/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_LOCK_WORD_H_ #define ART_RUNTIME_LOCK_WORD_H_ #include #include #include "base/logging.h" #include "utils.h" namespace art { namespace mirror { class Object; } // namespace mirror class Monitor; /* The lock value itself as stored in mirror::Object::monitor_. The two most significant bits of * the state. The three possible states are fat locked, thin/unlocked, and hash code. * When the lock word is in the "thin" state and its bits are formatted as follows: * * |33|22222222221111|1111110000000000| * |10|98765432109876|5432109876543210| * |00| lock count |thread id owner | * * When the lock word is in the "fat" state and its bits are formatted as follows: * * |33|222222222211111111110000000000| * |10|987654321098765432109876543210| * |01| MonitorId | * * When the lock word is in hash state and its bits are formatted as follows: * * |33|222222222211111111110000000000| * |10|987654321098765432109876543210| * |10| HashCode | */ class LockWord { public: enum SizeShiftsAndMasks { // private marker to avoid generate-operator-out.py from processing. // Number of bits to encode the state, currently just fat or thin/unlocked or hash code. kStateSize = 2, // Number of bits to encode the thin lock owner. kThinLockOwnerSize = 16, // Remaining bits are the recursive lock count. kThinLockCountSize = 32 - kThinLockOwnerSize - kStateSize, // Thin lock bits. Owner in lowest bits. kThinLockOwnerShift = 0, kThinLockOwnerMask = (1 << kThinLockOwnerSize) - 1, kThinLockMaxOwner = kThinLockOwnerMask, // Count in higher bits. kThinLockCountShift = kThinLockOwnerSize + kThinLockOwnerShift, kThinLockCountMask = (1 << kThinLockCountSize) - 1, kThinLockMaxCount = kThinLockCountMask, // State in the highest bits. kStateShift = kThinLockCountSize + kThinLockCountShift, kStateMask = (1 << kStateSize) - 1, kStateThinOrUnlocked = 0, kStateFat = 1, kStateHash = 2, kStateForwardingAddress = 3, // When the state is kHashCode, the non-state bits hold the hashcode. kHashShift = 0, kHashSize = 32 - kStateSize, kHashMask = (1 << kHashSize) - 1, kMaxHash = kHashMask, kMaxMonitorId = kMaxHash }; static LockWord FromThinLockId(uint32_t thread_id, uint32_t count) { CHECK_LE(thread_id, static_cast(kThinLockMaxOwner)); CHECK_LE(count, static_cast(kThinLockMaxCount)); return LockWord((thread_id << kThinLockOwnerShift) | (count << kThinLockCountShift) | (kStateThinOrUnlocked << kStateShift)); } static LockWord FromForwardingAddress(size_t target) { DCHECK(IsAligned < 1 << kStateSize>(target)); return LockWord((target >> kStateSize) | (kStateForwardingAddress << kStateShift)); } static LockWord FromHashCode(uint32_t hash_code) { CHECK_LE(hash_code, static_cast(kMaxHash)); return LockWord((hash_code << kHashShift) | (kStateHash << kStateShift)); } enum LockState { kUnlocked, // No lock owners. kThinLocked, // Single uncontended owner. kFatLocked, // See associated monitor. kHashCode, // Lock word contains an identity hash. kForwardingAddress, // Lock word contains the forwarding address of an object. }; LockState GetState() const { if (UNLIKELY(value_ == 0)) { return kUnlocked; } else { uint32_t internal_state = (value_ >> kStateShift) & kStateMask; switch (internal_state) { case kStateThinOrUnlocked: return kThinLocked; case kStateHash: return kHashCode; case kStateForwardingAddress: return kForwardingAddress; default: DCHECK_EQ(internal_state, static_cast(kStateFat)); return kFatLocked; } } } // Return the owner thin lock thread id. uint32_t ThinLockOwner() const; // Return the number of times a lock value has been locked. uint32_t ThinLockCount() const; // Return the Monitor encoded in a fat lock. Monitor* FatLockMonitor() const; // Return the forwarding address stored in the monitor. size_t ForwardingAddress() const; // Default constructor with no lock ownership. LockWord(); // Constructor a lock word for inflation to use a Monitor. explicit LockWord(Monitor* mon); bool operator==(const LockWord& rhs) const { return GetValue() == rhs.GetValue(); } // Return the hash code stored in the lock word, must be kHashCode state. int32_t GetHashCode() const; uint32_t GetValue() const { return value_; } private: explicit LockWord(uint32_t val) : value_(val) {} // Only Object should be converting LockWords to/from uints. friend class mirror::Object; // The encoded value holding all the state. uint32_t value_; }; std::ostream& operator<<(std::ostream& os, const LockWord::LockState& code); } // namespace art #endif // ART_RUNTIME_LOCK_WORD_H_