/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_LEB128_H_ #define ART_RUNTIME_LEB128_H_ #include #include "base/bit_utils.h" #include "base/logging.h" #include "globals.h" namespace art { // Reads an unsigned LEB128 value, updating the given pointer to point // just past the end of the read value. This function tolerates // non-zero high-order bits in the fifth encoded byte. static inline uint32_t DecodeUnsignedLeb128(const uint8_t** data) { const uint8_t* ptr = *data; int result = *(ptr++); if (UNLIKELY(result > 0x7f)) { int cur = *(ptr++); result = (result & 0x7f) | ((cur & 0x7f) << 7); if (cur > 0x7f) { cur = *(ptr++); result |= (cur & 0x7f) << 14; if (cur > 0x7f) { cur = *(ptr++); result |= (cur & 0x7f) << 21; if (cur > 0x7f) { // Note: We don't check to see if cur is out of range here, // meaning we tolerate garbage in the four high-order bits. cur = *(ptr++); result |= cur << 28; } } } } *data = ptr; return static_cast(result); } // Reads an unsigned LEB128 + 1 value. updating the given pointer to point // just past the end of the read value. This function tolerates // non-zero high-order bits in the fifth encoded byte. // It is possible for this function to return -1. static inline int32_t DecodeUnsignedLeb128P1(const uint8_t** data) { return DecodeUnsignedLeb128(data) - 1; } // Reads a signed LEB128 value, updating the given pointer to point // just past the end of the read value. This function tolerates // non-zero high-order bits in the fifth encoded byte. static inline int32_t DecodeSignedLeb128(const uint8_t** data) { const uint8_t* ptr = *data; int32_t result = *(ptr++); if (result <= 0x7f) { result = (result << 25) >> 25; } else { int cur = *(ptr++); result = (result & 0x7f) | ((cur & 0x7f) << 7); if (cur <= 0x7f) { result = (result << 18) >> 18; } else { cur = *(ptr++); result |= (cur & 0x7f) << 14; if (cur <= 0x7f) { result = (result << 11) >> 11; } else { cur = *(ptr++); result |= (cur & 0x7f) << 21; if (cur <= 0x7f) { result = (result << 4) >> 4; } else { // Note: We don't check to see if cur is out of range here, // meaning we tolerate garbage in the four high-order bits. cur = *(ptr++); result |= cur << 28; } } } } *data = ptr; return result; } // Returns the number of bytes needed to encode the value in unsigned LEB128. static inline uint32_t UnsignedLeb128Size(uint32_t data) { // bits_to_encode = (data != 0) ? 32 - CLZ(x) : 1 // 32 - CLZ(data | 1) // bytes = ceil(bits_to_encode / 7.0); // (6 + bits_to_encode) / 7 uint32_t x = 6 + 32 - CLZ(data | 1); // Division by 7 is done by (x * 37) >> 8 where 37 = ceil(256 / 7). // This works for 0 <= x < 256 / (7 * 37 - 256), i.e. 0 <= x <= 85. return (x * 37) >> 8; } // Returns the number of bytes needed to encode the value in unsigned LEB128. static inline uint32_t SignedLeb128Size(int32_t data) { // Like UnsignedLeb128Size(), but we need one bit beyond the highest bit that differs from sign. data = data ^ (data >> 31); uint32_t x = 1 /* we need to encode the sign bit */ + 6 + 32 - CLZ(data | 1); return (x * 37) >> 8; } static inline uint8_t* EncodeUnsignedLeb128(uint8_t* dest, uint32_t value) { uint8_t out = value & 0x7f; value >>= 7; while (value != 0) { *dest++ = out | 0x80; out = value & 0x7f; value >>= 7; } *dest++ = out; return dest; } template static inline void EncodeUnsignedLeb128(std::vector* dest, uint32_t value) { uint8_t out = value & 0x7f; value >>= 7; while (value != 0) { dest->push_back(out | 0x80); out = value & 0x7f; value >>= 7; } dest->push_back(out); } // Overwrite encoded Leb128 with a new value. The new value must be less than // or equal to the old value to ensure that it fits the allocated space. static inline void UpdateUnsignedLeb128(uint8_t* dest, uint32_t value) { const uint8_t* old_end = dest; uint32_t old_value = DecodeUnsignedLeb128(&old_end); DCHECK_LE(value, old_value); for (uint8_t* end = EncodeUnsignedLeb128(dest, value); end < old_end; end++) { // Use longer encoding than necessary to fill the allocated space. end[-1] |= 0x80; end[0] = 0; } } static inline uint8_t* EncodeSignedLeb128(uint8_t* dest, int32_t value) { uint32_t extra_bits = static_cast(value ^ (value >> 31)) >> 6; uint8_t out = value & 0x7f; while (extra_bits != 0u) { *dest++ = out | 0x80; value >>= 7; out = value & 0x7f; extra_bits >>= 7; } *dest++ = out; return dest; } template static inline void EncodeSignedLeb128(std::vector* dest, int32_t value) { uint32_t extra_bits = static_cast(value ^ (value >> 31)) >> 6; uint8_t out = value & 0x7f; while (extra_bits != 0u) { dest->push_back(out | 0x80); value >>= 7; out = value & 0x7f; extra_bits >>= 7; } dest->push_back(out); } // An encoder that pushed uint32_t data onto the given std::vector. class Leb128Encoder { public: explicit Leb128Encoder(std::vector* data) : data_(data) { DCHECK(data != nullptr); } void Reserve(uint32_t size) { data_->reserve(size); } void PushBackUnsigned(uint32_t value) { EncodeUnsignedLeb128(data_, value); } template void InsertBackUnsigned(It cur, It end) { for (; cur != end; ++cur) { PushBackUnsigned(*cur); } } void PushBackSigned(int32_t value) { EncodeSignedLeb128(data_, value); } template void InsertBackSigned(It cur, It end) { for (; cur != end; ++cur) { PushBackSigned(*cur); } } const std::vector& GetData() const { return *data_; } protected: std::vector* const data_; private: DISALLOW_COPY_AND_ASSIGN(Leb128Encoder); }; // An encoder with an API similar to vector where the data is captured in ULEB128 format. class Leb128EncodingVector FINAL : private std::vector, public Leb128Encoder { public: Leb128EncodingVector() : Leb128Encoder(this) { } private: DISALLOW_COPY_AND_ASSIGN(Leb128EncodingVector); }; } // namespace art #endif // ART_RUNTIME_LEB128_H_