/* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "dalvik_system_VMRuntime.h" #ifdef HAVE_ANDROID_OS extern "C" void android_set_application_target_sdk_version(uint32_t version); #endif #include #include #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wshadow" #include "toStringArray.h" #pragma GCC diagnostic pop #include "art_method-inl.h" #include "arch/instruction_set.h" #include "class_linker-inl.h" #include "common_throws.h" #include "debugger.h" #include "dex_file-inl.h" #include "gc/accounting/card_table-inl.h" #include "gc/allocator/dlmalloc.h" #include "gc/heap.h" #include "gc/space/dlmalloc_space.h" #include "gc/space/image_space.h" #include "gc/task_processor.h" #include "intern_table.h" #include "jni_internal.h" #include "mirror/class-inl.h" #include "mirror/dex_cache-inl.h" #include "mirror/object-inl.h" #include "runtime.h" #include "scoped_fast_native_object_access.h" #include "scoped_thread_state_change.h" #include "thread.h" #include "thread_list.h" namespace art { static jfloat VMRuntime_getTargetHeapUtilization(JNIEnv*, jobject) { return Runtime::Current()->GetHeap()->GetTargetHeapUtilization(); } static void VMRuntime_nativeSetTargetHeapUtilization(JNIEnv*, jobject, jfloat target) { Runtime::Current()->GetHeap()->SetTargetHeapUtilization(target); } static void VMRuntime_startJitCompilation(JNIEnv*, jobject) { } static void VMRuntime_disableJitCompilation(JNIEnv*, jobject) { } static jobject VMRuntime_newNonMovableArray(JNIEnv* env, jobject, jclass javaElementClass, jint length) { ScopedFastNativeObjectAccess soa(env); if (UNLIKELY(length < 0)) { ThrowNegativeArraySizeException(length); return nullptr; } mirror::Class* element_class = soa.Decode(javaElementClass); if (UNLIKELY(element_class == nullptr)) { ThrowNullPointerException("element class == null"); return nullptr; } Runtime* runtime = Runtime::Current(); mirror::Class* array_class = runtime->GetClassLinker()->FindArrayClass(soa.Self(), &element_class); if (UNLIKELY(array_class == nullptr)) { return nullptr; } gc::AllocatorType allocator = runtime->GetHeap()->GetCurrentNonMovingAllocator(); mirror::Array* result = mirror::Array::Alloc(soa.Self(), array_class, length, array_class->GetComponentSizeShift(), allocator); return soa.AddLocalReference(result); } static jobject VMRuntime_newUnpaddedArray(JNIEnv* env, jobject, jclass javaElementClass, jint length) { ScopedFastNativeObjectAccess soa(env); if (UNLIKELY(length < 0)) { ThrowNegativeArraySizeException(length); return nullptr; } mirror::Class* element_class = soa.Decode(javaElementClass); if (UNLIKELY(element_class == nullptr)) { ThrowNullPointerException("element class == null"); return nullptr; } Runtime* runtime = Runtime::Current(); mirror::Class* array_class = runtime->GetClassLinker()->FindArrayClass(soa.Self(), &element_class); if (UNLIKELY(array_class == nullptr)) { return nullptr; } gc::AllocatorType allocator = runtime->GetHeap()->GetCurrentAllocator(); mirror::Array* result = mirror::Array::Alloc(soa.Self(), array_class, length, array_class->GetComponentSizeShift(), allocator); return soa.AddLocalReference(result); } static jlong VMRuntime_addressOf(JNIEnv* env, jobject, jobject javaArray) { if (javaArray == nullptr) { // Most likely allocation failed return 0; } ScopedFastNativeObjectAccess soa(env); mirror::Array* array = soa.Decode(javaArray); if (!array->IsArrayInstance()) { ThrowIllegalArgumentException("not an array"); return 0; } if (Runtime::Current()->GetHeap()->IsMovableObject(array)) { ThrowRuntimeException("Trying to get address of movable array object"); return 0; } return reinterpret_cast(array->GetRawData(array->GetClass()->GetComponentSize(), 0)); } static void VMRuntime_clearGrowthLimit(JNIEnv*, jobject) { Runtime::Current()->GetHeap()->ClearGrowthLimit(); } static void VMRuntime_clampGrowthLimit(JNIEnv*, jobject) { Runtime::Current()->GetHeap()->ClampGrowthLimit(); } static jboolean VMRuntime_isDebuggerActive(JNIEnv*, jobject) { return Dbg::IsDebuggerActive(); } static jobjectArray VMRuntime_properties(JNIEnv* env, jobject) { return toStringArray(env, Runtime::Current()->GetProperties()); } // This is for backward compatibility with dalvik which returned the // meaningless "." when no boot classpath or classpath was // specified. Unfortunately, some tests were using java.class.path to // lookup relative file locations, so they are counting on this to be // ".", presumably some applications or libraries could have as well. static const char* DefaultToDot(const std::string& class_path) { return class_path.empty() ? "." : class_path.c_str(); } static jstring VMRuntime_bootClassPath(JNIEnv* env, jobject) { return env->NewStringUTF(DefaultToDot(Runtime::Current()->GetBootClassPathString())); } static jstring VMRuntime_classPath(JNIEnv* env, jobject) { return env->NewStringUTF(DefaultToDot(Runtime::Current()->GetClassPathString())); } static jstring VMRuntime_vmVersion(JNIEnv* env, jobject) { return env->NewStringUTF(Runtime::GetVersion()); } static jstring VMRuntime_vmLibrary(JNIEnv* env, jobject) { return env->NewStringUTF(kIsDebugBuild ? "libartd.so" : "libart.so"); } static jstring VMRuntime_vmInstructionSet(JNIEnv* env, jobject) { InstructionSet isa = Runtime::Current()->GetInstructionSet(); const char* isa_string = GetInstructionSetString(isa); return env->NewStringUTF(isa_string); } static jboolean VMRuntime_is64Bit(JNIEnv*, jobject) { bool is64BitMode = (sizeof(void*) == sizeof(uint64_t)); return is64BitMode ? JNI_TRUE : JNI_FALSE; } static jboolean VMRuntime_isCheckJniEnabled(JNIEnv* env, jobject) { return down_cast(env)->vm->IsCheckJniEnabled() ? JNI_TRUE : JNI_FALSE; } static void VMRuntime_setTargetSdkVersionNative(JNIEnv*, jobject, jint target_sdk_version) { // This is the target SDK version of the app we're about to run. It is intended that this a place // where workarounds can be enabled. // Note that targetSdkVersion may be CUR_DEVELOPMENT (10000). // Note that targetSdkVersion may be 0, meaning "current". Runtime::Current()->SetTargetSdkVersion(target_sdk_version); #ifdef HAVE_ANDROID_OS // This part is letting libc/dynamic linker know about current app's // target sdk version to enable compatibility workarounds. android_set_application_target_sdk_version(static_cast(target_sdk_version)); #endif } static void VMRuntime_registerNativeAllocation(JNIEnv* env, jobject, jint bytes) { if (UNLIKELY(bytes < 0)) { ScopedObjectAccess soa(env); ThrowRuntimeException("allocation size negative %d", bytes); return; } Runtime::Current()->GetHeap()->RegisterNativeAllocation(env, static_cast(bytes)); } static void VMRuntime_registerNativeFree(JNIEnv* env, jobject, jint bytes) { if (UNLIKELY(bytes < 0)) { ScopedObjectAccess soa(env); ThrowRuntimeException("allocation size negative %d", bytes); return; } Runtime::Current()->GetHeap()->RegisterNativeFree(env, static_cast(bytes)); } static void VMRuntime_updateProcessState(JNIEnv*, jobject, jint process_state) { Runtime* runtime = Runtime::Current(); runtime->GetHeap()->UpdateProcessState(static_cast(process_state)); runtime->UpdateProfilerState(process_state); } static void VMRuntime_trimHeap(JNIEnv* env, jobject) { Runtime::Current()->GetHeap()->Trim(ThreadForEnv(env)); } static void VMRuntime_concurrentGC(JNIEnv* env, jobject) { Runtime::Current()->GetHeap()->ConcurrentGC(ThreadForEnv(env), true); } static void VMRuntime_requestHeapTrim(JNIEnv* env, jobject) { Runtime::Current()->GetHeap()->RequestTrim(ThreadForEnv(env)); } static void VMRuntime_requestConcurrentGC(JNIEnv* env, jobject) { Runtime::Current()->GetHeap()->RequestConcurrentGC(ThreadForEnv(env), true); } static void VMRuntime_startHeapTaskProcessor(JNIEnv* env, jobject) { Runtime::Current()->GetHeap()->GetTaskProcessor()->Start(ThreadForEnv(env)); } static void VMRuntime_stopHeapTaskProcessor(JNIEnv* env, jobject) { Runtime::Current()->GetHeap()->GetTaskProcessor()->Stop(ThreadForEnv(env)); } static void VMRuntime_runHeapTasks(JNIEnv* env, jobject) { Runtime::Current()->GetHeap()->GetTaskProcessor()->RunAllTasks(ThreadForEnv(env)); } typedef std::map StringTable; class PreloadDexCachesStringsVisitor : public SingleRootVisitor { public: explicit PreloadDexCachesStringsVisitor(StringTable* table) : table_(table) { } void VisitRoot(mirror::Object* root, const RootInfo& info ATTRIBUTE_UNUSED) OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { mirror::String* string = root->AsString(); table_->operator[](string->ToModifiedUtf8()) = string; } private: StringTable* const table_; }; // Based on ClassLinker::ResolveString. static void PreloadDexCachesResolveString( Handle dex_cache, uint32_t string_idx, StringTable& strings) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { mirror::String* string = dex_cache->GetResolvedString(string_idx); if (string != nullptr) { return; } const DexFile* dex_file = dex_cache->GetDexFile(); const char* utf8 = dex_file->StringDataByIdx(string_idx); string = strings[utf8]; if (string == nullptr) { return; } // LOG(INFO) << "VMRuntime.preloadDexCaches resolved string=" << utf8; dex_cache->SetResolvedString(string_idx, string); } // Based on ClassLinker::ResolveType. static void PreloadDexCachesResolveType( Thread* self, mirror::DexCache* dex_cache, uint32_t type_idx) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { mirror::Class* klass = dex_cache->GetResolvedType(type_idx); if (klass != nullptr) { return; } const DexFile* dex_file = dex_cache->GetDexFile(); const char* class_name = dex_file->StringByTypeIdx(type_idx); ClassLinker* linker = Runtime::Current()->GetClassLinker(); if (class_name[1] == '\0') { klass = linker->FindPrimitiveClass(class_name[0]); } else { klass = linker->LookupClass(self, class_name, ComputeModifiedUtf8Hash(class_name), nullptr); } if (klass == nullptr) { return; } // LOG(INFO) << "VMRuntime.preloadDexCaches resolved klass=" << class_name; dex_cache->SetResolvedType(type_idx, klass); // Skip uninitialized classes because filled static storage entry implies it is initialized. if (!klass->IsInitialized()) { // LOG(INFO) << "VMRuntime.preloadDexCaches uninitialized klass=" << class_name; return; } // LOG(INFO) << "VMRuntime.preloadDexCaches static storage klass=" << class_name; } // Based on ClassLinker::ResolveField. static void PreloadDexCachesResolveField(Handle dex_cache, uint32_t field_idx, bool is_static) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { ArtField* field = dex_cache->GetResolvedField(field_idx, sizeof(void*)); if (field != nullptr) { return; } const DexFile* dex_file = dex_cache->GetDexFile(); const DexFile::FieldId& field_id = dex_file->GetFieldId(field_idx); Thread* const self = Thread::Current(); StackHandleScope<1> hs(self); Handle klass(hs.NewHandle(dex_cache->GetResolvedType(field_id.class_idx_))); if (klass.Get() == nullptr) { return; } if (is_static) { field = mirror::Class::FindStaticField(self, klass, dex_cache.Get(), field_idx); } else { field = klass->FindInstanceField(dex_cache.Get(), field_idx); } if (field == nullptr) { return; } // LOG(INFO) << "VMRuntime.preloadDexCaches resolved field " << PrettyField(field); dex_cache->SetResolvedField(field_idx, field, sizeof(void*)); } // Based on ClassLinker::ResolveMethod. static void PreloadDexCachesResolveMethod(Handle dex_cache, uint32_t method_idx, InvokeType invoke_type) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { ArtMethod* method = dex_cache->GetResolvedMethod(method_idx, sizeof(void*)); if (method != nullptr) { return; } const DexFile* dex_file = dex_cache->GetDexFile(); const DexFile::MethodId& method_id = dex_file->GetMethodId(method_idx); mirror::Class* klass = dex_cache->GetResolvedType(method_id.class_idx_); if (klass == nullptr) { return; } switch (invoke_type) { case kDirect: case kStatic: method = klass->FindDirectMethod(dex_cache.Get(), method_idx, sizeof(void*)); break; case kInterface: method = klass->FindInterfaceMethod(dex_cache.Get(), method_idx, sizeof(void*)); break; case kSuper: case kVirtual: method = klass->FindVirtualMethod(dex_cache.Get(), method_idx, sizeof(void*)); break; default: LOG(FATAL) << "Unreachable - invocation type: " << invoke_type; UNREACHABLE(); } if (method == nullptr) { return; } // LOG(INFO) << "VMRuntime.preloadDexCaches resolved method " << PrettyMethod(method); dex_cache->SetResolvedMethod(method_idx, method, sizeof(void*)); } struct DexCacheStats { uint32_t num_strings; uint32_t num_types; uint32_t num_fields; uint32_t num_methods; DexCacheStats() : num_strings(0), num_types(0), num_fields(0), num_methods(0) {} }; static const bool kPreloadDexCachesEnabled = true; // Disabled because it takes a long time (extra half second) but // gives almost no benefit in terms of saving private dirty pages. static const bool kPreloadDexCachesStrings = false; static const bool kPreloadDexCachesTypes = true; static const bool kPreloadDexCachesFieldsAndMethods = true; static const bool kPreloadDexCachesCollectStats = true; static void PreloadDexCachesStatsTotal(DexCacheStats* total) { if (!kPreloadDexCachesCollectStats) { return; } ClassLinker* linker = Runtime::Current()->GetClassLinker(); const std::vector& boot_class_path = linker->GetBootClassPath(); for (size_t i = 0; i< boot_class_path.size(); i++) { const DexFile* dex_file = boot_class_path[i]; CHECK(dex_file != nullptr); total->num_strings += dex_file->NumStringIds(); total->num_fields += dex_file->NumFieldIds(); total->num_methods += dex_file->NumMethodIds(); total->num_types += dex_file->NumTypeIds(); } } static void PreloadDexCachesStatsFilled(DexCacheStats* filled) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { if (!kPreloadDexCachesCollectStats) { return; } ClassLinker* linker = Runtime::Current()->GetClassLinker(); const std::vector& boot_class_path = linker->GetBootClassPath(); for (size_t i = 0; i< boot_class_path.size(); i++) { const DexFile* dex_file = boot_class_path[i]; CHECK(dex_file != nullptr); mirror::DexCache* dex_cache = linker->FindDexCache(*dex_file); for (size_t j = 0; j < dex_cache->NumStrings(); j++) { mirror::String* string = dex_cache->GetResolvedString(j); if (string != nullptr) { filled->num_strings++; } } for (size_t j = 0; j < dex_cache->NumResolvedTypes(); j++) { mirror::Class* klass = dex_cache->GetResolvedType(j); if (klass != nullptr) { filled->num_types++; } } for (size_t j = 0; j < dex_cache->NumResolvedFields(); j++) { ArtField* field = linker->GetResolvedField(j, dex_cache); if (field != nullptr) { filled->num_fields++; } } for (size_t j = 0; j < dex_cache->NumResolvedMethods(); j++) { ArtMethod* method = dex_cache->GetResolvedMethod(j, sizeof(void*)); if (method != nullptr) { filled->num_methods++; } } } } // TODO: http://b/11309598 This code was ported over based on the // Dalvik version. However, ART has similar code in other places such // as the CompilerDriver. This code could probably be refactored to // serve both uses. static void VMRuntime_preloadDexCaches(JNIEnv* env, jobject) { if (!kPreloadDexCachesEnabled) { return; } ScopedObjectAccess soa(env); DexCacheStats total; DexCacheStats before; if (kPreloadDexCachesCollectStats) { LOG(INFO) << "VMRuntime.preloadDexCaches starting"; PreloadDexCachesStatsTotal(&total); PreloadDexCachesStatsFilled(&before); } Runtime* runtime = Runtime::Current(); ClassLinker* linker = runtime->GetClassLinker(); // We use a std::map to avoid heap allocating StringObjects to lookup in gDvm.literalStrings StringTable strings; if (kPreloadDexCachesStrings) { PreloadDexCachesStringsVisitor visitor(&strings); runtime->GetInternTable()->VisitRoots(&visitor, kVisitRootFlagAllRoots); } const std::vector& boot_class_path = linker->GetBootClassPath(); for (size_t i = 0; i< boot_class_path.size(); i++) { const DexFile* dex_file = boot_class_path[i]; CHECK(dex_file != nullptr); StackHandleScope<1> hs(soa.Self()); Handle dex_cache(hs.NewHandle(linker->FindDexCache(*dex_file))); if (kPreloadDexCachesStrings) { for (size_t j = 0; j < dex_cache->NumStrings(); j++) { PreloadDexCachesResolveString(dex_cache, j, strings); } } if (kPreloadDexCachesTypes) { for (size_t j = 0; j < dex_cache->NumResolvedTypes(); j++) { PreloadDexCachesResolveType(soa.Self(), dex_cache.Get(), j); } } if (kPreloadDexCachesFieldsAndMethods) { for (size_t class_def_index = 0; class_def_index < dex_file->NumClassDefs(); class_def_index++) { const DexFile::ClassDef& class_def = dex_file->GetClassDef(class_def_index); const uint8_t* class_data = dex_file->GetClassData(class_def); if (class_data == nullptr) { continue; } ClassDataItemIterator it(*dex_file, class_data); for (; it.HasNextStaticField(); it.Next()) { uint32_t field_idx = it.GetMemberIndex(); PreloadDexCachesResolveField(dex_cache, field_idx, true); } for (; it.HasNextInstanceField(); it.Next()) { uint32_t field_idx = it.GetMemberIndex(); PreloadDexCachesResolveField(dex_cache, field_idx, false); } for (; it.HasNextDirectMethod(); it.Next()) { uint32_t method_idx = it.GetMemberIndex(); InvokeType invoke_type = it.GetMethodInvokeType(class_def); PreloadDexCachesResolveMethod(dex_cache, method_idx, invoke_type); } for (; it.HasNextVirtualMethod(); it.Next()) { uint32_t method_idx = it.GetMemberIndex(); InvokeType invoke_type = it.GetMethodInvokeType(class_def); PreloadDexCachesResolveMethod(dex_cache, method_idx, invoke_type); } } } } if (kPreloadDexCachesCollectStats) { DexCacheStats after; PreloadDexCachesStatsFilled(&after); LOG(INFO) << StringPrintf("VMRuntime.preloadDexCaches strings total=%d before=%d after=%d", total.num_strings, before.num_strings, after.num_strings); LOG(INFO) << StringPrintf("VMRuntime.preloadDexCaches types total=%d before=%d after=%d", total.num_types, before.num_types, after.num_types); LOG(INFO) << StringPrintf("VMRuntime.preloadDexCaches fields total=%d before=%d after=%d", total.num_fields, before.num_fields, after.num_fields); LOG(INFO) << StringPrintf("VMRuntime.preloadDexCaches methods total=%d before=%d after=%d", total.num_methods, before.num_methods, after.num_methods); LOG(INFO) << StringPrintf("VMRuntime.preloadDexCaches finished"); } } /* * This is called by the framework when it knows the application directory and * process name. We use this information to start up the sampling profiler for * for ART. */ static void VMRuntime_registerAppInfo(JNIEnv* env, jclass, jstring pkgName, jstring appDir ATTRIBUTE_UNUSED, jstring procName ATTRIBUTE_UNUSED) { const char *pkgNameChars = env->GetStringUTFChars(pkgName, nullptr); std::string profileFile = StringPrintf("/data/dalvik-cache/profiles/%s", pkgNameChars); Runtime::Current()->StartProfiler(profileFile.c_str()); env->ReleaseStringUTFChars(pkgName, pkgNameChars); } static jboolean VMRuntime_isBootClassPathOnDisk(JNIEnv* env, jclass, jstring java_instruction_set) { ScopedUtfChars instruction_set(env, java_instruction_set); if (instruction_set.c_str() == nullptr) { return JNI_FALSE; } InstructionSet isa = GetInstructionSetFromString(instruction_set.c_str()); if (isa == kNone) { ScopedLocalRef iae(env, env->FindClass("java/lang/IllegalArgumentException")); std::string message(StringPrintf("Instruction set %s is invalid.", instruction_set.c_str())); env->ThrowNew(iae.get(), message.c_str()); return JNI_FALSE; } std::string error_msg; std::unique_ptr image_header(gc::space::ImageSpace::ReadImageHeader( Runtime::Current()->GetImageLocation().c_str(), isa, &error_msg)); return image_header.get() != nullptr; } static jstring VMRuntime_getCurrentInstructionSet(JNIEnv* env, jclass) { return env->NewStringUTF(GetInstructionSetString(kRuntimeISA)); } static JNINativeMethod gMethods[] = { NATIVE_METHOD(VMRuntime, addressOf, "!(Ljava/lang/Object;)J"), NATIVE_METHOD(VMRuntime, bootClassPath, "()Ljava/lang/String;"), NATIVE_METHOD(VMRuntime, clampGrowthLimit, "()V"), NATIVE_METHOD(VMRuntime, classPath, "()Ljava/lang/String;"), NATIVE_METHOD(VMRuntime, clearGrowthLimit, "()V"), NATIVE_METHOD(VMRuntime, concurrentGC, "()V"), NATIVE_METHOD(VMRuntime, disableJitCompilation, "()V"), NATIVE_METHOD(VMRuntime, getTargetHeapUtilization, "()F"), NATIVE_METHOD(VMRuntime, isDebuggerActive, "!()Z"), NATIVE_METHOD(VMRuntime, nativeSetTargetHeapUtilization, "(F)V"), NATIVE_METHOD(VMRuntime, newNonMovableArray, "!(Ljava/lang/Class;I)Ljava/lang/Object;"), NATIVE_METHOD(VMRuntime, newUnpaddedArray, "!(Ljava/lang/Class;I)Ljava/lang/Object;"), NATIVE_METHOD(VMRuntime, properties, "()[Ljava/lang/String;"), NATIVE_METHOD(VMRuntime, setTargetSdkVersionNative, "(I)V"), NATIVE_METHOD(VMRuntime, registerNativeAllocation, "(I)V"), NATIVE_METHOD(VMRuntime, registerNativeFree, "(I)V"), NATIVE_METHOD(VMRuntime, requestConcurrentGC, "()V"), NATIVE_METHOD(VMRuntime, requestHeapTrim, "()V"), NATIVE_METHOD(VMRuntime, runHeapTasks, "()V"), NATIVE_METHOD(VMRuntime, updateProcessState, "(I)V"), NATIVE_METHOD(VMRuntime, startHeapTaskProcessor, "()V"), NATIVE_METHOD(VMRuntime, startJitCompilation, "()V"), NATIVE_METHOD(VMRuntime, stopHeapTaskProcessor, "()V"), NATIVE_METHOD(VMRuntime, trimHeap, "()V"), NATIVE_METHOD(VMRuntime, vmVersion, "()Ljava/lang/String;"), NATIVE_METHOD(VMRuntime, vmLibrary, "()Ljava/lang/String;"), NATIVE_METHOD(VMRuntime, vmInstructionSet, "()Ljava/lang/String;"), NATIVE_METHOD(VMRuntime, is64Bit, "!()Z"), NATIVE_METHOD(VMRuntime, isCheckJniEnabled, "!()Z"), NATIVE_METHOD(VMRuntime, preloadDexCaches, "()V"), NATIVE_METHOD(VMRuntime, registerAppInfo, "(Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;)V"), NATIVE_METHOD(VMRuntime, isBootClassPathOnDisk, "(Ljava/lang/String;)Z"), NATIVE_METHOD(VMRuntime, getCurrentInstructionSet, "()Ljava/lang/String;"), }; void register_dalvik_system_VMRuntime(JNIEnv* env) { REGISTER_NATIVE_METHODS("dalvik/system/VMRuntime"); } } // namespace art