/* * Copyright (C) 2013 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "mem_map.h" #include "UniquePtr.h" #include "gtest/gtest.h" namespace art { class MemMapTest : public testing::Test { public: static byte* BaseBegin(MemMap* mem_map) { return reinterpret_cast(mem_map->base_begin_); } static size_t BaseSize(MemMap* mem_map) { return mem_map->base_size_; } static void RemapAtEndTest(bool low_4gb) { std::string error_msg; // Cast the page size to size_t. const size_t page_size = static_cast(kPageSize); // Map a two-page memory region. MemMap* m0 = MemMap::MapAnonymous("MemMapTest_RemapAtEndTest_map0", nullptr, 2 * page_size, PROT_READ | PROT_WRITE, low_4gb, &error_msg); // Check its state and write to it. byte* base0 = m0->Begin(); ASSERT_TRUE(base0 != nullptr) << error_msg; size_t size0 = m0->Size(); EXPECT_EQ(m0->Size(), 2 * page_size); EXPECT_EQ(BaseBegin(m0), base0); EXPECT_EQ(BaseSize(m0), size0); memset(base0, 42, 2 * page_size); // Remap the latter half into a second MemMap. MemMap* m1 = m0->RemapAtEnd(base0 + page_size, "MemMapTest_RemapAtEndTest_map1", PROT_READ | PROT_WRITE, &error_msg); // Check the states of the two maps. EXPECT_EQ(m0->Begin(), base0) << error_msg; EXPECT_EQ(m0->Size(), page_size); EXPECT_EQ(BaseBegin(m0), base0); EXPECT_EQ(BaseSize(m0), page_size); byte* base1 = m1->Begin(); size_t size1 = m1->Size(); EXPECT_EQ(base1, base0 + page_size); EXPECT_EQ(size1, page_size); EXPECT_EQ(BaseBegin(m1), base1); EXPECT_EQ(BaseSize(m1), size1); // Write to the second region. memset(base1, 43, page_size); // Check the contents of the two regions. for (size_t i = 0; i < page_size; ++i) { EXPECT_EQ(base0[i], 42); } for (size_t i = 0; i < page_size; ++i) { EXPECT_EQ(base1[i], 43); } // Unmap the first region. delete m0; // Make sure the second region is still accessible after the first // region is unmapped. for (size_t i = 0; i < page_size; ++i) { EXPECT_EQ(base1[i], 43); } delete m1; } }; TEST_F(MemMapTest, MapAnonymousEmpty) { std::string error_msg; UniquePtr map(MemMap::MapAnonymous("MapAnonymousEmpty", nullptr, 0, PROT_READ, false, &error_msg)); ASSERT_TRUE(map.get() != nullptr) << error_msg; ASSERT_TRUE(error_msg.empty()); map.reset(MemMap::MapAnonymous("MapAnonymousEmpty", nullptr, kPageSize, PROT_READ | PROT_WRITE, false, &error_msg)); ASSERT_TRUE(map.get() != nullptr) << error_msg; ASSERT_TRUE(error_msg.empty()); } #ifdef __LP64__ TEST_F(MemMapTest, MapAnonymousEmpty32bit) { std::string error_msg; UniquePtr map(MemMap::MapAnonymous("MapAnonymousEmpty", nullptr, kPageSize, PROT_READ | PROT_WRITE, true, &error_msg)); ASSERT_TRUE(map.get() != nullptr) << error_msg; ASSERT_TRUE(error_msg.empty()); ASSERT_LT(reinterpret_cast(BaseBegin(map.get())), 1ULL << 32); } #endif TEST_F(MemMapTest, RemapAtEnd) { RemapAtEndTest(false); } #ifdef __LP64__ TEST_F(MemMapTest, RemapAtEnd32bit) { RemapAtEndTest(true); } #endif } // namespace art