/* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "monitor.h" #define ATRACE_TAG ATRACE_TAG_DALVIK #include #include #include "base/mutex.h" #include "base/stl_util.h" #include "class_linker.h" #include "dex_file-inl.h" #include "dex_instruction.h" #include "lock_word-inl.h" #include "mirror/art_method-inl.h" #include "mirror/class-inl.h" #include "mirror/object-inl.h" #include "mirror/object_array-inl.h" #include "scoped_thread_state_change.h" #include "thread.h" #include "thread_list.h" #include "verifier/method_verifier.h" #include "well_known_classes.h" namespace art { static constexpr uint64_t kLongWaitMs = 100; /* * Every Object has a monitor associated with it, but not every Object is actually locked. Even * the ones that are locked do not need a full-fledged monitor until a) there is actual contention * or b) wait() is called on the Object. * * For Android, we have implemented a scheme similar to the one described in Bacon et al.'s * "Thin locks: featherweight synchronization for Java" (ACM 1998). Things are even easier for us, * though, because we have a full 32 bits to work with. * * The two states of an Object's lock are referred to as "thin" and "fat". A lock may transition * from the "thin" state to the "fat" state and this transition is referred to as inflation. Once * a lock has been inflated it remains in the "fat" state indefinitely. * * The lock value itself is stored in mirror::Object::monitor_ and the representation is described * in the LockWord value type. * * Monitors provide: * - mutually exclusive access to resources * - a way for multiple threads to wait for notification * * In effect, they fill the role of both mutexes and condition variables. * * Only one thread can own the monitor at any time. There may be several threads waiting on it * (the wait call unlocks it). One or more waiting threads may be getting interrupted or notified * at any given time. */ bool (*Monitor::is_sensitive_thread_hook_)() = NULL; uint32_t Monitor::lock_profiling_threshold_ = 0; bool Monitor::IsSensitiveThread() { if (is_sensitive_thread_hook_ != NULL) { return (*is_sensitive_thread_hook_)(); } return false; } void Monitor::Init(uint32_t lock_profiling_threshold, bool (*is_sensitive_thread_hook)()) { lock_profiling_threshold_ = lock_profiling_threshold; is_sensitive_thread_hook_ = is_sensitive_thread_hook; } Monitor::Monitor(Thread* self, Thread* owner, mirror::Object* obj, int32_t hash_code) : monitor_lock_("a monitor lock", kMonitorLock), monitor_contenders_("monitor contenders", monitor_lock_), num_waiters_(0), owner_(owner), lock_count_(0), obj_(GcRoot(obj)), wait_set_(NULL), hash_code_(hash_code), locking_method_(NULL), locking_dex_pc_(0), monitor_id_(MonitorPool::ComputeMonitorId(this, self)) { #ifdef __LP64__ DCHECK(false) << "Should not be reached in 64b"; next_free_ = nullptr; #endif // We should only inflate a lock if the owner is ourselves or suspended. This avoids a race // with the owner unlocking the thin-lock. CHECK(owner == nullptr || owner == self || owner->IsSuspended()); // The identity hash code is set for the life time of the monitor. } Monitor::Monitor(Thread* self, Thread* owner, mirror::Object* obj, int32_t hash_code, MonitorId id) : monitor_lock_("a monitor lock", kMonitorLock), monitor_contenders_("monitor contenders", monitor_lock_), num_waiters_(0), owner_(owner), lock_count_(0), obj_(GcRoot(obj)), wait_set_(NULL), hash_code_(hash_code), locking_method_(NULL), locking_dex_pc_(0), monitor_id_(id) { #ifdef __LP64__ next_free_ = nullptr; #endif // We should only inflate a lock if the owner is ourselves or suspended. This avoids a race // with the owner unlocking the thin-lock. CHECK(owner == nullptr || owner == self || owner->IsSuspended()); // The identity hash code is set for the life time of the monitor. } int32_t Monitor::GetHashCode() { while (!HasHashCode()) { if (hash_code_.CompareExchangeWeakRelaxed(0, mirror::Object::GenerateIdentityHashCode())) { break; } } DCHECK(HasHashCode()); return hash_code_.LoadRelaxed(); } bool Monitor::Install(Thread* self) { MutexLock mu(self, monitor_lock_); // Uncontended mutex acquisition as monitor isn't yet public. CHECK(owner_ == nullptr || owner_ == self || owner_->IsSuspended()); // Propagate the lock state. LockWord lw(GetObject()->GetLockWord(false)); switch (lw.GetState()) { case LockWord::kThinLocked: { CHECK_EQ(owner_->GetThreadId(), lw.ThinLockOwner()); lock_count_ = lw.ThinLockCount(); break; } case LockWord::kHashCode: { CHECK_EQ(hash_code_.LoadRelaxed(), static_cast(lw.GetHashCode())); break; } case LockWord::kFatLocked: { // The owner_ is suspended but another thread beat us to install a monitor. return false; } case LockWord::kUnlocked: { LOG(FATAL) << "Inflating unlocked lock word"; break; } default: { LOG(FATAL) << "Invalid monitor state " << lw.GetState(); return false; } } LockWord fat(this, lw.ReadBarrierState()); // Publish the updated lock word, which may race with other threads. bool success = GetObject()->CasLockWordWeakSequentiallyConsistent(lw, fat); // Lock profiling. if (success && owner_ != nullptr && lock_profiling_threshold_ != 0) { // Do not abort on dex pc errors. This can easily happen when we want to dump a stack trace on // abort. locking_method_ = owner_->GetCurrentMethod(&locking_dex_pc_, false); } return success; } Monitor::~Monitor() { // Deflated monitors have a null object. } void Monitor::AppendToWaitSet(Thread* thread) { DCHECK(owner_ == Thread::Current()); DCHECK(thread != NULL); DCHECK(thread->GetWaitNext() == nullptr) << thread->GetWaitNext(); if (wait_set_ == NULL) { wait_set_ = thread; return; } // push_back. Thread* t = wait_set_; while (t->GetWaitNext() != nullptr) { t = t->GetWaitNext(); } t->SetWaitNext(thread); } void Monitor::RemoveFromWaitSet(Thread *thread) { DCHECK(owner_ == Thread::Current()); DCHECK(thread != NULL); if (wait_set_ == NULL) { return; } if (wait_set_ == thread) { wait_set_ = thread->GetWaitNext(); thread->SetWaitNext(nullptr); return; } Thread* t = wait_set_; while (t->GetWaitNext() != NULL) { if (t->GetWaitNext() == thread) { t->SetWaitNext(thread->GetWaitNext()); thread->SetWaitNext(nullptr); return; } t = t->GetWaitNext(); } } void Monitor::SetObject(mirror::Object* object) { obj_ = GcRoot(object); } void Monitor::Lock(Thread* self) { MutexLock mu(self, monitor_lock_); while (true) { if (owner_ == nullptr) { // Unowned. owner_ = self; CHECK_EQ(lock_count_, 0); // When debugging, save the current monitor holder for future // acquisition failures to use in sampled logging. if (lock_profiling_threshold_ != 0) { locking_method_ = self->GetCurrentMethod(&locking_dex_pc_); } return; } else if (owner_ == self) { // Recursive. lock_count_++; return; } // Contended. const bool log_contention = (lock_profiling_threshold_ != 0); uint64_t wait_start_ms = log_contention ? MilliTime() : 0; mirror::ArtMethod* owners_method = locking_method_; uint32_t owners_dex_pc = locking_dex_pc_; // Do this before releasing the lock so that we don't get deflated. size_t num_waiters = num_waiters_; ++num_waiters_; monitor_lock_.Unlock(self); // Let go of locks in order. self->SetMonitorEnterObject(GetObject()); { ScopedThreadStateChange tsc(self, kBlocked); // Change to blocked and give up mutator_lock_. MutexLock mu2(self, monitor_lock_); // Reacquire monitor_lock_ without mutator_lock_ for Wait. if (owner_ != nullptr) { // Did the owner_ give the lock up? if (ATRACE_ENABLED()) { std::string name; owner_->GetThreadName(name); ATRACE_BEGIN(("Contended on monitor with owner " + name).c_str()); } monitor_contenders_.Wait(self); // Still contended so wait. // Woken from contention. if (log_contention) { uint64_t wait_ms = MilliTime() - wait_start_ms; uint32_t sample_percent; if (wait_ms >= lock_profiling_threshold_) { sample_percent = 100; } else { sample_percent = 100 * wait_ms / lock_profiling_threshold_; } if (sample_percent != 0 && (static_cast(rand() % 100) < sample_percent)) { const char* owners_filename; uint32_t owners_line_number; TranslateLocation(owners_method, owners_dex_pc, &owners_filename, &owners_line_number); if (wait_ms > kLongWaitMs && owners_method != nullptr) { LOG(WARNING) << "Long monitor contention event with owner method=" << PrettyMethod(owners_method) << " from " << owners_filename << ":" << owners_line_number << " waiters=" << num_waiters << " for " << PrettyDuration(MsToNs(wait_ms)); } LogContentionEvent(self, wait_ms, sample_percent, owners_filename, owners_line_number); } } ATRACE_END(); } } self->SetMonitorEnterObject(nullptr); monitor_lock_.Lock(self); // Reacquire locks in order. --num_waiters_; } } static void ThrowIllegalMonitorStateExceptionF(const char* fmt, ...) __attribute__((format(printf, 1, 2))); static void ThrowIllegalMonitorStateExceptionF(const char* fmt, ...) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { va_list args; va_start(args, fmt); Thread* self = Thread::Current(); ThrowLocation throw_location = self->GetCurrentLocationForThrow(); self->ThrowNewExceptionV(throw_location, "Ljava/lang/IllegalMonitorStateException;", fmt, args); if (!Runtime::Current()->IsStarted() || VLOG_IS_ON(monitor)) { std::ostringstream ss; self->Dump(ss); LOG(Runtime::Current()->IsStarted() ? INFO : ERROR) << self->GetException(NULL)->Dump() << "\n" << ss.str(); } va_end(args); } static std::string ThreadToString(Thread* thread) { if (thread == NULL) { return "NULL"; } std::ostringstream oss; // TODO: alternatively, we could just return the thread's name. oss << *thread; return oss.str(); } void Monitor::FailedUnlock(mirror::Object* o, Thread* expected_owner, Thread* found_owner, Monitor* monitor) { Thread* current_owner = NULL; std::string current_owner_string; std::string expected_owner_string; std::string found_owner_string; { // TODO: isn't this too late to prevent threads from disappearing? // Acquire thread list lock so threads won't disappear from under us. MutexLock mu(Thread::Current(), *Locks::thread_list_lock_); // Re-read owner now that we hold lock. current_owner = (monitor != NULL) ? monitor->GetOwner() : NULL; // Get short descriptions of the threads involved. current_owner_string = ThreadToString(current_owner); expected_owner_string = ThreadToString(expected_owner); found_owner_string = ThreadToString(found_owner); } if (current_owner == NULL) { if (found_owner == NULL) { ThrowIllegalMonitorStateExceptionF("unlock of unowned monitor on object of type '%s'" " on thread '%s'", PrettyTypeOf(o).c_str(), expected_owner_string.c_str()); } else { // Race: the original read found an owner but now there is none ThrowIllegalMonitorStateExceptionF("unlock of monitor owned by '%s' on object of type '%s'" " (where now the monitor appears unowned) on thread '%s'", found_owner_string.c_str(), PrettyTypeOf(o).c_str(), expected_owner_string.c_str()); } } else { if (found_owner == NULL) { // Race: originally there was no owner, there is now ThrowIllegalMonitorStateExceptionF("unlock of monitor owned by '%s' on object of type '%s'" " (originally believed to be unowned) on thread '%s'", current_owner_string.c_str(), PrettyTypeOf(o).c_str(), expected_owner_string.c_str()); } else { if (found_owner != current_owner) { // Race: originally found and current owner have changed ThrowIllegalMonitorStateExceptionF("unlock of monitor originally owned by '%s' (now" " owned by '%s') on object of type '%s' on thread '%s'", found_owner_string.c_str(), current_owner_string.c_str(), PrettyTypeOf(o).c_str(), expected_owner_string.c_str()); } else { ThrowIllegalMonitorStateExceptionF("unlock of monitor owned by '%s' on object of type '%s'" " on thread '%s", current_owner_string.c_str(), PrettyTypeOf(o).c_str(), expected_owner_string.c_str()); } } } } bool Monitor::Unlock(Thread* self) { DCHECK(self != NULL); MutexLock mu(self, monitor_lock_); Thread* owner = owner_; if (owner == self) { // We own the monitor, so nobody else can be in here. if (lock_count_ == 0) { owner_ = NULL; locking_method_ = NULL; locking_dex_pc_ = 0; // Wake a contender. monitor_contenders_.Signal(self); } else { --lock_count_; } } else { // We don't own this, so we're not allowed to unlock it. // The JNI spec says that we should throw IllegalMonitorStateException // in this case. FailedUnlock(GetObject(), self, owner, this); return false; } return true; } void Monitor::Wait(Thread* self, int64_t ms, int32_t ns, bool interruptShouldThrow, ThreadState why) { DCHECK(self != NULL); DCHECK(why == kTimedWaiting || why == kWaiting || why == kSleeping); monitor_lock_.Lock(self); // Make sure that we hold the lock. if (owner_ != self) { monitor_lock_.Unlock(self); ThrowIllegalMonitorStateExceptionF("object not locked by thread before wait()"); return; } // We need to turn a zero-length timed wait into a regular wait because // Object.wait(0, 0) is defined as Object.wait(0), which is defined as Object.wait(). if (why == kTimedWaiting && (ms == 0 && ns == 0)) { why = kWaiting; } // Enforce the timeout range. if (ms < 0 || ns < 0 || ns > 999999) { monitor_lock_.Unlock(self); ThrowLocation throw_location = self->GetCurrentLocationForThrow(); self->ThrowNewExceptionF(throw_location, "Ljava/lang/IllegalArgumentException;", "timeout arguments out of range: ms=%" PRId64 " ns=%d", ms, ns); return; } /* * Add ourselves to the set of threads waiting on this monitor, and * release our hold. We need to let it go even if we're a few levels * deep in a recursive lock, and we need to restore that later. * * We append to the wait set ahead of clearing the count and owner * fields so the subroutine can check that the calling thread owns * the monitor. Aside from that, the order of member updates is * not order sensitive as we hold the pthread mutex. */ AppendToWaitSet(self); ++num_waiters_; int prev_lock_count = lock_count_; lock_count_ = 0; owner_ = NULL; mirror::ArtMethod* saved_method = locking_method_; locking_method_ = NULL; uintptr_t saved_dex_pc = locking_dex_pc_; locking_dex_pc_ = 0; /* * Update thread state. If the GC wakes up, it'll ignore us, knowing * that we won't touch any references in this state, and we'll check * our suspend mode before we transition out. */ self->TransitionFromRunnableToSuspended(why); bool was_interrupted = false; { // Pseudo-atomically wait on self's wait_cond_ and release the monitor lock. MutexLock mu(self, *self->GetWaitMutex()); // Set wait_monitor_ to the monitor object we will be waiting on. When wait_monitor_ is // non-NULL a notifying or interrupting thread must signal the thread's wait_cond_ to wake it // up. DCHECK(self->GetWaitMonitor() == nullptr); self->SetWaitMonitor(this); // Release the monitor lock. monitor_contenders_.Signal(self); monitor_lock_.Unlock(self); // Handle the case where the thread was interrupted before we called wait(). if (self->IsInterruptedLocked()) { was_interrupted = true; } else { // Wait for a notification or a timeout to occur. if (why == kWaiting) { self->GetWaitConditionVariable()->Wait(self); } else { DCHECK(why == kTimedWaiting || why == kSleeping) << why; self->GetWaitConditionVariable()->TimedWait(self, ms, ns); } if (self->IsInterruptedLocked()) { was_interrupted = true; } self->SetInterruptedLocked(false); } } // Set self->status back to kRunnable, and self-suspend if needed. self->TransitionFromSuspendedToRunnable(); { // We reset the thread's wait_monitor_ field after transitioning back to runnable so // that a thread in a waiting/sleeping state has a non-null wait_monitor_ for debugging // and diagnostic purposes. (If you reset this earlier, stack dumps will claim that threads // are waiting on "null".) MutexLock mu(self, *self->GetWaitMutex()); DCHECK(self->GetWaitMonitor() != nullptr); self->SetWaitMonitor(nullptr); } // Re-acquire the monitor and lock. Lock(self); monitor_lock_.Lock(self); self->GetWaitMutex()->AssertNotHeld(self); /* * We remove our thread from wait set after restoring the count * and owner fields so the subroutine can check that the calling * thread owns the monitor. Aside from that, the order of member * updates is not order sensitive as we hold the pthread mutex. */ owner_ = self; lock_count_ = prev_lock_count; locking_method_ = saved_method; locking_dex_pc_ = saved_dex_pc; --num_waiters_; RemoveFromWaitSet(self); monitor_lock_.Unlock(self); if (was_interrupted) { /* * We were interrupted while waiting, or somebody interrupted an * un-interruptible thread earlier and we're bailing out immediately. * * The doc sayeth: "The interrupted status of the current thread is * cleared when this exception is thrown." */ { MutexLock mu(self, *self->GetWaitMutex()); self->SetInterruptedLocked(false); } if (interruptShouldThrow) { ThrowLocation throw_location = self->GetCurrentLocationForThrow(); self->ThrowNewException(throw_location, "Ljava/lang/InterruptedException;", NULL); } } } void Monitor::Notify(Thread* self) { DCHECK(self != NULL); MutexLock mu(self, monitor_lock_); // Make sure that we hold the lock. if (owner_ != self) { ThrowIllegalMonitorStateExceptionF("object not locked by thread before notify()"); return; } // Signal the first waiting thread in the wait set. while (wait_set_ != NULL) { Thread* thread = wait_set_; wait_set_ = thread->GetWaitNext(); thread->SetWaitNext(nullptr); // Check to see if the thread is still waiting. MutexLock wait_mu(self, *thread->GetWaitMutex()); if (thread->GetWaitMonitor() != nullptr) { thread->GetWaitConditionVariable()->Signal(self); return; } } } void Monitor::NotifyAll(Thread* self) { DCHECK(self != NULL); MutexLock mu(self, monitor_lock_); // Make sure that we hold the lock. if (owner_ != self) { ThrowIllegalMonitorStateExceptionF("object not locked by thread before notifyAll()"); return; } // Signal all threads in the wait set. while (wait_set_ != NULL) { Thread* thread = wait_set_; wait_set_ = thread->GetWaitNext(); thread->SetWaitNext(nullptr); thread->Notify(); } } bool Monitor::Deflate(Thread* self, mirror::Object* obj) { DCHECK(obj != nullptr); // Don't need volatile since we only deflate with mutators suspended. LockWord lw(obj->GetLockWord(false)); // If the lock isn't an inflated monitor, then we don't need to deflate anything. if (lw.GetState() == LockWord::kFatLocked) { Monitor* monitor = lw.FatLockMonitor(); DCHECK(monitor != nullptr); MutexLock mu(self, monitor->monitor_lock_); // Can't deflate if we have anybody waiting on the CV. if (monitor->num_waiters_ > 0) { return false; } Thread* owner = monitor->owner_; if (owner != nullptr) { // Can't deflate if we are locked and have a hash code. if (monitor->HasHashCode()) { return false; } // Can't deflate if our lock count is too high. if (monitor->lock_count_ > LockWord::kThinLockMaxCount) { return false; } // Deflate to a thin lock. LockWord new_lw = LockWord::FromThinLockId(owner->GetThreadId(), monitor->lock_count_, lw.ReadBarrierState()); // Assume no concurrent read barrier state changes as mutators are suspended. obj->SetLockWord(new_lw, false); VLOG(monitor) << "Deflated " << obj << " to thin lock " << owner->GetTid() << " / " << monitor->lock_count_; } else if (monitor->HasHashCode()) { LockWord new_lw = LockWord::FromHashCode(monitor->GetHashCode(), lw.ReadBarrierState()); // Assume no concurrent read barrier state changes as mutators are suspended. obj->SetLockWord(new_lw, false); VLOG(monitor) << "Deflated " << obj << " to hash monitor " << monitor->GetHashCode(); } else { // No lock and no hash, just put an empty lock word inside the object. LockWord new_lw = LockWord::FromDefault(lw.ReadBarrierState()); // Assume no concurrent read barrier state changes as mutators are suspended. obj->SetLockWord(new_lw, false); VLOG(monitor) << "Deflated" << obj << " to empty lock word"; } // The monitor is deflated, mark the object as nullptr so that we know to delete it during the // next GC. monitor->obj_ = GcRoot(nullptr); } return true; } void Monitor::Inflate(Thread* self, Thread* owner, mirror::Object* obj, int32_t hash_code) { DCHECK(self != nullptr); DCHECK(obj != nullptr); // Allocate and acquire a new monitor. Monitor* m = MonitorPool::CreateMonitor(self, owner, obj, hash_code); DCHECK(m != nullptr); if (m->Install(self)) { if (owner != nullptr) { VLOG(monitor) << "monitor: thread" << owner->GetThreadId() << " created monitor " << m << " for object " << obj; } else { VLOG(monitor) << "monitor: Inflate with hashcode " << hash_code << " created monitor " << m << " for object " << obj; } Runtime::Current()->GetMonitorList()->Add(m); CHECK_EQ(obj->GetLockWord(true).GetState(), LockWord::kFatLocked); } else { MonitorPool::ReleaseMonitor(self, m); } } void Monitor::InflateThinLocked(Thread* self, Handle obj, LockWord lock_word, uint32_t hash_code) { DCHECK_EQ(lock_word.GetState(), LockWord::kThinLocked); uint32_t owner_thread_id = lock_word.ThinLockOwner(); if (owner_thread_id == self->GetThreadId()) { // We own the monitor, we can easily inflate it. Inflate(self, self, obj.Get(), hash_code); } else { ThreadList* thread_list = Runtime::Current()->GetThreadList(); // Suspend the owner, inflate. First change to blocked and give up mutator_lock_. self->SetMonitorEnterObject(obj.Get()); bool timed_out; Thread* owner; { ScopedThreadStateChange tsc(self, kBlocked); owner = thread_list->SuspendThreadByThreadId(owner_thread_id, false, &timed_out); } if (owner != nullptr) { // We succeeded in suspending the thread, check the lock's status didn't change. lock_word = obj->GetLockWord(true); if (lock_word.GetState() == LockWord::kThinLocked && lock_word.ThinLockOwner() == owner_thread_id) { // Go ahead and inflate the lock. Inflate(self, owner, obj.Get(), hash_code); } thread_list->Resume(owner, false); } self->SetMonitorEnterObject(nullptr); } } // Fool annotalysis into thinking that the lock on obj is acquired. static mirror::Object* FakeLock(mirror::Object* obj) EXCLUSIVE_LOCK_FUNCTION(obj) NO_THREAD_SAFETY_ANALYSIS { return obj; } // Fool annotalysis into thinking that the lock on obj is release. static mirror::Object* FakeUnlock(mirror::Object* obj) UNLOCK_FUNCTION(obj) NO_THREAD_SAFETY_ANALYSIS { return obj; } mirror::Object* Monitor::MonitorEnter(Thread* self, mirror::Object* obj) { DCHECK(self != NULL); DCHECK(obj != NULL); obj = FakeLock(obj); uint32_t thread_id = self->GetThreadId(); size_t contention_count = 0; StackHandleScope<1> hs(self); Handle h_obj(hs.NewHandle(obj)); while (true) { LockWord lock_word = h_obj->GetLockWord(true); switch (lock_word.GetState()) { case LockWord::kUnlocked: { LockWord thin_locked(LockWord::FromThinLockId(thread_id, 0, lock_word.ReadBarrierState())); if (h_obj->CasLockWordWeakSequentiallyConsistent(lock_word, thin_locked)) { // CasLockWord enforces more than the acquire ordering we need here. return h_obj.Get(); // Success! } continue; // Go again. } case LockWord::kThinLocked: { uint32_t owner_thread_id = lock_word.ThinLockOwner(); if (owner_thread_id == thread_id) { // We own the lock, increase the recursion count. uint32_t new_count = lock_word.ThinLockCount() + 1; if (LIKELY(new_count <= LockWord::kThinLockMaxCount)) { LockWord thin_locked(LockWord::FromThinLockId(thread_id, new_count, lock_word.ReadBarrierState())); if (!kUseReadBarrier) { h_obj->SetLockWord(thin_locked, true); return h_obj.Get(); // Success! } else { // Use CAS to preserve the read barrier state. if (h_obj->CasLockWordWeakSequentiallyConsistent(lock_word, thin_locked)) { return h_obj.Get(); // Success! } } continue; // Go again. } else { // We'd overflow the recursion count, so inflate the monitor. InflateThinLocked(self, h_obj, lock_word, 0); } } else { // Contention. contention_count++; Runtime* runtime = Runtime::Current(); if (contention_count <= runtime->GetMaxSpinsBeforeThinkLockInflation()) { // TODO: Consider switching the thread state to kBlocked when we are yielding. // Use sched_yield instead of NanoSleep since NanoSleep can wait much longer than the // parameter you pass in. This can cause thread suspension to take excessively long // and make long pauses. See b/16307460. sched_yield(); } else { contention_count = 0; InflateThinLocked(self, h_obj, lock_word, 0); } } continue; // Start from the beginning. } case LockWord::kFatLocked: { Monitor* mon = lock_word.FatLockMonitor(); mon->Lock(self); return h_obj.Get(); // Success! } case LockWord::kHashCode: // Inflate with the existing hashcode. Inflate(self, nullptr, h_obj.Get(), lock_word.GetHashCode()); continue; // Start from the beginning. default: { LOG(FATAL) << "Invalid monitor state " << lock_word.GetState(); return h_obj.Get(); } } } } bool Monitor::MonitorExit(Thread* self, mirror::Object* obj) { DCHECK(self != NULL); DCHECK(obj != NULL); obj = FakeUnlock(obj); StackHandleScope<1> hs(self); Handle h_obj(hs.NewHandle(obj)); while (true) { LockWord lock_word = obj->GetLockWord(true); switch (lock_word.GetState()) { case LockWord::kHashCode: // Fall-through. case LockWord::kUnlocked: FailedUnlock(h_obj.Get(), self, nullptr, nullptr); return false; // Failure. case LockWord::kThinLocked: { uint32_t thread_id = self->GetThreadId(); uint32_t owner_thread_id = lock_word.ThinLockOwner(); if (owner_thread_id != thread_id) { // TODO: there's a race here with the owner dying while we unlock. Thread* owner = Runtime::Current()->GetThreadList()->FindThreadByThreadId(lock_word.ThinLockOwner()); FailedUnlock(h_obj.Get(), self, owner, nullptr); return false; // Failure. } else { // We own the lock, decrease the recursion count. LockWord new_lw = LockWord::Default(); if (lock_word.ThinLockCount() != 0) { uint32_t new_count = lock_word.ThinLockCount() - 1; new_lw = LockWord::FromThinLockId(thread_id, new_count, lock_word.ReadBarrierState()); } else { new_lw = LockWord::FromDefault(lock_word.ReadBarrierState()); } if (!kUseReadBarrier) { DCHECK_EQ(new_lw.ReadBarrierState(), 0U); h_obj->SetLockWord(new_lw, true); // Success! return true; } else { // Use CAS to preserve the read barrier state. if (h_obj->CasLockWordWeakSequentiallyConsistent(lock_word, new_lw)) { // Success! return true; } } continue; // Go again. } } case LockWord::kFatLocked: { Monitor* mon = lock_word.FatLockMonitor(); return mon->Unlock(self); } default: { LOG(FATAL) << "Invalid monitor state " << lock_word.GetState(); return false; } } } } void Monitor::Wait(Thread* self, mirror::Object *obj, int64_t ms, int32_t ns, bool interruptShouldThrow, ThreadState why) { DCHECK(self != nullptr); DCHECK(obj != nullptr); LockWord lock_word = obj->GetLockWord(true); while (lock_word.GetState() != LockWord::kFatLocked) { switch (lock_word.GetState()) { case LockWord::kHashCode: // Fall-through. case LockWord::kUnlocked: ThrowIllegalMonitorStateExceptionF("object not locked by thread before wait()"); return; // Failure. case LockWord::kThinLocked: { uint32_t thread_id = self->GetThreadId(); uint32_t owner_thread_id = lock_word.ThinLockOwner(); if (owner_thread_id != thread_id) { ThrowIllegalMonitorStateExceptionF("object not locked by thread before wait()"); return; // Failure. } else { // We own the lock, inflate to enqueue ourself on the Monitor. May fail spuriously so // re-load. Inflate(self, self, obj, 0); lock_word = obj->GetLockWord(true); } break; } case LockWord::kFatLocked: // Unreachable given the loop condition above. Fall-through. default: { LOG(FATAL) << "Invalid monitor state " << lock_word.GetState(); return; } } } Monitor* mon = lock_word.FatLockMonitor(); mon->Wait(self, ms, ns, interruptShouldThrow, why); } void Monitor::DoNotify(Thread* self, mirror::Object* obj, bool notify_all) { DCHECK(self != nullptr); DCHECK(obj != nullptr); LockWord lock_word = obj->GetLockWord(true); switch (lock_word.GetState()) { case LockWord::kHashCode: // Fall-through. case LockWord::kUnlocked: ThrowIllegalMonitorStateExceptionF("object not locked by thread before notify()"); return; // Failure. case LockWord::kThinLocked: { uint32_t thread_id = self->GetThreadId(); uint32_t owner_thread_id = lock_word.ThinLockOwner(); if (owner_thread_id != thread_id) { ThrowIllegalMonitorStateExceptionF("object not locked by thread before notify()"); return; // Failure. } else { // We own the lock but there's no Monitor and therefore no waiters. return; // Success. } } case LockWord::kFatLocked: { Monitor* mon = lock_word.FatLockMonitor(); if (notify_all) { mon->NotifyAll(self); } else { mon->Notify(self); } return; // Success. } default: { LOG(FATAL) << "Invalid monitor state " << lock_word.GetState(); return; } } } uint32_t Monitor::GetLockOwnerThreadId(mirror::Object* obj) { DCHECK(obj != nullptr); LockWord lock_word = obj->GetLockWord(true); switch (lock_word.GetState()) { case LockWord::kHashCode: // Fall-through. case LockWord::kUnlocked: return ThreadList::kInvalidThreadId; case LockWord::kThinLocked: return lock_word.ThinLockOwner(); case LockWord::kFatLocked: { Monitor* mon = lock_word.FatLockMonitor(); return mon->GetOwnerThreadId(); } default: { LOG(FATAL) << "Unreachable"; UNREACHABLE(); } } } void Monitor::DescribeWait(std::ostream& os, const Thread* thread) { // Determine the wait message and object we're waiting or blocked upon. mirror::Object* pretty_object = nullptr; const char* wait_message = nullptr; uint32_t lock_owner = ThreadList::kInvalidThreadId; ThreadState state = thread->GetState(); if (state == kWaiting || state == kTimedWaiting || state == kSleeping) { wait_message = (state == kSleeping) ? " - sleeping on " : " - waiting on "; Thread* self = Thread::Current(); MutexLock mu(self, *thread->GetWaitMutex()); Monitor* monitor = thread->GetWaitMonitor(); if (monitor != nullptr) { pretty_object = monitor->GetObject(); } } else if (state == kBlocked) { wait_message = " - waiting to lock "; pretty_object = thread->GetMonitorEnterObject(); if (pretty_object != nullptr) { lock_owner = pretty_object->GetLockOwnerThreadId(); } } if (wait_message != nullptr) { if (pretty_object == nullptr) { os << wait_message << "an unknown object"; } else { if ((pretty_object->GetLockWord(true).GetState() == LockWord::kThinLocked) && Locks::mutator_lock_->IsExclusiveHeld(Thread::Current())) { // Getting the identity hashcode here would result in lock inflation and suspension of the // current thread, which isn't safe if this is the only runnable thread. os << wait_message << StringPrintf("<@addr=0x%" PRIxPTR "> (a %s)", reinterpret_cast(pretty_object), PrettyTypeOf(pretty_object).c_str()); } else { // - waiting on <0x6008c468> (a java.lang.Class) // Call PrettyTypeOf before IdentityHashCode since IdentityHashCode can cause thread // suspension and move pretty_object. const std::string pretty_type(PrettyTypeOf(pretty_object)); os << wait_message << StringPrintf("<0x%08x> (a %s)", pretty_object->IdentityHashCode(), pretty_type.c_str()); } } // - waiting to lock <0x613f83d8> (a java.lang.Object) held by thread 5 if (lock_owner != ThreadList::kInvalidThreadId) { os << " held by thread " << lock_owner; } os << "\n"; } } mirror::Object* Monitor::GetContendedMonitor(Thread* thread) { // This is used to implement JDWP's ThreadReference.CurrentContendedMonitor, and has a bizarre // definition of contended that includes a monitor a thread is trying to enter... mirror::Object* result = thread->GetMonitorEnterObject(); if (result == NULL) { // ...but also a monitor that the thread is waiting on. MutexLock mu(Thread::Current(), *thread->GetWaitMutex()); Monitor* monitor = thread->GetWaitMonitor(); if (monitor != NULL) { result = monitor->GetObject(); } } return result; } void Monitor::VisitLocks(StackVisitor* stack_visitor, void (*callback)(mirror::Object*, void*), void* callback_context, bool abort_on_failure) { mirror::ArtMethod* m = stack_visitor->GetMethod(); CHECK(m != NULL); // Native methods are an easy special case. // TODO: use the JNI implementation's table of explicit MonitorEnter calls and dump those too. if (m->IsNative()) { if (m->IsSynchronized()) { mirror::Object* jni_this = stack_visitor->GetCurrentHandleScope()->GetReference(0); callback(jni_this, callback_context); } return; } // Proxy methods should not be synchronized. if (m->IsProxyMethod()) { CHECK(!m->IsSynchronized()); return; } // Is there any reason to believe there's any synchronization in this method? const DexFile::CodeItem* code_item = m->GetCodeItem(); CHECK(code_item != NULL) << PrettyMethod(m); if (code_item->tries_size_ == 0) { return; // No "tries" implies no synchronization, so no held locks to report. } // Get the dex pc. If abort_on_failure is false, GetDexPc will not abort in the case it cannot // find the dex pc, and instead return kDexNoIndex. Then bail out, as it indicates we have an // inconsistent stack anyways. uint32_t dex_pc = stack_visitor->GetDexPc(abort_on_failure); if (!abort_on_failure && dex_pc == DexFile::kDexNoIndex) { LOG(ERROR) << "Could not find dex_pc for " << PrettyMethod(m); return; } // Ask the verifier for the dex pcs of all the monitor-enter instructions corresponding to // the locks held in this stack frame. std::vector monitor_enter_dex_pcs; verifier::MethodVerifier::FindLocksAtDexPc(m, dex_pc, &monitor_enter_dex_pcs); for (uint32_t monitor_dex_pc : monitor_enter_dex_pcs) { // The verifier works in terms of the dex pcs of the monitor-enter instructions. // We want the registers used by those instructions (so we can read the values out of them). uint16_t monitor_enter_instruction = code_item->insns_[monitor_dex_pc]; // Quick sanity check. if ((monitor_enter_instruction & 0xff) != Instruction::MONITOR_ENTER) { LOG(FATAL) << "expected monitor-enter @" << monitor_dex_pc << "; was " << reinterpret_cast(monitor_enter_instruction); } uint16_t monitor_register = ((monitor_enter_instruction >> 8) & 0xff); mirror::Object* o = reinterpret_cast( stack_visitor->GetVReg(m, monitor_register, kReferenceVReg)); callback(o, callback_context); } } bool Monitor::IsValidLockWord(LockWord lock_word) { switch (lock_word.GetState()) { case LockWord::kUnlocked: // Nothing to check. return true; case LockWord::kThinLocked: // Basic sanity check of owner. return lock_word.ThinLockOwner() != ThreadList::kInvalidThreadId; case LockWord::kFatLocked: { // Check the monitor appears in the monitor list. Monitor* mon = lock_word.FatLockMonitor(); MonitorList* list = Runtime::Current()->GetMonitorList(); MutexLock mu(Thread::Current(), list->monitor_list_lock_); for (Monitor* list_mon : list->list_) { if (mon == list_mon) { return true; // Found our monitor. } } return false; // Fail - unowned monitor in an object. } case LockWord::kHashCode: return true; default: LOG(FATAL) << "Unreachable"; UNREACHABLE(); } } bool Monitor::IsLocked() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { MutexLock mu(Thread::Current(), monitor_lock_); return owner_ != nullptr; } void Monitor::TranslateLocation(mirror::ArtMethod* method, uint32_t dex_pc, const char** source_file, uint32_t* line_number) const { // If method is null, location is unknown if (method == NULL) { *source_file = ""; *line_number = 0; return; } *source_file = method->GetDeclaringClassSourceFile(); if (*source_file == NULL) { *source_file = ""; } *line_number = method->GetLineNumFromDexPC(dex_pc); } uint32_t Monitor::GetOwnerThreadId() { MutexLock mu(Thread::Current(), monitor_lock_); Thread* owner = owner_; if (owner != NULL) { return owner->GetThreadId(); } else { return ThreadList::kInvalidThreadId; } } MonitorList::MonitorList() : allow_new_monitors_(true), monitor_list_lock_("MonitorList lock", kMonitorListLock), monitor_add_condition_("MonitorList disallow condition", monitor_list_lock_) { } MonitorList::~MonitorList() { Thread* self = Thread::Current(); MutexLock mu(self, monitor_list_lock_); // Release all monitors to the pool. // TODO: Is it an invariant that *all* open monitors are in the list? Then we could // clear faster in the pool. MonitorPool::ReleaseMonitors(self, &list_); } void MonitorList::DisallowNewMonitors() { MutexLock mu(Thread::Current(), monitor_list_lock_); allow_new_monitors_ = false; } void MonitorList::AllowNewMonitors() { Thread* self = Thread::Current(); MutexLock mu(self, monitor_list_lock_); allow_new_monitors_ = true; monitor_add_condition_.Broadcast(self); } void MonitorList::EnsureNewMonitorsDisallowed() { // Lock and unlock once to ensure that no threads are still in the // middle of adding new monitors. MutexLock mu(Thread::Current(), monitor_list_lock_); CHECK(!allow_new_monitors_); } void MonitorList::Add(Monitor* m) { Thread* self = Thread::Current(); MutexLock mu(self, monitor_list_lock_); while (UNLIKELY(!allow_new_monitors_)) { monitor_add_condition_.WaitHoldingLocks(self); } list_.push_front(m); } void MonitorList::SweepMonitorList(IsMarkedCallback* callback, void* arg) { Thread* self = Thread::Current(); MutexLock mu(self, monitor_list_lock_); for (auto it = list_.begin(); it != list_.end(); ) { Monitor* m = *it; // Disable the read barrier in GetObject() as this is called by GC. mirror::Object* obj = m->GetObject(); // The object of a monitor can be null if we have deflated it. mirror::Object* new_obj = obj != nullptr ? callback(obj, arg) : nullptr; if (new_obj == nullptr) { VLOG(monitor) << "freeing monitor " << m << " belonging to unmarked object " << obj; MonitorPool::ReleaseMonitor(self, m); it = list_.erase(it); } else { m->SetObject(new_obj); ++it; } } } struct MonitorDeflateArgs { MonitorDeflateArgs() : self(Thread::Current()), deflate_count(0) {} Thread* const self; size_t deflate_count; }; static mirror::Object* MonitorDeflateCallback(mirror::Object* object, void* arg) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { MonitorDeflateArgs* args = reinterpret_cast(arg); if (Monitor::Deflate(args->self, object)) { DCHECK_NE(object->GetLockWord(true).GetState(), LockWord::kFatLocked); ++args->deflate_count; // If we deflated, return nullptr so that the monitor gets removed from the array. return nullptr; } return object; // Monitor was not deflated. } size_t MonitorList::DeflateMonitors() { MonitorDeflateArgs args; Locks::mutator_lock_->AssertExclusiveHeld(args.self); SweepMonitorList(MonitorDeflateCallback, &args); return args.deflate_count; } MonitorInfo::MonitorInfo(mirror::Object* obj) : owner_(NULL), entry_count_(0) { DCHECK(obj != nullptr); LockWord lock_word = obj->GetLockWord(true); switch (lock_word.GetState()) { case LockWord::kUnlocked: // Fall-through. case LockWord::kForwardingAddress: // Fall-through. case LockWord::kHashCode: break; case LockWord::kThinLocked: owner_ = Runtime::Current()->GetThreadList()->FindThreadByThreadId(lock_word.ThinLockOwner()); entry_count_ = 1 + lock_word.ThinLockCount(); // Thin locks have no waiters. break; case LockWord::kFatLocked: { Monitor* mon = lock_word.FatLockMonitor(); owner_ = mon->owner_; entry_count_ = 1 + mon->lock_count_; for (Thread* waiter = mon->wait_set_; waiter != NULL; waiter = waiter->GetWaitNext()) { waiters_.push_back(waiter); } break; } } } } // namespace art