/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "runtime.h" // sys/mount.h has to come before linux/fs.h due to redefinition of MS_RDONLY, MS_BIND, etc #include #ifdef __linux__ #include #endif #define ATRACE_TAG ATRACE_TAG_DALVIK #include #include #include #include #include #include #include #include #include #include #include "JniConstants.h" #include "ScopedLocalRef.h" #include "arch/arm/quick_method_frame_info_arm.h" #include "arch/arm/registers_arm.h" #include "arch/arm64/quick_method_frame_info_arm64.h" #include "arch/arm64/registers_arm64.h" #include "arch/instruction_set_features.h" #include "arch/mips/quick_method_frame_info_mips.h" #include "arch/mips/registers_mips.h" #include "arch/mips64/quick_method_frame_info_mips64.h" #include "arch/mips64/registers_mips64.h" #include "arch/x86/quick_method_frame_info_x86.h" #include "arch/x86/registers_x86.h" #include "arch/x86_64/quick_method_frame_info_x86_64.h" #include "arch/x86_64/registers_x86_64.h" #include "art_field-inl.h" #include "art_method-inl.h" #include "asm_support.h" #include "atomic.h" #include "base/arena_allocator.h" #include "base/dumpable.h" #include "base/unix_file/fd_file.h" #include "class_linker-inl.h" #include "compiler_callbacks.h" #include "debugger.h" #include "elf_file.h" #include "entrypoints/runtime_asm_entrypoints.h" #include "fault_handler.h" #include "gc/accounting/card_table-inl.h" #include "gc/heap.h" #include "gc/space/image_space.h" #include "gc/space/space-inl.h" #include "handle_scope-inl.h" #include "image.h" #include "instrumentation.h" #include "intern_table.h" #include "interpreter/interpreter.h" #include "jit/jit.h" #include "jni_internal.h" #include "linear_alloc.h" #include "mirror/array.h" #include "mirror/class-inl.h" #include "mirror/class_loader.h" #include "mirror/field.h" #include "mirror/method.h" #include "mirror/stack_trace_element.h" #include "mirror/throwable.h" #include "monitor.h" #include "native/dalvik_system_DexFile.h" #include "native/dalvik_system_VMDebug.h" #include "native/dalvik_system_VMRuntime.h" #include "native/dalvik_system_VMStack.h" #include "native/dalvik_system_ZygoteHooks.h" #include "native/java_lang_Class.h" #include "native/java_lang_DexCache.h" #include "native/java_lang_Object.h" #include "native/java_lang_Runtime.h" #include "native/java_lang_String.h" #include "native/java_lang_StringFactory.h" #include "native/java_lang_System.h" #include "native/java_lang_Thread.h" #include "native/java_lang_Throwable.h" #include "native/java_lang_VMClassLoader.h" #include "native/java_lang_ref_FinalizerReference.h" #include "native/java_lang_ref_Reference.h" #include "native/java_lang_reflect_Array.h" #include "native/java_lang_reflect_Constructor.h" #include "native/java_lang_reflect_Field.h" #include "native/java_lang_reflect_Method.h" #include "native/java_lang_reflect_Proxy.h" #include "native/java_util_concurrent_atomic_AtomicLong.h" #include "native/libcore_util_CharsetUtils.h" #include "native/org_apache_harmony_dalvik_ddmc_DdmServer.h" #include "native/org_apache_harmony_dalvik_ddmc_DdmVmInternal.h" #include "native/sun_misc_Unsafe.h" #include "native_bridge_art_interface.h" #include "oat_file.h" #include "os.h" #include "parsed_options.h" #include "profiler.h" #include "quick/quick_method_frame_info.h" #include "reflection.h" #include "runtime_options.h" #include "ScopedLocalRef.h" #include "scoped_thread_state_change.h" #include "sigchain.h" #include "signal_catcher.h" #include "signal_set.h" #include "thread.h" #include "thread_list.h" #include "trace.h" #include "transaction.h" #include "verifier/method_verifier.h" #include "well_known_classes.h" namespace art { // If a signal isn't handled properly, enable a handler that attempts to dump the Java stack. static constexpr bool kEnableJavaStackTraceHandler = false; Runtime* Runtime::instance_ = nullptr; struct TraceConfig { Trace::TraceMode trace_mode; Trace::TraceOutputMode trace_output_mode; std::string trace_file; size_t trace_file_size; }; Runtime::Runtime() : resolution_method_(nullptr), imt_conflict_method_(nullptr), imt_unimplemented_method_(nullptr), instruction_set_(kNone), compiler_callbacks_(nullptr), is_zygote_(false), must_relocate_(false), is_concurrent_gc_enabled_(true), is_explicit_gc_disabled_(false), dex2oat_enabled_(true), image_dex2oat_enabled_(true), default_stack_size_(0), heap_(nullptr), max_spins_before_thin_lock_inflation_(Monitor::kDefaultMaxSpinsBeforeThinLockInflation), monitor_list_(nullptr), monitor_pool_(nullptr), thread_list_(nullptr), intern_table_(nullptr), class_linker_(nullptr), signal_catcher_(nullptr), java_vm_(nullptr), fault_message_lock_("Fault message lock"), fault_message_(""), threads_being_born_(0), shutdown_cond_(new ConditionVariable("Runtime shutdown", *Locks::runtime_shutdown_lock_)), shutting_down_(false), shutting_down_started_(false), started_(false), finished_starting_(false), vfprintf_(nullptr), exit_(nullptr), abort_(nullptr), stats_enabled_(false), running_on_valgrind_(RUNNING_ON_VALGRIND > 0), profiler_started_(false), instrumentation_(), main_thread_group_(nullptr), system_thread_group_(nullptr), system_class_loader_(nullptr), dump_gc_performance_on_shutdown_(false), preinitialization_transaction_(nullptr), verify_(false), allow_dex_file_fallback_(true), target_sdk_version_(0), implicit_null_checks_(false), implicit_so_checks_(false), implicit_suspend_checks_(false), is_native_bridge_loaded_(false), zygote_max_failed_boots_(0) { CheckAsmSupportOffsetsAndSizes(); std::fill(callee_save_methods_, callee_save_methods_ + arraysize(callee_save_methods_), 0u); } Runtime::~Runtime() { if (is_native_bridge_loaded_) { UnloadNativeBridge(); } if (dump_gc_performance_on_shutdown_) { // This can't be called from the Heap destructor below because it // could call RosAlloc::InspectAll() which needs the thread_list // to be still alive. heap_->DumpGcPerformanceInfo(LOG(INFO)); } Thread* self = Thread::Current(); const bool attach_shutdown_thread = self == nullptr; if (attach_shutdown_thread) { CHECK(AttachCurrentThread("Shutdown thread", false, nullptr, false)); self = Thread::Current(); } else { LOG(WARNING) << "Current thread not detached in Runtime shutdown"; } { MutexLock mu(self, *Locks::runtime_shutdown_lock_); shutting_down_started_ = true; while (threads_being_born_ > 0) { shutdown_cond_->Wait(self); } shutting_down_ = true; } // Shutdown and wait for the daemons. CHECK(self != nullptr); if (IsFinishedStarting()) { self->ClearException(); self->GetJniEnv()->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons, WellKnownClasses::java_lang_Daemons_stop); } if (attach_shutdown_thread) { DetachCurrentThread(); self = nullptr; } // Shut down background profiler before the runtime exits. if (profiler_started_) { BackgroundMethodSamplingProfiler::Shutdown(); } Trace::Shutdown(); // Make sure to let the GC complete if it is running. heap_->WaitForGcToComplete(gc::kGcCauseBackground, self); heap_->DeleteThreadPool(); if (jit_.get() != nullptr) { VLOG(jit) << "Deleting jit thread pool"; // Delete thread pool before the thread list since we don't want to wait forever on the // JIT compiler threads. jit_->DeleteThreadPool(); } // Make sure our internal threads are dead before we start tearing down things they're using. Dbg::StopJdwp(); delete signal_catcher_; // Make sure all other non-daemon threads have terminated, and all daemon threads are suspended. delete thread_list_; // Delete the JIT after thread list to ensure that there is no remaining threads which could be // accessing the instrumentation when we delete it. if (jit_.get() != nullptr) { VLOG(jit) << "Deleting jit"; jit_.reset(nullptr); } linear_alloc_.reset(); arena_pool_.reset(); low_4gb_arena_pool_.reset(); // Shutdown the fault manager if it was initialized. fault_manager.Shutdown(); delete monitor_list_; delete monitor_pool_; delete class_linker_; delete heap_; delete intern_table_; delete java_vm_; Thread::Shutdown(); QuasiAtomic::Shutdown(); verifier::MethodVerifier::Shutdown(); MemMap::Shutdown(); // TODO: acquire a static mutex on Runtime to avoid racing. CHECK(instance_ == nullptr || instance_ == this); instance_ = nullptr; } struct AbortState { void Dump(std::ostream& os) const { if (gAborting > 1) { os << "Runtime aborting --- recursively, so no thread-specific detail!\n"; return; } gAborting++; os << "Runtime aborting...\n"; if (Runtime::Current() == nullptr) { os << "(Runtime does not yet exist!)\n"; return; } Thread* self = Thread::Current(); if (self == nullptr) { os << "(Aborting thread was not attached to runtime!)\n"; DumpKernelStack(os, GetTid(), " kernel: ", false); DumpNativeStack(os, GetTid(), " native: ", nullptr); } else { os << "Aborting thread:\n"; if (Locks::mutator_lock_->IsExclusiveHeld(self) || Locks::mutator_lock_->IsSharedHeld(self)) { DumpThread(os, self); } else { if (Locks::mutator_lock_->SharedTryLock(self)) { DumpThread(os, self); Locks::mutator_lock_->SharedUnlock(self); } } } DumpAllThreads(os, self); } // No thread-safety analysis as we do explicitly test for holding the mutator lock. void DumpThread(std::ostream& os, Thread* self) const NO_THREAD_SAFETY_ANALYSIS { DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self) || Locks::mutator_lock_->IsSharedHeld(self)); self->Dump(os); if (self->IsExceptionPending()) { mirror::Throwable* exception = self->GetException(); os << "Pending exception " << exception->Dump(); } } void DumpAllThreads(std::ostream& os, Thread* self) const { Runtime* runtime = Runtime::Current(); if (runtime != nullptr) { ThreadList* thread_list = runtime->GetThreadList(); if (thread_list != nullptr) { bool tll_already_held = Locks::thread_list_lock_->IsExclusiveHeld(self); bool ml_already_held = Locks::mutator_lock_->IsSharedHeld(self); if (!tll_already_held || !ml_already_held) { os << "Dumping all threads without appropriate locks held:" << (!tll_already_held ? " thread list lock" : "") << (!ml_already_held ? " mutator lock" : "") << "\n"; } os << "All threads:\n"; thread_list->Dump(os); } } } }; void Runtime::Abort() { gAborting++; // set before taking any locks // Ensure that we don't have multiple threads trying to abort at once, // which would result in significantly worse diagnostics. MutexLock mu(Thread::Current(), *Locks::abort_lock_); // Get any pending output out of the way. fflush(nullptr); // Many people have difficulty distinguish aborts from crashes, // so be explicit. AbortState state; LOG(INTERNAL_FATAL) << Dumpable(state); // Call the abort hook if we have one. if (Runtime::Current() != nullptr && Runtime::Current()->abort_ != nullptr) { LOG(INTERNAL_FATAL) << "Calling abort hook..."; Runtime::Current()->abort_(); // notreached LOG(INTERNAL_FATAL) << "Unexpectedly returned from abort hook!"; } #if defined(__GLIBC__) // TODO: we ought to be able to use pthread_kill(3) here (or abort(3), // which POSIX defines in terms of raise(3), which POSIX defines in terms // of pthread_kill(3)). On Linux, though, libcorkscrew can't unwind through // libpthread, which means the stacks we dump would be useless. Calling // tgkill(2) directly avoids that. syscall(__NR_tgkill, getpid(), GetTid(), SIGABRT); // TODO: LLVM installs it's own SIGABRT handler so exit to be safe... Can we disable that in LLVM? // If not, we could use sigaction(3) before calling tgkill(2) and lose this call to exit(3). exit(1); #else abort(); #endif // notreached } void Runtime::PreZygoteFork() { heap_->PreZygoteFork(); } void Runtime::CallExitHook(jint status) { if (exit_ != nullptr) { ScopedThreadStateChange tsc(Thread::Current(), kNative); exit_(status); LOG(WARNING) << "Exit hook returned instead of exiting!"; } } void Runtime::SweepSystemWeaks(IsMarkedCallback* visitor, void* arg) { GetInternTable()->SweepInternTableWeaks(visitor, arg); GetMonitorList()->SweepMonitorList(visitor, arg); GetJavaVM()->SweepJniWeakGlobals(visitor, arg); } bool Runtime::Create(const RuntimeOptions& options, bool ignore_unrecognized) { // TODO: acquire a static mutex on Runtime to avoid racing. if (Runtime::instance_ != nullptr) { return false; } InitLogging(nullptr); // Calls Locks::Init() as a side effect. instance_ = new Runtime; if (!instance_->Init(options, ignore_unrecognized)) { // TODO: Currently deleting the instance will abort the runtime on destruction. Now This will // leak memory, instead. Fix the destructor. b/19100793. // delete instance_; instance_ = nullptr; return false; } return true; } static jobject CreateSystemClassLoader(Runtime* runtime) { if (runtime->IsAotCompiler() && !runtime->GetCompilerCallbacks()->IsBootImage()) { return nullptr; } ScopedObjectAccess soa(Thread::Current()); ClassLinker* cl = Runtime::Current()->GetClassLinker(); auto pointer_size = cl->GetImagePointerSize(); StackHandleScope<2> hs(soa.Self()); Handle class_loader_class( hs.NewHandle(soa.Decode(WellKnownClasses::java_lang_ClassLoader))); CHECK(cl->EnsureInitialized(soa.Self(), class_loader_class, true, true)); ArtMethod* getSystemClassLoader = class_loader_class->FindDirectMethod( "getSystemClassLoader", "()Ljava/lang/ClassLoader;", pointer_size); CHECK(getSystemClassLoader != nullptr); JValue result = InvokeWithJValues(soa, nullptr, soa.EncodeMethod(getSystemClassLoader), nullptr); JNIEnv* env = soa.Self()->GetJniEnv(); ScopedLocalRef system_class_loader(env, soa.AddLocalReference(result.GetL())); CHECK(system_class_loader.get() != nullptr); soa.Self()->SetClassLoaderOverride(system_class_loader.get()); Handle thread_class( hs.NewHandle(soa.Decode(WellKnownClasses::java_lang_Thread))); CHECK(cl->EnsureInitialized(soa.Self(), thread_class, true, true)); ArtField* contextClassLoader = thread_class->FindDeclaredInstanceField("contextClassLoader", "Ljava/lang/ClassLoader;"); CHECK(contextClassLoader != nullptr); // We can't run in a transaction yet. contextClassLoader->SetObject(soa.Self()->GetPeer(), soa.Decode(system_class_loader.get())); return env->NewGlobalRef(system_class_loader.get()); } std::string Runtime::GetPatchoatExecutable() const { if (!patchoat_executable_.empty()) { return patchoat_executable_; } std::string patchoat_executable(GetAndroidRoot()); patchoat_executable += (kIsDebugBuild ? "/bin/patchoatd" : "/bin/patchoat"); return patchoat_executable; } std::string Runtime::GetCompilerExecutable() const { if (!compiler_executable_.empty()) { return compiler_executable_; } std::string compiler_executable(GetAndroidRoot()); compiler_executable += (kIsDebugBuild ? "/bin/dex2oatd" : "/bin/dex2oat"); return compiler_executable; } bool Runtime::Start() { VLOG(startup) << "Runtime::Start entering"; // Restore main thread state to kNative as expected by native code. Thread* self = Thread::Current(); self->TransitionFromRunnableToSuspended(kNative); started_ = true; // Use !IsAotCompiler so that we get test coverage, tests are never the zygote. if (!IsAotCompiler()) { ScopedObjectAccess soa(self); gc::space::ImageSpace* image_space = heap_->GetImageSpace(); if (image_space != nullptr) { ATRACE_BEGIN("AddImageStringsToTable"); GetInternTable()->AddImageStringsToTable(image_space); ATRACE_END(); ATRACE_BEGIN("MoveImageClassesToClassTable"); GetClassLinker()->MoveImageClassesToClassTable(); ATRACE_END(); } } // If we are the zygote then we need to wait until after forking to create the code cache // due to SELinux restrictions on r/w/x memory regions. if (!IsZygote() && jit_options_->UseJIT()) { CreateJit(); } if (!IsImageDex2OatEnabled() || !GetHeap()->HasImageSpace()) { ScopedObjectAccess soa(self); StackHandleScope<1> hs(soa.Self()); auto klass(hs.NewHandle(mirror::Class::GetJavaLangClass())); class_linker_->EnsureInitialized(soa.Self(), klass, true, true); } // InitNativeMethods needs to be after started_ so that the classes // it touches will have methods linked to the oat file if necessary. ATRACE_BEGIN("InitNativeMethods"); InitNativeMethods(); ATRACE_END(); // Initialize well known thread group values that may be accessed threads while attaching. InitThreadGroups(self); Thread::FinishStartup(); system_class_loader_ = CreateSystemClassLoader(this); if (is_zygote_) { if (!InitZygote()) { return false; } } else { if (is_native_bridge_loaded_) { PreInitializeNativeBridge("."); } DidForkFromZygote(self->GetJniEnv(), NativeBridgeAction::kInitialize, GetInstructionSetString(kRuntimeISA)); } ATRACE_BEGIN("StartDaemonThreads"); StartDaemonThreads(); ATRACE_END(); { ScopedObjectAccess soa(self); self->GetJniEnv()->locals.AssertEmpty(); } VLOG(startup) << "Runtime::Start exiting"; finished_starting_ = true; if (profiler_options_.IsEnabled() && !profile_output_filename_.empty()) { // User has asked for a profile using -Xenable-profiler. // Create the profile file if it doesn't exist. int fd = open(profile_output_filename_.c_str(), O_RDWR|O_CREAT|O_EXCL, 0660); if (fd >= 0) { close(fd); } else if (errno != EEXIST) { LOG(INFO) << "Failed to access the profile file. Profiler disabled."; return true; } StartProfiler(profile_output_filename_.c_str()); } if (trace_config_.get() != nullptr && trace_config_->trace_file != "") { ScopedThreadStateChange tsc(self, kWaitingForMethodTracingStart); Trace::Start(trace_config_->trace_file.c_str(), -1, static_cast(trace_config_->trace_file_size), 0, trace_config_->trace_output_mode, trace_config_->trace_mode, 0); } return true; } void Runtime::EndThreadBirth() EXCLUSIVE_LOCKS_REQUIRED(Locks::runtime_shutdown_lock_) { DCHECK_GT(threads_being_born_, 0U); threads_being_born_--; if (shutting_down_started_ && threads_being_born_ == 0) { shutdown_cond_->Broadcast(Thread::Current()); } } // Do zygote-mode-only initialization. bool Runtime::InitZygote() { #ifdef __linux__ // zygote goes into its own process group setpgid(0, 0); // See storage config details at http://source.android.com/tech/storage/ // Create private mount namespace shared by all children if (unshare(CLONE_NEWNS) == -1) { PLOG(WARNING) << "Failed to unshare()"; return false; } // Mark rootfs as being a slave so that changes from default // namespace only flow into our children. if (mount("rootfs", "/", nullptr, (MS_SLAVE | MS_REC), nullptr) == -1) { PLOG(WARNING) << "Failed to mount() rootfs as MS_SLAVE"; return false; } // Create a staging tmpfs that is shared by our children; they will // bind mount storage into their respective private namespaces, which // are isolated from each other. const char* target_base = getenv("EMULATED_STORAGE_TARGET"); if (target_base != nullptr) { if (mount("tmpfs", target_base, "tmpfs", MS_NOSUID | MS_NODEV, "uid=0,gid=1028,mode=0751") == -1) { LOG(WARNING) << "Failed to mount tmpfs to " << target_base; return false; } } return true; #else UNIMPLEMENTED(FATAL); return false; #endif } void Runtime::DidForkFromZygote(JNIEnv* env, NativeBridgeAction action, const char* isa) { is_zygote_ = false; if (is_native_bridge_loaded_) { switch (action) { case NativeBridgeAction::kUnload: UnloadNativeBridge(); is_native_bridge_loaded_ = false; break; case NativeBridgeAction::kInitialize: InitializeNativeBridge(env, isa); break; } } // Create the thread pools. heap_->CreateThreadPool(); // Reset the gc performance data at zygote fork so that the GCs // before fork aren't attributed to an app. heap_->ResetGcPerformanceInfo(); if (jit_.get() == nullptr && jit_options_->UseJIT()) { // Create the JIT if the flag is set and we haven't already create it (happens for run-tests). CreateJit(); } StartSignalCatcher(); // Start the JDWP thread. If the command-line debugger flags specified "suspend=y", // this will pause the runtime, so we probably want this to come last. Dbg::StartJdwp(); } void Runtime::StartSignalCatcher() { if (!is_zygote_) { signal_catcher_ = new SignalCatcher(stack_trace_file_); } } bool Runtime::IsShuttingDown(Thread* self) { MutexLock mu(self, *Locks::runtime_shutdown_lock_); return IsShuttingDownLocked(); } void Runtime::StartDaemonThreads() { VLOG(startup) << "Runtime::StartDaemonThreads entering"; Thread* self = Thread::Current(); // Must be in the kNative state for calling native methods. CHECK_EQ(self->GetState(), kNative); JNIEnv* env = self->GetJniEnv(); env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons, WellKnownClasses::java_lang_Daemons_start); if (env->ExceptionCheck()) { env->ExceptionDescribe(); LOG(FATAL) << "Error starting java.lang.Daemons"; } VLOG(startup) << "Runtime::StartDaemonThreads exiting"; } static bool OpenDexFilesFromImage(const std::string& image_location, std::vector>* dex_files, size_t* failures) { DCHECK(dex_files != nullptr) << "OpenDexFilesFromImage: out-param is nullptr"; std::string system_filename; bool has_system = false; std::string cache_filename_unused; bool dalvik_cache_exists_unused; bool has_cache_unused; bool is_global_cache_unused; bool found_image = gc::space::ImageSpace::FindImageFilename(image_location.c_str(), kRuntimeISA, &system_filename, &has_system, &cache_filename_unused, &dalvik_cache_exists_unused, &has_cache_unused, &is_global_cache_unused); *failures = 0; if (!found_image || !has_system) { return false; } std::string error_msg; // We are falling back to non-executable use of the oat file because patching failed, presumably // due to lack of space. std::string oat_filename = ImageHeader::GetOatLocationFromImageLocation(system_filename.c_str()); std::string oat_location = ImageHeader::GetOatLocationFromImageLocation(image_location.c_str()); std::unique_ptr file(OS::OpenFileForReading(oat_filename.c_str())); if (file.get() == nullptr) { return false; } std::unique_ptr elf_file(ElfFile::Open(file.release(), false, false, &error_msg)); if (elf_file.get() == nullptr) { return false; } std::unique_ptr oat_file(OatFile::OpenWithElfFile(elf_file.release(), oat_location, nullptr, &error_msg)); if (oat_file.get() == nullptr) { LOG(INFO) << "Unable to use '" << oat_filename << "' because " << error_msg; return false; } for (const OatFile::OatDexFile* oat_dex_file : oat_file->GetOatDexFiles()) { if (oat_dex_file == nullptr) { *failures += 1; continue; } std::unique_ptr dex_file = oat_dex_file->OpenDexFile(&error_msg); if (dex_file.get() == nullptr) { *failures += 1; } else { dex_files->push_back(std::move(dex_file)); } } Runtime::Current()->GetClassLinker()->RegisterOatFile(oat_file.release()); return true; } static size_t OpenDexFiles(const std::vector& dex_filenames, const std::vector& dex_locations, const std::string& image_location, std::vector>* dex_files) { DCHECK(dex_files != nullptr) << "OpenDexFiles: out-param is nullptr"; size_t failure_count = 0; if (!image_location.empty() && OpenDexFilesFromImage(image_location, dex_files, &failure_count)) { return failure_count; } failure_count = 0; for (size_t i = 0; i < dex_filenames.size(); i++) { const char* dex_filename = dex_filenames[i].c_str(); const char* dex_location = dex_locations[i].c_str(); std::string error_msg; if (!OS::FileExists(dex_filename)) { LOG(WARNING) << "Skipping non-existent dex file '" << dex_filename << "'"; continue; } if (!DexFile::Open(dex_filename, dex_location, &error_msg, dex_files)) { LOG(WARNING) << "Failed to open .dex from file '" << dex_filename << "': " << error_msg; ++failure_count; } } return failure_count; } bool Runtime::Init(const RuntimeOptions& raw_options, bool ignore_unrecognized) { ATRACE_BEGIN("Runtime::Init"); CHECK_EQ(sysconf(_SC_PAGE_SIZE), kPageSize); MemMap::Init(); using Opt = RuntimeArgumentMap; RuntimeArgumentMap runtime_options; std::unique_ptr parsed_options( ParsedOptions::Create(raw_options, ignore_unrecognized, &runtime_options)); if (parsed_options.get() == nullptr) { LOG(ERROR) << "Failed to parse options"; ATRACE_END(); return false; } VLOG(startup) << "Runtime::Init -verbose:startup enabled"; QuasiAtomic::Startup(); Monitor::Init(runtime_options.GetOrDefault(Opt::LockProfThreshold), runtime_options.GetOrDefault(Opt::HookIsSensitiveThread)); boot_class_path_string_ = runtime_options.ReleaseOrDefault(Opt::BootClassPath); class_path_string_ = runtime_options.ReleaseOrDefault(Opt::ClassPath); properties_ = runtime_options.ReleaseOrDefault(Opt::PropertiesList); compiler_callbacks_ = runtime_options.GetOrDefault(Opt::CompilerCallbacksPtr); patchoat_executable_ = runtime_options.ReleaseOrDefault(Opt::PatchOat); must_relocate_ = runtime_options.GetOrDefault(Opt::Relocate); is_zygote_ = runtime_options.Exists(Opt::Zygote); is_explicit_gc_disabled_ = runtime_options.Exists(Opt::DisableExplicitGC); dex2oat_enabled_ = runtime_options.GetOrDefault(Opt::Dex2Oat); image_dex2oat_enabled_ = runtime_options.GetOrDefault(Opt::ImageDex2Oat); vfprintf_ = runtime_options.GetOrDefault(Opt::HookVfprintf); exit_ = runtime_options.GetOrDefault(Opt::HookExit); abort_ = runtime_options.GetOrDefault(Opt::HookAbort); default_stack_size_ = runtime_options.GetOrDefault(Opt::StackSize); stack_trace_file_ = runtime_options.ReleaseOrDefault(Opt::StackTraceFile); compiler_executable_ = runtime_options.ReleaseOrDefault(Opt::Compiler); compiler_options_ = runtime_options.ReleaseOrDefault(Opt::CompilerOptions); image_compiler_options_ = runtime_options.ReleaseOrDefault(Opt::ImageCompilerOptions); image_location_ = runtime_options.GetOrDefault(Opt::Image); max_spins_before_thin_lock_inflation_ = runtime_options.GetOrDefault(Opt::MaxSpinsBeforeThinLockInflation); monitor_list_ = new MonitorList; monitor_pool_ = MonitorPool::Create(); thread_list_ = new ThreadList; intern_table_ = new InternTable; verify_ = runtime_options.GetOrDefault(Opt::Verify); allow_dex_file_fallback_ = !runtime_options.Exists(Opt::NoDexFileFallback); Split(runtime_options.GetOrDefault(Opt::CpuAbiList), ',', &cpu_abilist_); if (runtime_options.GetOrDefault(Opt::Interpret)) { GetInstrumentation()->ForceInterpretOnly(); } zygote_max_failed_boots_ = runtime_options.GetOrDefault(Opt::ZygoteMaxFailedBoots); XGcOption xgc_option = runtime_options.GetOrDefault(Opt::GcOption); ATRACE_BEGIN("CreateHeap"); heap_ = new gc::Heap(runtime_options.GetOrDefault(Opt::MemoryInitialSize), runtime_options.GetOrDefault(Opt::HeapGrowthLimit), runtime_options.GetOrDefault(Opt::HeapMinFree), runtime_options.GetOrDefault(Opt::HeapMaxFree), runtime_options.GetOrDefault(Opt::HeapTargetUtilization), runtime_options.GetOrDefault(Opt::ForegroundHeapGrowthMultiplier), runtime_options.GetOrDefault(Opt::MemoryMaximumSize), runtime_options.GetOrDefault(Opt::NonMovingSpaceCapacity), runtime_options.GetOrDefault(Opt::Image), runtime_options.GetOrDefault(Opt::ImageInstructionSet), xgc_option.collector_type_, runtime_options.GetOrDefault(Opt::BackgroundGc), runtime_options.GetOrDefault(Opt::LargeObjectSpace), runtime_options.GetOrDefault(Opt::LargeObjectThreshold), runtime_options.GetOrDefault(Opt::ParallelGCThreads), runtime_options.GetOrDefault(Opt::ConcGCThreads), runtime_options.Exists(Opt::LowMemoryMode), runtime_options.GetOrDefault(Opt::LongPauseLogThreshold), runtime_options.GetOrDefault(Opt::LongGCLogThreshold), runtime_options.Exists(Opt::IgnoreMaxFootprint), runtime_options.GetOrDefault(Opt::UseTLAB), xgc_option.verify_pre_gc_heap_, xgc_option.verify_pre_sweeping_heap_, xgc_option.verify_post_gc_heap_, xgc_option.verify_pre_gc_rosalloc_, xgc_option.verify_pre_sweeping_rosalloc_, xgc_option.verify_post_gc_rosalloc_, xgc_option.gcstress_, runtime_options.GetOrDefault(Opt::EnableHSpaceCompactForOOM), runtime_options.GetOrDefault(Opt::HSpaceCompactForOOMMinIntervalsMs)); ATRACE_END(); if (heap_->GetImageSpace() == nullptr && !allow_dex_file_fallback_) { LOG(ERROR) << "Dex file fallback disabled, cannot continue without image."; ATRACE_END(); return false; } dump_gc_performance_on_shutdown_ = runtime_options.Exists(Opt::DumpGCPerformanceOnShutdown); if (runtime_options.Exists(Opt::JdwpOptions)) { Dbg::ConfigureJdwp(runtime_options.GetOrDefault(Opt::JdwpOptions)); } jit_options_.reset(jit::JitOptions::CreateFromRuntimeArguments(runtime_options)); if (IsAotCompiler()) { // If we are already the compiler at this point, we must be dex2oat. Don't create the jit in // this case. // If runtime_options doesn't have UseJIT set to true then CreateFromRuntimeArguments returns // null and we don't create the jit. jit_options_->SetUseJIT(false); } // Use MemMap arena pool for jit, malloc otherwise. Malloc arenas are faster to allocate but // can't be trimmed as easily. const bool use_malloc = IsAotCompiler(); arena_pool_.reset(new ArenaPool(use_malloc, false)); if (IsCompiler() && Is64BitInstructionSet(kRuntimeISA)) { // 4gb, no malloc. Explanation in header. low_4gb_arena_pool_.reset(new ArenaPool(false, true)); linear_alloc_.reset(new LinearAlloc(low_4gb_arena_pool_.get())); } else { linear_alloc_.reset(new LinearAlloc(arena_pool_.get())); } BlockSignals(); InitPlatformSignalHandlers(); // Change the implicit checks flags based on runtime architecture. switch (kRuntimeISA) { case kArm: case kThumb2: case kX86: case kArm64: case kX86_64: implicit_null_checks_ = true; // Installing stack protection does not play well with valgrind. implicit_so_checks_ = (RUNNING_ON_VALGRIND == 0); break; default: // Keep the defaults. break; } // Always initialize the signal chain so that any calls to sigaction get // correctly routed to the next in the chain regardless of whether we // have claimed the signal or not. InitializeSignalChain(); if (implicit_null_checks_ || implicit_so_checks_ || implicit_suspend_checks_) { fault_manager.Init(); // These need to be in a specific order. The null point check handler must be // after the suspend check and stack overflow check handlers. // // Note: the instances attach themselves to the fault manager and are handled by it. The manager // will delete the instance on Shutdown(). if (implicit_suspend_checks_) { new SuspensionHandler(&fault_manager); } if (implicit_so_checks_) { new StackOverflowHandler(&fault_manager); } if (implicit_null_checks_) { new NullPointerHandler(&fault_manager); } if (kEnableJavaStackTraceHandler) { new JavaStackTraceHandler(&fault_manager); } } java_vm_ = new JavaVMExt(this, runtime_options); Thread::Startup(); // ClassLinker needs an attached thread, but we can't fully attach a thread without creating // objects. We can't supply a thread group yet; it will be fixed later. Since we are the main // thread, we do not get a java peer. Thread* self = Thread::Attach("main", false, nullptr, false); CHECK_EQ(self->GetThreadId(), ThreadList::kMainThreadId); CHECK(self != nullptr); // Set us to runnable so tools using a runtime can allocate and GC by default self->TransitionFromSuspendedToRunnable(); // Now we're attached, we can take the heap locks and validate the heap. GetHeap()->EnableObjectValidation(); CHECK_GE(GetHeap()->GetContinuousSpaces().size(), 1U); class_linker_ = new ClassLinker(intern_table_); if (GetHeap()->HasImageSpace()) { ATRACE_BEGIN("InitFromImage"); class_linker_->InitFromImage(); ATRACE_END(); if (kIsDebugBuild) { GetHeap()->GetImageSpace()->VerifyImageAllocations(); } if (boot_class_path_string_.empty()) { // The bootclasspath is not explicitly specified: construct it from the loaded dex files. const std::vector& boot_class_path = GetClassLinker()->GetBootClassPath(); std::vector dex_locations; dex_locations.reserve(boot_class_path.size()); for (const DexFile* dex_file : boot_class_path) { dex_locations.push_back(dex_file->GetLocation()); } boot_class_path_string_ = Join(dex_locations, ':'); } } else { std::vector dex_filenames; Split(boot_class_path_string_, ':', &dex_filenames); std::vector dex_locations; if (!runtime_options.Exists(Opt::BootClassPathLocations)) { dex_locations = dex_filenames; } else { dex_locations = runtime_options.GetOrDefault(Opt::BootClassPathLocations); CHECK_EQ(dex_filenames.size(), dex_locations.size()); } std::vector> boot_class_path; OpenDexFiles(dex_filenames, dex_locations, runtime_options.GetOrDefault(Opt::Image), &boot_class_path); instruction_set_ = runtime_options.GetOrDefault(Opt::ImageInstructionSet); class_linker_->InitWithoutImage(std::move(boot_class_path)); // TODO: Should we move the following to InitWithoutImage? SetInstructionSet(instruction_set_); for (int i = 0; i < Runtime::kLastCalleeSaveType; i++) { Runtime::CalleeSaveType type = Runtime::CalleeSaveType(i); if (!HasCalleeSaveMethod(type)) { SetCalleeSaveMethod(CreateCalleeSaveMethod(), type); } } } CHECK(class_linker_ != nullptr); // Initialize the special sentinel_ value early. sentinel_ = GcRoot(class_linker_->AllocObject(self)); CHECK(sentinel_.Read() != nullptr); verifier::MethodVerifier::Init(); if (runtime_options.Exists(Opt::MethodTrace)) { trace_config_.reset(new TraceConfig()); trace_config_->trace_file = runtime_options.ReleaseOrDefault(Opt::MethodTraceFile); trace_config_->trace_file_size = runtime_options.ReleaseOrDefault(Opt::MethodTraceFileSize); trace_config_->trace_mode = Trace::TraceMode::kMethodTracing; trace_config_->trace_output_mode = runtime_options.Exists(Opt::MethodTraceStreaming) ? Trace::TraceOutputMode::kStreaming : Trace::TraceOutputMode::kFile; } { auto&& profiler_options = runtime_options.ReleaseOrDefault(Opt::ProfilerOpts); profile_output_filename_ = profiler_options.output_file_name_; // TODO: Don't do this, just change ProfilerOptions to include the output file name? ProfilerOptions other_options( profiler_options.enabled_, profiler_options.period_s_, profiler_options.duration_s_, profiler_options.interval_us_, profiler_options.backoff_coefficient_, profiler_options.start_immediately_, profiler_options.top_k_threshold_, profiler_options.top_k_change_threshold_, profiler_options.profile_type_, profiler_options.max_stack_depth_); profiler_options_ = other_options; } // TODO: move this to just be an Trace::Start argument Trace::SetDefaultClockSource(runtime_options.GetOrDefault(Opt::ProfileClock)); // Pre-allocate an OutOfMemoryError for the double-OOME case. self->ThrowNewException("Ljava/lang/OutOfMemoryError;", "OutOfMemoryError thrown while trying to throw OutOfMemoryError; " "no stack trace available"); pre_allocated_OutOfMemoryError_ = GcRoot(self->GetException()); self->ClearException(); // Pre-allocate a NoClassDefFoundError for the common case of failing to find a system class // ahead of checking the application's class loader. self->ThrowNewException("Ljava/lang/NoClassDefFoundError;", "Class not found using the boot class loader; no stack trace available"); pre_allocated_NoClassDefFoundError_ = GcRoot(self->GetException()); self->ClearException(); // Look for a native bridge. // // The intended flow here is, in the case of a running system: // // Runtime::Init() (zygote): // LoadNativeBridge -> dlopen from cmd line parameter. // | // V // Runtime::Start() (zygote): // No-op wrt native bridge. // | // | start app // V // DidForkFromZygote(action) // action = kUnload -> dlclose native bridge. // action = kInitialize -> initialize library // // // The intended flow here is, in the case of a simple dalvikvm call: // // Runtime::Init(): // LoadNativeBridge -> dlopen from cmd line parameter. // | // V // Runtime::Start(): // DidForkFromZygote(kInitialize) -> try to initialize any native bridge given. // No-op wrt native bridge. { std::string native_bridge_file_name = runtime_options.ReleaseOrDefault(Opt::NativeBridge); is_native_bridge_loaded_ = LoadNativeBridge(native_bridge_file_name); } VLOG(startup) << "Runtime::Init exiting"; ATRACE_END(); return true; } void Runtime::InitNativeMethods() { VLOG(startup) << "Runtime::InitNativeMethods entering"; Thread* self = Thread::Current(); JNIEnv* env = self->GetJniEnv(); // Must be in the kNative state for calling native methods (JNI_OnLoad code). CHECK_EQ(self->GetState(), kNative); // First set up JniConstants, which is used by both the runtime's built-in native // methods and libcore. JniConstants::init(env); WellKnownClasses::Init(env); // Then set up the native methods provided by the runtime itself. RegisterRuntimeNativeMethods(env); // Then set up libcore, which is just a regular JNI library with a regular JNI_OnLoad. // Most JNI libraries can just use System.loadLibrary, but libcore can't because it's // the library that implements System.loadLibrary! { std::string reason; if (!java_vm_->LoadNativeLibrary(env, "libjavacore.so", nullptr, &reason)) { LOG(FATAL) << "LoadNativeLibrary failed for \"libjavacore.so\": " << reason; } } // Initialize well known classes that may invoke runtime native methods. WellKnownClasses::LateInit(env); VLOG(startup) << "Runtime::InitNativeMethods exiting"; } void Runtime::InitThreadGroups(Thread* self) { JNIEnvExt* env = self->GetJniEnv(); ScopedJniEnvLocalRefState env_state(env); main_thread_group_ = env->NewGlobalRef(env->GetStaticObjectField( WellKnownClasses::java_lang_ThreadGroup, WellKnownClasses::java_lang_ThreadGroup_mainThreadGroup)); CHECK(main_thread_group_ != nullptr || IsAotCompiler()); system_thread_group_ = env->NewGlobalRef(env->GetStaticObjectField( WellKnownClasses::java_lang_ThreadGroup, WellKnownClasses::java_lang_ThreadGroup_systemThreadGroup)); CHECK(system_thread_group_ != nullptr || IsAotCompiler()); } jobject Runtime::GetMainThreadGroup() const { CHECK(main_thread_group_ != nullptr || IsAotCompiler()); return main_thread_group_; } jobject Runtime::GetSystemThreadGroup() const { CHECK(system_thread_group_ != nullptr || IsAotCompiler()); return system_thread_group_; } jobject Runtime::GetSystemClassLoader() const { CHECK(system_class_loader_ != nullptr || IsAotCompiler()); return system_class_loader_; } void Runtime::RegisterRuntimeNativeMethods(JNIEnv* env) { register_dalvik_system_DexFile(env); register_dalvik_system_VMDebug(env); register_dalvik_system_VMRuntime(env); register_dalvik_system_VMStack(env); register_dalvik_system_ZygoteHooks(env); register_java_lang_Class(env); register_java_lang_DexCache(env); register_java_lang_Object(env); register_java_lang_ref_FinalizerReference(env); register_java_lang_reflect_Array(env); register_java_lang_reflect_Constructor(env); register_java_lang_reflect_Field(env); register_java_lang_reflect_Method(env); register_java_lang_reflect_Proxy(env); register_java_lang_ref_Reference(env); register_java_lang_Runtime(env); register_java_lang_String(env); register_java_lang_StringFactory(env); register_java_lang_System(env); register_java_lang_Thread(env); register_java_lang_Throwable(env); register_java_lang_VMClassLoader(env); register_java_util_concurrent_atomic_AtomicLong(env); register_libcore_util_CharsetUtils(env); register_org_apache_harmony_dalvik_ddmc_DdmServer(env); register_org_apache_harmony_dalvik_ddmc_DdmVmInternal(env); register_sun_misc_Unsafe(env); } void Runtime::DumpForSigQuit(std::ostream& os) { GetClassLinker()->DumpForSigQuit(os); GetInternTable()->DumpForSigQuit(os); GetJavaVM()->DumpForSigQuit(os); GetHeap()->DumpForSigQuit(os); TrackedAllocators::Dump(os); os << "\n"; thread_list_->DumpForSigQuit(os); BaseMutex::DumpAll(os); } void Runtime::DumpLockHolders(std::ostream& os) { uint64_t mutator_lock_owner = Locks::mutator_lock_->GetExclusiveOwnerTid(); pid_t thread_list_lock_owner = GetThreadList()->GetLockOwner(); pid_t classes_lock_owner = GetClassLinker()->GetClassesLockOwner(); pid_t dex_lock_owner = GetClassLinker()->GetDexLockOwner(); if ((thread_list_lock_owner | classes_lock_owner | dex_lock_owner) != 0) { os << "Mutator lock exclusive owner tid: " << mutator_lock_owner << "\n" << "ThreadList lock owner tid: " << thread_list_lock_owner << "\n" << "ClassLinker classes lock owner tid: " << classes_lock_owner << "\n" << "ClassLinker dex lock owner tid: " << dex_lock_owner << "\n"; } } void Runtime::SetStatsEnabled(bool new_state) { Thread* self = Thread::Current(); MutexLock mu(self, *Locks::instrument_entrypoints_lock_); if (new_state == true) { GetStats()->Clear(~0); // TODO: wouldn't it make more sense to clear _all_ threads' stats? self->GetStats()->Clear(~0); if (stats_enabled_ != new_state) { GetInstrumentation()->InstrumentQuickAllocEntryPointsLocked(); } } else if (stats_enabled_ != new_state) { GetInstrumentation()->UninstrumentQuickAllocEntryPointsLocked(); } stats_enabled_ = new_state; } void Runtime::ResetStats(int kinds) { GetStats()->Clear(kinds & 0xffff); // TODO: wouldn't it make more sense to clear _all_ threads' stats? Thread::Current()->GetStats()->Clear(kinds >> 16); } int32_t Runtime::GetStat(int kind) { RuntimeStats* stats; if (kind < (1<<16)) { stats = GetStats(); } else { stats = Thread::Current()->GetStats(); kind >>= 16; } switch (kind) { case KIND_ALLOCATED_OBJECTS: return stats->allocated_objects; case KIND_ALLOCATED_BYTES: return stats->allocated_bytes; case KIND_FREED_OBJECTS: return stats->freed_objects; case KIND_FREED_BYTES: return stats->freed_bytes; case KIND_GC_INVOCATIONS: return stats->gc_for_alloc_count; case KIND_CLASS_INIT_COUNT: return stats->class_init_count; case KIND_CLASS_INIT_TIME: // Convert ns to us, reduce to 32 bits. return static_cast(stats->class_init_time_ns / 1000); case KIND_EXT_ALLOCATED_OBJECTS: case KIND_EXT_ALLOCATED_BYTES: case KIND_EXT_FREED_OBJECTS: case KIND_EXT_FREED_BYTES: return 0; // backward compatibility default: LOG(FATAL) << "Unknown statistic " << kind; return -1; // unreachable } } void Runtime::BlockSignals() { SignalSet signals; signals.Add(SIGPIPE); // SIGQUIT is used to dump the runtime's state (including stack traces). signals.Add(SIGQUIT); // SIGUSR1 is used to initiate a GC. signals.Add(SIGUSR1); signals.Block(); } bool Runtime::AttachCurrentThread(const char* thread_name, bool as_daemon, jobject thread_group, bool create_peer) { return Thread::Attach(thread_name, as_daemon, thread_group, create_peer) != nullptr; } void Runtime::DetachCurrentThread() { Thread* self = Thread::Current(); if (self == nullptr) { LOG(FATAL) << "attempting to detach thread that is not attached"; } if (self->HasManagedStack()) { LOG(FATAL) << *Thread::Current() << " attempting to detach while still running code"; } thread_list_->Unregister(self); } mirror::Throwable* Runtime::GetPreAllocatedOutOfMemoryError() { mirror::Throwable* oome = pre_allocated_OutOfMemoryError_.Read(); if (oome == nullptr) { LOG(ERROR) << "Failed to return pre-allocated OOME"; } return oome; } mirror::Throwable* Runtime::GetPreAllocatedNoClassDefFoundError() { mirror::Throwable* ncdfe = pre_allocated_NoClassDefFoundError_.Read(); if (ncdfe == nullptr) { LOG(ERROR) << "Failed to return pre-allocated NoClassDefFoundError"; } return ncdfe; } void Runtime::VisitConstantRoots(RootVisitor* visitor) { // Visit the classes held as static in mirror classes, these can be visited concurrently and only // need to be visited once per GC since they never change. mirror::Class::VisitRoots(visitor); mirror::Constructor::VisitRoots(visitor); mirror::Reference::VisitRoots(visitor); mirror::Method::VisitRoots(visitor); mirror::StackTraceElement::VisitRoots(visitor); mirror::String::VisitRoots(visitor); mirror::Throwable::VisitRoots(visitor); mirror::Field::VisitRoots(visitor); // Visit all the primitive array types classes. mirror::PrimitiveArray::VisitRoots(visitor); // BooleanArray mirror::PrimitiveArray::VisitRoots(visitor); // ByteArray mirror::PrimitiveArray::VisitRoots(visitor); // CharArray mirror::PrimitiveArray::VisitRoots(visitor); // DoubleArray mirror::PrimitiveArray::VisitRoots(visitor); // FloatArray mirror::PrimitiveArray::VisitRoots(visitor); // IntArray mirror::PrimitiveArray::VisitRoots(visitor); // LongArray mirror::PrimitiveArray::VisitRoots(visitor); // ShortArray // Visiting the roots of these ArtMethods is not currently required since all the GcRoots are // null. BufferedRootVisitor<16> buffered_visitor(visitor, RootInfo(kRootVMInternal)); if (HasResolutionMethod()) { resolution_method_->VisitRoots(buffered_visitor); } if (HasImtConflictMethod()) { imt_conflict_method_->VisitRoots(buffered_visitor); } if (imt_unimplemented_method_ != nullptr) { imt_unimplemented_method_->VisitRoots(buffered_visitor); } for (size_t i = 0; i < kLastCalleeSaveType; ++i) { auto* m = reinterpret_cast(callee_save_methods_[i]); if (m != nullptr) { m->VisitRoots(buffered_visitor); } } } void Runtime::VisitConcurrentRoots(RootVisitor* visitor, VisitRootFlags flags) { intern_table_->VisitRoots(visitor, flags); class_linker_->VisitRoots(visitor, flags); if ((flags & kVisitRootFlagNewRoots) == 0) { // Guaranteed to have no new roots in the constant roots. VisitConstantRoots(visitor); } } void Runtime::VisitTransactionRoots(RootVisitor* visitor) { if (preinitialization_transaction_ != nullptr) { preinitialization_transaction_->VisitRoots(visitor); } } void Runtime::VisitNonThreadRoots(RootVisitor* visitor) { java_vm_->VisitRoots(visitor); sentinel_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal)); pre_allocated_OutOfMemoryError_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal)); pre_allocated_NoClassDefFoundError_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal)); verifier::MethodVerifier::VisitStaticRoots(visitor); VisitTransactionRoots(visitor); } void Runtime::VisitNonConcurrentRoots(RootVisitor* visitor) { thread_list_->VisitRoots(visitor); VisitNonThreadRoots(visitor); } void Runtime::VisitThreadRoots(RootVisitor* visitor) { thread_list_->VisitRoots(visitor); } size_t Runtime::FlipThreadRoots(Closure* thread_flip_visitor, Closure* flip_callback, gc::collector::GarbageCollector* collector) { return thread_list_->FlipThreadRoots(thread_flip_visitor, flip_callback, collector); } void Runtime::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) { VisitNonConcurrentRoots(visitor); VisitConcurrentRoots(visitor, flags); } void Runtime::VisitImageRoots(RootVisitor* visitor) { for (auto* space : GetHeap()->GetContinuousSpaces()) { if (space->IsImageSpace()) { auto* image_space = space->AsImageSpace(); const auto& image_header = image_space->GetImageHeader(); for (size_t i = 0; i < ImageHeader::kImageRootsMax; ++i) { auto* obj = image_header.GetImageRoot(static_cast(i)); if (obj != nullptr) { auto* after_obj = obj; visitor->VisitRoot(&after_obj, RootInfo(kRootStickyClass)); CHECK_EQ(after_obj, obj); } } } } } ArtMethod* Runtime::CreateImtConflictMethod() { auto* method = Runtime::Current()->GetClassLinker()->CreateRuntimeMethod(); // When compiling, the code pointer will get set later when the image is loaded. if (IsAotCompiler()) { size_t pointer_size = GetInstructionSetPointerSize(instruction_set_); method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size); } else { method->SetEntryPointFromQuickCompiledCode(GetQuickImtConflictStub()); } return method; } void Runtime::SetImtConflictMethod(ArtMethod* method) { CHECK(method != nullptr); CHECK(method->IsRuntimeMethod()); imt_conflict_method_ = method; } ArtMethod* Runtime::CreateResolutionMethod() { auto* method = Runtime::Current()->GetClassLinker()->CreateRuntimeMethod(); // When compiling, the code pointer will get set later when the image is loaded. if (IsAotCompiler()) { size_t pointer_size = GetInstructionSetPointerSize(instruction_set_); method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size); } else { method->SetEntryPointFromQuickCompiledCode(GetQuickResolutionStub()); } return method; } ArtMethod* Runtime::CreateCalleeSaveMethod() { auto* method = Runtime::Current()->GetClassLinker()->CreateRuntimeMethod(); size_t pointer_size = GetInstructionSetPointerSize(instruction_set_); method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size); DCHECK_NE(instruction_set_, kNone); DCHECK(method->IsRuntimeMethod()); return method; } void Runtime::DisallowNewSystemWeaks() { monitor_list_->DisallowNewMonitors(); intern_table_->DisallowNewInterns(); java_vm_->DisallowNewWeakGlobals(); } void Runtime::AllowNewSystemWeaks() { monitor_list_->AllowNewMonitors(); intern_table_->AllowNewInterns(); java_vm_->AllowNewWeakGlobals(); } void Runtime::EnsureNewSystemWeaksDisallowed() { // Lock and unlock the system weak locks once to ensure that no // threads are still in the middle of adding new system weaks. monitor_list_->EnsureNewMonitorsDisallowed(); intern_table_->EnsureNewInternsDisallowed(); java_vm_->EnsureNewWeakGlobalsDisallowed(); } void Runtime::SetInstructionSet(InstructionSet instruction_set) { instruction_set_ = instruction_set; if ((instruction_set_ == kThumb2) || (instruction_set_ == kArm)) { for (int i = 0; i != kLastCalleeSaveType; ++i) { CalleeSaveType type = static_cast(i); callee_save_method_frame_infos_[i] = arm::ArmCalleeSaveMethodFrameInfo(type); } } else if (instruction_set_ == kMips) { for (int i = 0; i != kLastCalleeSaveType; ++i) { CalleeSaveType type = static_cast(i); callee_save_method_frame_infos_[i] = mips::MipsCalleeSaveMethodFrameInfo(type); } } else if (instruction_set_ == kMips64) { for (int i = 0; i != kLastCalleeSaveType; ++i) { CalleeSaveType type = static_cast(i); callee_save_method_frame_infos_[i] = mips64::Mips64CalleeSaveMethodFrameInfo(type); } } else if (instruction_set_ == kX86) { for (int i = 0; i != kLastCalleeSaveType; ++i) { CalleeSaveType type = static_cast(i); callee_save_method_frame_infos_[i] = x86::X86CalleeSaveMethodFrameInfo(type); } } else if (instruction_set_ == kX86_64) { for (int i = 0; i != kLastCalleeSaveType; ++i) { CalleeSaveType type = static_cast(i); callee_save_method_frame_infos_[i] = x86_64::X86_64CalleeSaveMethodFrameInfo(type); } } else if (instruction_set_ == kArm64) { for (int i = 0; i != kLastCalleeSaveType; ++i) { CalleeSaveType type = static_cast(i); callee_save_method_frame_infos_[i] = arm64::Arm64CalleeSaveMethodFrameInfo(type); } } else { UNIMPLEMENTED(FATAL) << instruction_set_; } } void Runtime::SetCalleeSaveMethod(ArtMethod* method, CalleeSaveType type) { DCHECK_LT(static_cast(type), static_cast(kLastCalleeSaveType)); CHECK(method != nullptr); callee_save_methods_[type] = reinterpret_cast(method); } void Runtime::StartProfiler(const char* profile_output_filename) { profile_output_filename_ = profile_output_filename; profiler_started_ = BackgroundMethodSamplingProfiler::Start(profile_output_filename_, profiler_options_); } // Transaction support. void Runtime::EnterTransactionMode(Transaction* transaction) { DCHECK(IsAotCompiler()); DCHECK(transaction != nullptr); DCHECK(!IsActiveTransaction()); preinitialization_transaction_ = transaction; } void Runtime::ExitTransactionMode() { DCHECK(IsAotCompiler()); DCHECK(IsActiveTransaction()); preinitialization_transaction_ = nullptr; } bool Runtime::IsTransactionAborted() const { if (!IsActiveTransaction()) { return false; } else { DCHECK(IsAotCompiler()); return preinitialization_transaction_->IsAborted(); } } void Runtime::AbortTransactionAndThrowAbortError(Thread* self, const std::string& abort_message) { DCHECK(IsAotCompiler()); DCHECK(IsActiveTransaction()); // Throwing an exception may cause its class initialization. If we mark the transaction // aborted before that, we may warn with a false alarm. Throwing the exception before // marking the transaction aborted avoids that. preinitialization_transaction_->ThrowAbortError(self, &abort_message); preinitialization_transaction_->Abort(abort_message); } void Runtime::ThrowTransactionAbortError(Thread* self) { DCHECK(IsAotCompiler()); DCHECK(IsActiveTransaction()); // Passing nullptr means we rethrow an exception with the earlier transaction abort message. preinitialization_transaction_->ThrowAbortError(self, nullptr); } void Runtime::RecordWriteFieldBoolean(mirror::Object* obj, MemberOffset field_offset, uint8_t value, bool is_volatile) const { DCHECK(IsAotCompiler()); DCHECK(IsActiveTransaction()); preinitialization_transaction_->RecordWriteFieldBoolean(obj, field_offset, value, is_volatile); } void Runtime::RecordWriteFieldByte(mirror::Object* obj, MemberOffset field_offset, int8_t value, bool is_volatile) const { DCHECK(IsAotCompiler()); DCHECK(IsActiveTransaction()); preinitialization_transaction_->RecordWriteFieldByte(obj, field_offset, value, is_volatile); } void Runtime::RecordWriteFieldChar(mirror::Object* obj, MemberOffset field_offset, uint16_t value, bool is_volatile) const { DCHECK(IsAotCompiler()); DCHECK(IsActiveTransaction()); preinitialization_transaction_->RecordWriteFieldChar(obj, field_offset, value, is_volatile); } void Runtime::RecordWriteFieldShort(mirror::Object* obj, MemberOffset field_offset, int16_t value, bool is_volatile) const { DCHECK(IsAotCompiler()); DCHECK(IsActiveTransaction()); preinitialization_transaction_->RecordWriteFieldShort(obj, field_offset, value, is_volatile); } void Runtime::RecordWriteField32(mirror::Object* obj, MemberOffset field_offset, uint32_t value, bool is_volatile) const { DCHECK(IsAotCompiler()); DCHECK(IsActiveTransaction()); preinitialization_transaction_->RecordWriteField32(obj, field_offset, value, is_volatile); } void Runtime::RecordWriteField64(mirror::Object* obj, MemberOffset field_offset, uint64_t value, bool is_volatile) const { DCHECK(IsAotCompiler()); DCHECK(IsActiveTransaction()); preinitialization_transaction_->RecordWriteField64(obj, field_offset, value, is_volatile); } void Runtime::RecordWriteFieldReference(mirror::Object* obj, MemberOffset field_offset, mirror::Object* value, bool is_volatile) const { DCHECK(IsAotCompiler()); DCHECK(IsActiveTransaction()); preinitialization_transaction_->RecordWriteFieldReference(obj, field_offset, value, is_volatile); } void Runtime::RecordWriteArray(mirror::Array* array, size_t index, uint64_t value) const { DCHECK(IsAotCompiler()); DCHECK(IsActiveTransaction()); preinitialization_transaction_->RecordWriteArray(array, index, value); } void Runtime::RecordStrongStringInsertion(mirror::String* s) const { DCHECK(IsAotCompiler()); DCHECK(IsActiveTransaction()); preinitialization_transaction_->RecordStrongStringInsertion(s); } void Runtime::RecordWeakStringInsertion(mirror::String* s) const { DCHECK(IsAotCompiler()); DCHECK(IsActiveTransaction()); preinitialization_transaction_->RecordWeakStringInsertion(s); } void Runtime::RecordStrongStringRemoval(mirror::String* s) const { DCHECK(IsAotCompiler()); DCHECK(IsActiveTransaction()); preinitialization_transaction_->RecordStrongStringRemoval(s); } void Runtime::RecordWeakStringRemoval(mirror::String* s) const { DCHECK(IsAotCompiler()); DCHECK(IsActiveTransaction()); preinitialization_transaction_->RecordWeakStringRemoval(s); } void Runtime::SetFaultMessage(const std::string& message) { MutexLock mu(Thread::Current(), fault_message_lock_); fault_message_ = message; } void Runtime::AddCurrentRuntimeFeaturesAsDex2OatArguments(std::vector* argv) const { if (GetInstrumentation()->InterpretOnly() || UseJit()) { argv->push_back("--compiler-filter=interpret-only"); } // Make the dex2oat instruction set match that of the launching runtime. If we have multiple // architecture support, dex2oat may be compiled as a different instruction-set than that // currently being executed. std::string instruction_set("--instruction-set="); instruction_set += GetInstructionSetString(kRuntimeISA); argv->push_back(instruction_set); std::unique_ptr features(InstructionSetFeatures::FromCppDefines()); std::string feature_string("--instruction-set-features="); feature_string += features->GetFeatureString(); argv->push_back(feature_string); } void Runtime::UpdateProfilerState(int state) { VLOG(profiler) << "Profiler state updated to " << state; } void Runtime::CreateJit() { CHECK(!IsAotCompiler()); if (GetInstrumentation()->IsForcedInterpretOnly()) { // Don't create JIT if forced interpret only. return; } std::string error_msg; jit_.reset(jit::Jit::Create(jit_options_.get(), &error_msg)); if (jit_.get() != nullptr) { compiler_callbacks_ = jit_->GetCompilerCallbacks(); jit_->CreateInstrumentationCache(jit_options_->GetCompileThreshold()); jit_->CreateThreadPool(); } else { LOG(WARNING) << "Failed to create JIT " << error_msg; } } bool Runtime::CanRelocate() const { return !IsAotCompiler() || compiler_callbacks_->IsRelocationPossible(); } bool Runtime::IsCompilingBootImage() const { return IsCompiler() && compiler_callbacks_->IsBootImage(); } void Runtime::SetResolutionMethod(ArtMethod* method) { CHECK(method != nullptr); CHECK(method->IsRuntimeMethod()) << method; resolution_method_ = method; } void Runtime::SetImtUnimplementedMethod(ArtMethod* method) { CHECK(method != nullptr); CHECK(method->IsRuntimeMethod()); imt_unimplemented_method_ = method; } } // namespace art