; } std::string InstrumentationStackFrame::Dump() const { std::ostringstream os; os << "Frame " << frame_id_ << " " << PrettyMethod(method_) << ":" << reinterpret_cast(return_pc_) << " this=" << reinterpret_cast(this_object_); return os.str(); } } // namespace instrumentation } // namespace art