/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "runtime.h" // sys/mount.h has to come before linux/fs.h due to redefinition of MS_RDONLY, MS_BIND, etc #include #ifdef __linux__ #include #endif #include #include #include #include #include #include #include #include #include #include "arch/arm/quick_method_frame_info_arm.h" #include "arch/arm/registers_arm.h" #include "arch/arm64/quick_method_frame_info_arm64.h" #include "arch/arm64/registers_arm64.h" #include "arch/mips/quick_method_frame_info_mips.h" #include "arch/mips/registers_mips.h" #include "arch/x86/quick_method_frame_info_x86.h" #include "arch/x86/registers_x86.h" #include "arch/x86_64/quick_method_frame_info_x86_64.h" #include "arch/x86_64/registers_x86_64.h" #include "atomic.h" #include "class_linker.h" #include "debugger.h" #include "fault_handler.h" #include "gc/accounting/card_table-inl.h" #include "gc/heap.h" #include "gc/space/space.h" #include "image.h" #include "instrumentation.h" #include "intern_table.h" #include "jni_internal.h" #include "mirror/art_field-inl.h" #include "mirror/art_method-inl.h" #include "mirror/array.h" #include "mirror/class-inl.h" #include "mirror/class_loader.h" #include "mirror/stack_trace_element.h" #include "mirror/throwable.h" #include "monitor.h" #include "parsed_options.h" #include "oat_file.h" #include "quick/quick_method_frame_info.h" #include "reflection.h" #include "ScopedLocalRef.h" #include "scoped_thread_state_change.h" #include "signal_catcher.h" #include "signal_set.h" #include "handle_scope-inl.h" #include "thread.h" #include "thread_list.h" #include "trace.h" #include "transaction.h" #include "profiler.h" #include "verifier/method_verifier.h" #include "well_known_classes.h" #include "JniConstants.h" // Last to avoid LOG redefinition in ics-mr1-plus-art. #ifdef HAVE_ANDROID_OS #include "cutils/properties.h" #endif namespace art { static constexpr bool kEnableJavaStackTraceHandler = true; const char* Runtime::kDefaultInstructionSetFeatures = STRINGIFY(ART_DEFAULT_INSTRUCTION_SET_FEATURES); Runtime* Runtime::instance_ = NULL; Runtime::Runtime() : pre_allocated_OutOfMemoryError_(nullptr), resolution_method_(nullptr), imt_conflict_method_(nullptr), default_imt_(nullptr), instruction_set_(kNone), compiler_callbacks_(nullptr), is_zygote_(false), is_concurrent_gc_enabled_(true), is_explicit_gc_disabled_(false), default_stack_size_(0), heap_(nullptr), max_spins_before_thin_lock_inflation_(Monitor::kDefaultMaxSpinsBeforeThinLockInflation), monitor_list_(nullptr), monitor_pool_(nullptr), thread_list_(nullptr), intern_table_(nullptr), class_linker_(nullptr), signal_catcher_(nullptr), java_vm_(nullptr), fault_message_lock_("Fault message lock"), fault_message_(""), method_verifier_lock_("Method verifiers lock"), threads_being_born_(0), shutdown_cond_(new ConditionVariable("Runtime shutdown", *Locks::runtime_shutdown_lock_)), shutting_down_(false), shutting_down_started_(false), started_(false), finished_starting_(false), vfprintf_(nullptr), exit_(nullptr), abort_(nullptr), stats_enabled_(false), running_on_valgrind_(RUNNING_ON_VALGRIND > 0), profiler_started_(false), method_trace_(false), method_trace_file_size_(0), instrumentation_(), use_compile_time_class_path_(false), main_thread_group_(nullptr), system_thread_group_(nullptr), system_class_loader_(nullptr), dump_gc_performance_on_shutdown_(false), preinitialization_transaction_(nullptr), null_pointer_handler_(nullptr), suspend_handler_(nullptr), stack_overflow_handler_(nullptr), verify_(false), target_sdk_version_(0) { for (int i = 0; i < Runtime::kLastCalleeSaveType; i++) { callee_save_methods_[i] = nullptr; } } Runtime::~Runtime() { if (method_trace_ && Thread::Current() == nullptr) { // We need a current thread to shutdown method tracing: re-attach it now. JNIEnv* unused_env; if (GetJavaVM()->AttachCurrentThread(&unused_env, nullptr) != JNI_OK) { LOG(ERROR) << "Could not attach current thread before runtime shutdown."; } } if (dump_gc_performance_on_shutdown_) { // This can't be called from the Heap destructor below because it // could call RosAlloc::InspectAll() which needs the thread_list // to be still alive. heap_->DumpGcPerformanceInfo(LOG(INFO)); } Thread* self = Thread::Current(); { MutexLock mu(self, *Locks::runtime_shutdown_lock_); shutting_down_started_ = true; while (threads_being_born_ > 0) { shutdown_cond_->Wait(self); } shutting_down_ = true; } // Shut down background profiler before the runtime exits. if (profiler_started_) { BackgroundMethodSamplingProfiler::Shutdown(); } Trace::Shutdown(); // Make sure to let the GC complete if it is running. heap_->WaitForGcToComplete(gc::kGcCauseBackground, self); heap_->DeleteThreadPool(); // Make sure our internal threads are dead before we start tearing down things they're using. Dbg::StopJdwp(); delete signal_catcher_; // Make sure all other non-daemon threads have terminated, and all daemon threads are suspended. delete thread_list_; delete monitor_list_; delete monitor_pool_; delete class_linker_; delete heap_; delete intern_table_; delete java_vm_; Thread::Shutdown(); QuasiAtomic::Shutdown(); verifier::MethodVerifier::Shutdown(); // TODO: acquire a static mutex on Runtime to avoid racing. CHECK(instance_ == nullptr || instance_ == this); instance_ = nullptr; delete null_pointer_handler_; delete suspend_handler_; delete stack_overflow_handler_; } struct AbortState { void Dump(std::ostream& os) NO_THREAD_SAFETY_ANALYSIS { if (gAborting > 1) { os << "Runtime aborting --- recursively, so no thread-specific detail!\n"; return; } gAborting++; os << "Runtime aborting...\n"; if (Runtime::Current() == NULL) { os << "(Runtime does not yet exist!)\n"; return; } Thread* self = Thread::Current(); if (self == nullptr) { os << "(Aborting thread was not attached to runtime!)\n"; DumpKernelStack(os, GetTid(), " kernel: ", false); DumpNativeStack(os, GetTid(), " native: ", nullptr); } else { os << "Aborting thread:\n"; if (Locks::mutator_lock_->IsExclusiveHeld(self) || Locks::mutator_lock_->IsSharedHeld(self)) { DumpThread(os, self); } else { if (Locks::mutator_lock_->SharedTryLock(self)) { DumpThread(os, self); Locks::mutator_lock_->SharedUnlock(self); } } } DumpAllThreads(os, self); } void DumpThread(std::ostream& os, Thread* self) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { self->Dump(os); if (self->IsExceptionPending()) { ThrowLocation throw_location; mirror::Throwable* exception = self->GetException(&throw_location); os << "Pending exception " << PrettyTypeOf(exception) << " thrown by '" << throw_location.Dump() << "'\n" << exception->Dump(); } } void DumpAllThreads(std::ostream& os, Thread* self) NO_THREAD_SAFETY_ANALYSIS { Runtime* runtime = Runtime::Current(); if (runtime != nullptr) { ThreadList* thread_list = runtime->GetThreadList(); if (thread_list != nullptr) { bool tll_already_held = Locks::thread_list_lock_->IsExclusiveHeld(self); bool ml_already_held = Locks::mutator_lock_->IsSharedHeld(self); if (!tll_already_held || !ml_already_held) { os << "Dumping all threads without appropriate locks held:" << (!tll_already_held ? " thread list lock" : "") << (!ml_already_held ? " mutator lock" : "") << "\n"; } os << "All threads:\n"; thread_list->DumpLocked(os); } } } }; void Runtime::Abort() { gAborting++; // set before taking any locks // Ensure that we don't have multiple threads trying to abort at once, // which would result in significantly worse diagnostics. MutexLock mu(Thread::Current(), *Locks::abort_lock_); // Get any pending output out of the way. fflush(NULL); // Many people have difficulty distinguish aborts from crashes, // so be explicit. AbortState state; LOG(INTERNAL_FATAL) << Dumpable(state); // Call the abort hook if we have one. if (Runtime::Current() != NULL && Runtime::Current()->abort_ != NULL) { LOG(INTERNAL_FATAL) << "Calling abort hook..."; Runtime::Current()->abort_(); // notreached LOG(INTERNAL_FATAL) << "Unexpectedly returned from abort hook!"; } #if defined(__GLIBC__) // TODO: we ought to be able to use pthread_kill(3) here (or abort(3), // which POSIX defines in terms of raise(3), which POSIX defines in terms // of pthread_kill(3)). On Linux, though, libcorkscrew can't unwind through // libpthread, which means the stacks we dump would be useless. Calling // tgkill(2) directly avoids that. syscall(__NR_tgkill, getpid(), GetTid(), SIGABRT); // TODO: LLVM installs it's own SIGABRT handler so exit to be safe... Can we disable that in LLVM? // If not, we could use sigaction(3) before calling tgkill(2) and lose this call to exit(3). exit(1); #else abort(); #endif // notreached } void Runtime::PreZygoteFork() { heap_->PreZygoteFork(); } void Runtime::CallExitHook(jint status) { if (exit_ != NULL) { ScopedThreadStateChange tsc(Thread::Current(), kNative); exit_(status); LOG(WARNING) << "Exit hook returned instead of exiting!"; } } void Runtime::SweepSystemWeaks(IsMarkedCallback* visitor, void* arg) { GetInternTable()->SweepInternTableWeaks(visitor, arg); GetMonitorList()->SweepMonitorList(visitor, arg); GetJavaVM()->SweepJniWeakGlobals(visitor, arg); } bool Runtime::Create(const Options& options, bool ignore_unrecognized) { // TODO: acquire a static mutex on Runtime to avoid racing. if (Runtime::instance_ != NULL) { return false; } InitLogging(NULL); // Calls Locks::Init() as a side effect. instance_ = new Runtime; if (!instance_->Init(options, ignore_unrecognized)) { delete instance_; instance_ = NULL; return false; } return true; } jobject CreateSystemClassLoader() { if (Runtime::Current()->UseCompileTimeClassPath()) { return NULL; } ScopedObjectAccess soa(Thread::Current()); ClassLinker* cl = Runtime::Current()->GetClassLinker(); StackHandleScope<3> hs(soa.Self()); Handle class_loader_class( hs.NewHandle(soa.Decode(WellKnownClasses::java_lang_ClassLoader))); CHECK(cl->EnsureInitialized(class_loader_class, true, true)); mirror::ArtMethod* getSystemClassLoader = class_loader_class->FindDirectMethod("getSystemClassLoader", "()Ljava/lang/ClassLoader;"); CHECK(getSystemClassLoader != NULL); JValue result = InvokeWithJValues(soa, nullptr, soa.EncodeMethod(getSystemClassLoader), nullptr); Handle class_loader( hs.NewHandle(down_cast(result.GetL()))); CHECK(class_loader.Get() != nullptr); JNIEnv* env = soa.Self()->GetJniEnv(); ScopedLocalRef system_class_loader(env, soa.AddLocalReference(class_loader.Get())); CHECK(system_class_loader.get() != nullptr); soa.Self()->SetClassLoaderOverride(class_loader.Get()); Handle thread_class( hs.NewHandle(soa.Decode(WellKnownClasses::java_lang_Thread))); CHECK(cl->EnsureInitialized(thread_class, true, true)); mirror::ArtField* contextClassLoader = thread_class->FindDeclaredInstanceField("contextClassLoader", "Ljava/lang/ClassLoader;"); CHECK(contextClassLoader != NULL); // We can't run in a transaction yet. contextClassLoader->SetObject(soa.Self()->GetPeer(), class_loader.Get()); return env->NewGlobalRef(system_class_loader.get()); } std::string Runtime::GetCompilerExecutable() const { if (!compiler_executable_.empty()) { return compiler_executable_; } std::string compiler_executable(GetAndroidRoot()); compiler_executable += (kIsDebugBuild ? "/bin/dex2oatd" : "/bin/dex2oat"); return compiler_executable; } bool Runtime::Start() { VLOG(startup) << "Runtime::Start entering"; // Restore main thread state to kNative as expected by native code. Thread* self = Thread::Current(); self->TransitionFromRunnableToSuspended(kNative); started_ = true; // InitNativeMethods needs to be after started_ so that the classes // it touches will have methods linked to the oat file if necessary. InitNativeMethods(); // Initialize well known thread group values that may be accessed threads while attaching. InitThreadGroups(self); Thread::FinishStartup(); if (is_zygote_) { if (!InitZygote()) { return false; } } else { DidForkFromZygote(); } StartDaemonThreads(); system_class_loader_ = CreateSystemClassLoader(); { ScopedObjectAccess soa(self); self->GetJniEnv()->locals.AssertEmpty(); } VLOG(startup) << "Runtime::Start exiting"; finished_starting_ = true; if (profiler_options_.IsEnabled() && !profile_output_filename_.empty()) { // User has asked for a profile using -Xenable-profiler. // Create the profile file if it doesn't exist. int fd = open(profile_output_filename_.c_str(), O_RDWR|O_CREAT|O_EXCL, 0660); if (fd >= 0) { close(fd); } else if (errno != EEXIST) { LOG(INFO) << "Failed to access the profile file. Profiler disabled."; return true; } StartProfiler(profile_output_filename_.c_str()); } return true; } void Runtime::EndThreadBirth() EXCLUSIVE_LOCKS_REQUIRED(Locks::runtime_shutdown_lock_) { DCHECK_GT(threads_being_born_, 0U); threads_being_born_--; if (shutting_down_started_ && threads_being_born_ == 0) { shutdown_cond_->Broadcast(Thread::Current()); } } // Do zygote-mode-only initialization. bool Runtime::InitZygote() { #ifdef __linux__ // zygote goes into its own process group setpgid(0, 0); // See storage config details at http://source.android.com/tech/storage/ // Create private mount namespace shared by all children if (unshare(CLONE_NEWNS) == -1) { PLOG(WARNING) << "Failed to unshare()"; return false; } // Mark rootfs as being a slave so that changes from default // namespace only flow into our children. if (mount("rootfs", "/", NULL, (MS_SLAVE | MS_REC), NULL) == -1) { PLOG(WARNING) << "Failed to mount() rootfs as MS_SLAVE"; return false; } // Create a staging tmpfs that is shared by our children; they will // bind mount storage into their respective private namespaces, which // are isolated from each other. const char* target_base = getenv("EMULATED_STORAGE_TARGET"); if (target_base != NULL) { if (mount("tmpfs", target_base, "tmpfs", MS_NOSUID | MS_NODEV, "uid=0,gid=1028,mode=0751") == -1) { LOG(WARNING) << "Failed to mount tmpfs to " << target_base; return false; } } return true; #else UNIMPLEMENTED(FATAL); return false; #endif } void Runtime::DidForkFromZygote() { is_zygote_ = false; // Create the thread pool. heap_->CreateThreadPool(); StartSignalCatcher(); // Start the JDWP thread. If the command-line debugger flags specified "suspend=y", // this will pause the runtime, so we probably want this to come last. Dbg::StartJdwp(); } void Runtime::StartSignalCatcher() { if (!is_zygote_) { signal_catcher_ = new SignalCatcher(stack_trace_file_); } } bool Runtime::IsShuttingDown(Thread* self) { MutexLock mu(self, *Locks::runtime_shutdown_lock_); return IsShuttingDownLocked(); } void Runtime::StartDaemonThreads() { VLOG(startup) << "Runtime::StartDaemonThreads entering"; Thread* self = Thread::Current(); // Must be in the kNative state for calling native methods. CHECK_EQ(self->GetState(), kNative); JNIEnv* env = self->GetJniEnv(); env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons, WellKnownClasses::java_lang_Daemons_start); if (env->ExceptionCheck()) { env->ExceptionDescribe(); LOG(FATAL) << "Error starting java.lang.Daemons"; } VLOG(startup) << "Runtime::StartDaemonThreads exiting"; } bool Runtime::Init(const Options& raw_options, bool ignore_unrecognized) { CHECK_EQ(sysconf(_SC_PAGE_SIZE), kPageSize); std::unique_ptr options(ParsedOptions::Create(raw_options, ignore_unrecognized)); if (options.get() == NULL) { LOG(ERROR) << "Failed to parse options"; return false; } VLOG(startup) << "Runtime::Init -verbose:startup enabled"; QuasiAtomic::Startup(); Monitor::Init(options->lock_profiling_threshold_, options->hook_is_sensitive_thread_); boot_class_path_string_ = options->boot_class_path_string_; class_path_string_ = options->class_path_string_; properties_ = options->properties_; compiler_callbacks_ = options->compiler_callbacks_; is_zygote_ = options->is_zygote_; is_explicit_gc_disabled_ = options->is_explicit_gc_disabled_; vfprintf_ = options->hook_vfprintf_; exit_ = options->hook_exit_; abort_ = options->hook_abort_; default_stack_size_ = options->stack_size_; stack_trace_file_ = options->stack_trace_file_; compiler_executable_ = options->compiler_executable_; compiler_options_ = options->compiler_options_; image_compiler_options_ = options->image_compiler_options_; max_spins_before_thin_lock_inflation_ = options->max_spins_before_thin_lock_inflation_; monitor_list_ = new MonitorList; monitor_pool_ = MonitorPool::Create(); thread_list_ = new ThreadList; intern_table_ = new InternTable; verify_ = options->verify_; if (options->interpreter_only_) { GetInstrumentation()->ForceInterpretOnly(); } bool implicit_checks_supported = false; switch (kRuntimeISA) { case kArm: case kThumb2: implicit_checks_supported = true; break; default: break; } if (!options->interpreter_only_ && implicit_checks_supported && (options->explicit_checks_ != (ParsedOptions::kExplicitSuspendCheck | ParsedOptions::kExplicitNullCheck | ParsedOptions::kExplicitStackOverflowCheck) || kEnableJavaStackTraceHandler)) { fault_manager.Init(); // These need to be in a specific order. The null point check handler must be // after the suspend check and stack overflow check handlers. if ((options->explicit_checks_ & ParsedOptions::kExplicitSuspendCheck) == 0) { suspend_handler_ = new SuspensionHandler(&fault_manager); } if ((options->explicit_checks_ & ParsedOptions::kExplicitStackOverflowCheck) == 0) { stack_overflow_handler_ = new StackOverflowHandler(&fault_manager); } if ((options->explicit_checks_ & ParsedOptions::kExplicitNullCheck) == 0) { null_pointer_handler_ = new NullPointerHandler(&fault_manager); } if (kEnableJavaStackTraceHandler) { new JavaStackTraceHandler(&fault_manager); } } heap_ = new gc::Heap(options->heap_initial_size_, options->heap_growth_limit_, options->heap_min_free_, options->heap_max_free_, options->heap_target_utilization_, options->foreground_heap_growth_multiplier_, options->heap_maximum_size_, options->image_, options->image_isa_, options->collector_type_, options->background_collector_type_, options->parallel_gc_threads_, options->conc_gc_threads_, options->low_memory_mode_, options->long_pause_log_threshold_, options->long_gc_log_threshold_, options->ignore_max_footprint_, options->use_tlab_, options->verify_pre_gc_heap_, options->verify_pre_sweeping_heap_, options->verify_post_gc_heap_, options->verify_pre_gc_rosalloc_, options->verify_pre_sweeping_rosalloc_, options->verify_post_gc_rosalloc_); dump_gc_performance_on_shutdown_ = options->dump_gc_performance_on_shutdown_; BlockSignals(); InitPlatformSignalHandlers(); java_vm_ = new JavaVMExt(this, options.get()); Thread::Startup(); // ClassLinker needs an attached thread, but we can't fully attach a thread without creating // objects. We can't supply a thread group yet; it will be fixed later. Since we are the main // thread, we do not get a java peer. Thread* self = Thread::Attach("main", false, NULL, false); CHECK_EQ(self->GetThreadId(), ThreadList::kMainThreadId); CHECK(self != NULL); // Set us to runnable so tools using a runtime can allocate and GC by default self->TransitionFromSuspendedToRunnable(); // Now we're attached, we can take the heap locks and validate the heap. GetHeap()->EnableObjectValidation(); CHECK_GE(GetHeap()->GetContinuousSpaces().size(), 1U); class_linker_ = new ClassLinker(intern_table_); if (GetHeap()->HasImageSpace()) { class_linker_->InitFromImage(); if (kIsDebugBuild) { GetHeap()->GetImageSpace()->VerifyImageAllocations(); } } else { CHECK(options->boot_class_path_ != NULL); CHECK_NE(options->boot_class_path_->size(), 0U); class_linker_->InitFromCompiler(*options->boot_class_path_); } CHECK(class_linker_ != NULL); verifier::MethodVerifier::Init(); method_trace_ = options->method_trace_; method_trace_file_ = options->method_trace_file_; method_trace_file_size_ = options->method_trace_file_size_; profile_output_filename_ = options->profile_output_filename_; profiler_options_ = options->profiler_options_; // TODO: move this to just be an Trace::Start argument Trace::SetDefaultClockSource(options->profile_clock_source_); if (options->method_trace_) { ScopedThreadStateChange tsc(self, kWaitingForMethodTracingStart); Trace::Start(options->method_trace_file_.c_str(), -1, options->method_trace_file_size_, 0, false, false, 0); } // Pre-allocate an OutOfMemoryError for the double-OOME case. self->ThrowNewException(ThrowLocation(), "Ljava/lang/OutOfMemoryError;", "OutOfMemoryError thrown while trying to throw OutOfMemoryError; " "no stack available"); pre_allocated_OutOfMemoryError_ = self->GetException(NULL); self->ClearException(); VLOG(startup) << "Runtime::Init exiting"; return true; } void Runtime::InitNativeMethods() { VLOG(startup) << "Runtime::InitNativeMethods entering"; Thread* self = Thread::Current(); JNIEnv* env = self->GetJniEnv(); // Must be in the kNative state for calling native methods (JNI_OnLoad code). CHECK_EQ(self->GetState(), kNative); // First set up JniConstants, which is used by both the runtime's built-in native // methods and libcore. JniConstants::init(env); WellKnownClasses::Init(env); // Then set up the native methods provided by the runtime itself. RegisterRuntimeNativeMethods(env); // Then set up libcore, which is just a regular JNI library with a regular JNI_OnLoad. // Most JNI libraries can just use System.loadLibrary, but libcore can't because it's // the library that implements System.loadLibrary! { std::string mapped_name(StringPrintf(OS_SHARED_LIB_FORMAT_STR, "javacore")); std::string reason; self->TransitionFromSuspendedToRunnable(); StackHandleScope<1> hs(self); auto class_loader(hs.NewHandle(nullptr)); if (!instance_->java_vm_->LoadNativeLibrary(mapped_name, class_loader, &reason)) { LOG(FATAL) << "LoadNativeLibrary failed for \"" << mapped_name << "\": " << reason; } self->TransitionFromRunnableToSuspended(kNative); } // Initialize well known classes that may invoke runtime native methods. WellKnownClasses::LateInit(env); VLOG(startup) << "Runtime::InitNativeMethods exiting"; } void Runtime::InitThreadGroups(Thread* self) { JNIEnvExt* env = self->GetJniEnv(); ScopedJniEnvLocalRefState env_state(env); main_thread_group_ = env->NewGlobalRef(env->GetStaticObjectField( WellKnownClasses::java_lang_ThreadGroup, WellKnownClasses::java_lang_ThreadGroup_mainThreadGroup)); CHECK(main_thread_group_ != NULL || IsCompiler()); system_thread_group_ = env->NewGlobalRef(env->GetStaticObjectField( WellKnownClasses::java_lang_ThreadGroup, WellKnownClasses::java_lang_ThreadGroup_systemThreadGroup)); CHECK(system_thread_group_ != NULL || IsCompiler()); } jobject Runtime::GetMainThreadGroup() const { CHECK(main_thread_group_ != NULL || IsCompiler()); return main_thread_group_; } jobject Runtime::GetSystemThreadGroup() const { CHECK(system_thread_group_ != NULL || IsCompiler()); return system_thread_group_; } jobject Runtime::GetSystemClassLoader() const { CHECK(system_class_loader_ != NULL || IsCompiler()); return system_class_loader_; } void Runtime::RegisterRuntimeNativeMethods(JNIEnv* env) { #define REGISTER(FN) extern void FN(JNIEnv*); FN(env) // Register Throwable first so that registration of other native methods can throw exceptions REGISTER(register_java_lang_Throwable); REGISTER(register_dalvik_system_DexFile); REGISTER(register_dalvik_system_VMDebug); REGISTER(register_dalvik_system_VMRuntime); REGISTER(register_dalvik_system_VMStack); REGISTER(register_dalvik_system_ZygoteHooks); REGISTER(register_java_lang_Class); REGISTER(register_java_lang_DexCache); REGISTER(register_java_lang_Object); REGISTER(register_java_lang_Runtime); REGISTER(register_java_lang_String); REGISTER(register_java_lang_System); REGISTER(register_java_lang_Thread); REGISTER(register_java_lang_VMClassLoader); REGISTER(register_java_lang_ref_Reference); REGISTER(register_java_lang_reflect_Array); REGISTER(register_java_lang_reflect_Constructor); REGISTER(register_java_lang_reflect_Field); REGISTER(register_java_lang_reflect_Method); REGISTER(register_java_lang_reflect_Proxy); REGISTER(register_java_util_concurrent_atomic_AtomicLong); REGISTER(register_org_apache_harmony_dalvik_ddmc_DdmServer); REGISTER(register_org_apache_harmony_dalvik_ddmc_DdmVmInternal); REGISTER(register_sun_misc_Unsafe); #undef REGISTER } void Runtime::DumpForSigQuit(std::ostream& os) { GetClassLinker()->DumpForSigQuit(os); GetInternTable()->DumpForSigQuit(os); GetJavaVM()->DumpForSigQuit(os); GetHeap()->DumpForSigQuit(os); os << "\n"; thread_list_->DumpForSigQuit(os); BaseMutex::DumpAll(os); } void Runtime::DumpLockHolders(std::ostream& os) { uint64_t mutator_lock_owner = Locks::mutator_lock_->GetExclusiveOwnerTid(); pid_t thread_list_lock_owner = GetThreadList()->GetLockOwner(); pid_t classes_lock_owner = GetClassLinker()->GetClassesLockOwner(); pid_t dex_lock_owner = GetClassLinker()->GetDexLockOwner(); if ((thread_list_lock_owner | classes_lock_owner | dex_lock_owner) != 0) { os << "Mutator lock exclusive owner tid: " << mutator_lock_owner << "\n" << "ThreadList lock owner tid: " << thread_list_lock_owner << "\n" << "ClassLinker classes lock owner tid: " << classes_lock_owner << "\n" << "ClassLinker dex lock owner tid: " << dex_lock_owner << "\n"; } } void Runtime::SetStatsEnabled(bool new_state) { if (new_state == true) { GetStats()->Clear(~0); // TODO: wouldn't it make more sense to clear _all_ threads' stats? Thread::Current()->GetStats()->Clear(~0); GetInstrumentation()->InstrumentQuickAllocEntryPoints(); } else { GetInstrumentation()->UninstrumentQuickAllocEntryPoints(); } stats_enabled_ = new_state; } void Runtime::ResetStats(int kinds) { GetStats()->Clear(kinds & 0xffff); // TODO: wouldn't it make more sense to clear _all_ threads' stats? Thread::Current()->GetStats()->Clear(kinds >> 16); } int32_t Runtime::GetStat(int kind) { RuntimeStats* stats; if (kind < (1<<16)) { stats = GetStats(); } else { stats = Thread::Current()->GetStats(); kind >>= 16; } switch (kind) { case KIND_ALLOCATED_OBJECTS: return stats->allocated_objects; case KIND_ALLOCATED_BYTES: return stats->allocated_bytes; case KIND_FREED_OBJECTS: return stats->freed_objects; case KIND_FREED_BYTES: return stats->freed_bytes; case KIND_GC_INVOCATIONS: return stats->gc_for_alloc_count; case KIND_CLASS_INIT_COUNT: return stats->class_init_count; case KIND_CLASS_INIT_TIME: // Convert ns to us, reduce to 32 bits. return static_cast(stats->class_init_time_ns / 1000); case KIND_EXT_ALLOCATED_OBJECTS: case KIND_EXT_ALLOCATED_BYTES: case KIND_EXT_FREED_OBJECTS: case KIND_EXT_FREED_BYTES: return 0; // backward compatibility default: LOG(FATAL) << "Unknown statistic " << kind; return -1; // unreachable } } void Runtime::BlockSignals() { SignalSet signals; signals.Add(SIGPIPE); // SIGQUIT is used to dump the runtime's state (including stack traces). signals.Add(SIGQUIT); // SIGUSR1 is used to initiate a GC. signals.Add(SIGUSR1); signals.Block(); } bool Runtime::AttachCurrentThread(const char* thread_name, bool as_daemon, jobject thread_group, bool create_peer) { bool success = Thread::Attach(thread_name, as_daemon, thread_group, create_peer) != NULL; if (thread_name == NULL) { LOG(WARNING) << *Thread::Current() << " attached without supplying a name"; } return success; } void Runtime::DetachCurrentThread() { Thread* self = Thread::Current(); if (self == NULL) { LOG(FATAL) << "attempting to detach thread that is not attached"; } if (self->HasManagedStack()) { LOG(FATAL) << *Thread::Current() << " attempting to detach while still running code"; } thread_list_->Unregister(self); } mirror::Throwable* Runtime::GetPreAllocatedOutOfMemoryError() const { if (pre_allocated_OutOfMemoryError_ == NULL) { LOG(ERROR) << "Failed to return pre-allocated OOME"; } return pre_allocated_OutOfMemoryError_; } void Runtime::VisitConstantRoots(RootCallback* callback, void* arg) { // Visit the classes held as static in mirror classes, these can be visited concurrently and only // need to be visited once per GC since they never change. mirror::ArtField::VisitRoots(callback, arg); mirror::ArtMethod::VisitRoots(callback, arg); mirror::Class::VisitRoots(callback, arg); mirror::StackTraceElement::VisitRoots(callback, arg); mirror::String::VisitRoots(callback, arg); mirror::Throwable::VisitRoots(callback, arg); // Visit all the primitive array types classes. mirror::PrimitiveArray::VisitRoots(callback, arg); // BooleanArray mirror::PrimitiveArray::VisitRoots(callback, arg); // ByteArray mirror::PrimitiveArray::VisitRoots(callback, arg); // CharArray mirror::PrimitiveArray::VisitRoots(callback, arg); // DoubleArray mirror::PrimitiveArray::VisitRoots(callback, arg); // FloatArray mirror::PrimitiveArray::VisitRoots(callback, arg); // IntArray mirror::PrimitiveArray::VisitRoots(callback, arg); // LongArray mirror::PrimitiveArray::VisitRoots(callback, arg); // ShortArray } void Runtime::VisitConcurrentRoots(RootCallback* callback, void* arg, VisitRootFlags flags) { intern_table_->VisitRoots(callback, arg, flags); class_linker_->VisitRoots(callback, arg, flags); if ((flags & kVisitRootFlagNewRoots) == 0) { // Guaranteed to have no new roots in the constant roots. VisitConstantRoots(callback, arg); } } void Runtime::VisitNonThreadRoots(RootCallback* callback, void* arg) { java_vm_->VisitRoots(callback, arg); if (pre_allocated_OutOfMemoryError_ != nullptr) { callback(reinterpret_cast(&pre_allocated_OutOfMemoryError_), arg, 0, kRootVMInternal); DCHECK(pre_allocated_OutOfMemoryError_ != nullptr); } callback(reinterpret_cast(&resolution_method_), arg, 0, kRootVMInternal); DCHECK(resolution_method_ != nullptr); if (HasImtConflictMethod()) { callback(reinterpret_cast(&imt_conflict_method_), arg, 0, kRootVMInternal); } if (HasDefaultImt()) { callback(reinterpret_cast(&default_imt_), arg, 0, kRootVMInternal); } for (int i = 0; i < Runtime::kLastCalleeSaveType; i++) { if (callee_save_methods_[i] != nullptr) { callback(reinterpret_cast(&callee_save_methods_[i]), arg, 0, kRootVMInternal); } } { MutexLock mu(Thread::Current(), method_verifier_lock_); for (verifier::MethodVerifier* verifier : method_verifiers_) { verifier->VisitRoots(callback, arg); } } if (preinitialization_transaction_ != nullptr) { preinitialization_transaction_->VisitRoots(callback, arg); } instrumentation_.VisitRoots(callback, arg); } void Runtime::VisitNonConcurrentRoots(RootCallback* callback, void* arg) { thread_list_->VisitRoots(callback, arg); VisitNonThreadRoots(callback, arg); } void Runtime::VisitRoots(RootCallback* callback, void* arg, VisitRootFlags flags) { VisitNonConcurrentRoots(callback, arg); VisitConcurrentRoots(callback, arg, flags); } mirror::ObjectArray* Runtime::CreateDefaultImt(ClassLinker* cl) { Thread* self = Thread::Current(); StackHandleScope<1> hs(self); Handle> imtable( hs.NewHandle(cl->AllocArtMethodArray(self, 64))); mirror::ArtMethod* imt_conflict_method = Runtime::Current()->GetImtConflictMethod(); for (size_t i = 0; i < static_cast(imtable->GetLength()); i++) { imtable->Set(i, imt_conflict_method); } return imtable.Get(); } mirror::ArtMethod* Runtime::CreateImtConflictMethod() { Thread* self = Thread::Current(); Runtime* runtime = Runtime::Current(); ClassLinker* class_linker = runtime->GetClassLinker(); StackHandleScope<1> hs(self); Handle method(hs.NewHandle(class_linker->AllocArtMethod(self))); method->SetDeclaringClass(mirror::ArtMethod::GetJavaLangReflectArtMethod()); // TODO: use a special method for imt conflict method saves. method->SetDexMethodIndex(DexFile::kDexNoIndex); // When compiling, the code pointer will get set later when the image is loaded. if (runtime->IsCompiler()) { method->SetEntryPointFromPortableCompiledCode(nullptr); method->SetEntryPointFromQuickCompiledCode(nullptr); } else { method->SetEntryPointFromPortableCompiledCode(GetPortableImtConflictTrampoline(class_linker)); method->SetEntryPointFromQuickCompiledCode(GetQuickImtConflictTrampoline(class_linker)); } return method.Get(); } mirror::ArtMethod* Runtime::CreateResolutionMethod() { Thread* self = Thread::Current(); Runtime* runtime = Runtime::Current(); ClassLinker* class_linker = runtime->GetClassLinker(); StackHandleScope<1> hs(self); Handle method(hs.NewHandle(class_linker->AllocArtMethod(self))); method->SetDeclaringClass(mirror::ArtMethod::GetJavaLangReflectArtMethod()); // TODO: use a special method for resolution method saves method->SetDexMethodIndex(DexFile::kDexNoIndex); // When compiling, the code pointer will get set later when the image is loaded. if (runtime->IsCompiler()) { method->SetEntryPointFromPortableCompiledCode(nullptr); method->SetEntryPointFromQuickCompiledCode(nullptr); } else { method->SetEntryPointFromPortableCompiledCode(GetPortableResolutionTrampoline(class_linker)); method->SetEntryPointFromQuickCompiledCode(GetQuickResolutionTrampoline(class_linker)); } return method.Get(); } mirror::ArtMethod* Runtime::CreateCalleeSaveMethod(CalleeSaveType type) { Thread* self = Thread::Current(); Runtime* runtime = Runtime::Current(); ClassLinker* class_linker = runtime->GetClassLinker(); StackHandleScope<1> hs(self); Handle method(hs.NewHandle(class_linker->AllocArtMethod(self))); method->SetDeclaringClass(mirror::ArtMethod::GetJavaLangReflectArtMethod()); // TODO: use a special method for callee saves method->SetDexMethodIndex(DexFile::kDexNoIndex); method->SetEntryPointFromPortableCompiledCode(nullptr); method->SetEntryPointFromQuickCompiledCode(nullptr); DCHECK_NE(instruction_set_, kNone); return method.Get(); } void Runtime::DisallowNewSystemWeaks() { monitor_list_->DisallowNewMonitors(); intern_table_->DisallowNewInterns(); java_vm_->DisallowNewWeakGlobals(); } void Runtime::AllowNewSystemWeaks() { monitor_list_->AllowNewMonitors(); intern_table_->AllowNewInterns(); java_vm_->AllowNewWeakGlobals(); } void Runtime::SetInstructionSet(InstructionSet instruction_set) { instruction_set_ = instruction_set; if ((instruction_set_ == kThumb2) || (instruction_set_ == kArm)) { for (int i = 0; i != kLastCalleeSaveType; ++i) { CalleeSaveType type = static_cast(i); callee_save_method_frame_infos_[i] = arm::ArmCalleeSaveMethodFrameInfo(type); } } else if (instruction_set_ == kMips) { for (int i = 0; i != kLastCalleeSaveType; ++i) { CalleeSaveType type = static_cast(i); callee_save_method_frame_infos_[i] = mips::MipsCalleeSaveMethodFrameInfo(type); } } else if (instruction_set_ == kX86) { for (int i = 0; i != kLastCalleeSaveType; ++i) { CalleeSaveType type = static_cast(i); callee_save_method_frame_infos_[i] = x86::X86CalleeSaveMethodFrameInfo(type); } } else if (instruction_set_ == kX86_64) { for (int i = 0; i != kLastCalleeSaveType; ++i) { CalleeSaveType type = static_cast(i); callee_save_method_frame_infos_[i] = x86_64::X86_64CalleeSaveMethodFrameInfo(type); } } else if (instruction_set_ == kArm64) { for (int i = 0; i != kLastCalleeSaveType; ++i) { CalleeSaveType type = static_cast(i); callee_save_method_frame_infos_[i] = arm64::Arm64CalleeSaveMethodFrameInfo(type); } } else { UNIMPLEMENTED(FATAL) << instruction_set_; } } void Runtime::SetCalleeSaveMethod(mirror::ArtMethod* method, CalleeSaveType type) { DCHECK_LT(static_cast(type), static_cast(kLastCalleeSaveType)); callee_save_methods_[type] = method; } const std::vector& Runtime::GetCompileTimeClassPath(jobject class_loader) { if (class_loader == NULL) { return GetClassLinker()->GetBootClassPath(); } CHECK(UseCompileTimeClassPath()); CompileTimeClassPaths::const_iterator it = compile_time_class_paths_.find(class_loader); CHECK(it != compile_time_class_paths_.end()); return it->second; } void Runtime::SetCompileTimeClassPath(jobject class_loader, std::vector& class_path) { CHECK(!IsStarted()); use_compile_time_class_path_ = true; compile_time_class_paths_.Put(class_loader, class_path); } void Runtime::AddMethodVerifier(verifier::MethodVerifier* verifier) { DCHECK(verifier != nullptr); MutexLock mu(Thread::Current(), method_verifier_lock_); method_verifiers_.insert(verifier); } void Runtime::RemoveMethodVerifier(verifier::MethodVerifier* verifier) { DCHECK(verifier != nullptr); MutexLock mu(Thread::Current(), method_verifier_lock_); auto it = method_verifiers_.find(verifier); CHECK(it != method_verifiers_.end()); method_verifiers_.erase(it); } void Runtime::StartProfiler(const char* profile_output_filename) { profile_output_filename_ = profile_output_filename; profiler_started_ = BackgroundMethodSamplingProfiler::Start(profile_output_filename_, profiler_options_); } // Transaction support. void Runtime::EnterTransactionMode(Transaction* transaction) { DCHECK(IsCompiler()); DCHECK(transaction != nullptr); DCHECK(!IsActiveTransaction()); preinitialization_transaction_ = transaction; } void Runtime::ExitTransactionMode() { DCHECK(IsCompiler()); DCHECK(IsActiveTransaction()); preinitialization_transaction_ = nullptr; } void Runtime::RecordWriteField32(mirror::Object* obj, MemberOffset field_offset, uint32_t value, bool is_volatile) const { DCHECK(IsCompiler()); DCHECK(IsActiveTransaction()); preinitialization_transaction_->RecordWriteField32(obj, field_offset, value, is_volatile); } void Runtime::RecordWriteField64(mirror::Object* obj, MemberOffset field_offset, uint64_t value, bool is_volatile) const { DCHECK(IsCompiler()); DCHECK(IsActiveTransaction()); preinitialization_transaction_->RecordWriteField64(obj, field_offset, value, is_volatile); } void Runtime::RecordWriteFieldReference(mirror::Object* obj, MemberOffset field_offset, mirror::Object* value, bool is_volatile) const { DCHECK(IsCompiler()); DCHECK(IsActiveTransaction()); preinitialization_transaction_->RecordWriteFieldReference(obj, field_offset, value, is_volatile); } void Runtime::RecordWriteArray(mirror::Array* array, size_t index, uint64_t value) const { DCHECK(IsCompiler()); DCHECK(IsActiveTransaction()); preinitialization_transaction_->RecordWriteArray(array, index, value); } void Runtime::RecordStrongStringInsertion(mirror::String* s, uint32_t hash_code) const { DCHECK(IsCompiler()); DCHECK(IsActiveTransaction()); preinitialization_transaction_->RecordStrongStringInsertion(s, hash_code); } void Runtime::RecordWeakStringInsertion(mirror::String* s, uint32_t hash_code) const { DCHECK(IsCompiler()); DCHECK(IsActiveTransaction()); preinitialization_transaction_->RecordWeakStringInsertion(s, hash_code); } void Runtime::RecordStrongStringRemoval(mirror::String* s, uint32_t hash_code) const { DCHECK(IsCompiler()); DCHECK(IsActiveTransaction()); preinitialization_transaction_->RecordStrongStringRemoval(s, hash_code); } void Runtime::RecordWeakStringRemoval(mirror::String* s, uint32_t hash_code) const { DCHECK(IsCompiler()); DCHECK(IsActiveTransaction()); preinitialization_transaction_->RecordWeakStringRemoval(s, hash_code); } void Runtime::SetFaultMessage(const std::string& message) { MutexLock mu(Thread::Current(), fault_message_lock_); fault_message_ = message; } void Runtime::AddCurrentRuntimeFeaturesAsDex2OatArguments(std::vector* argv) const { if (GetInstrumentation()->InterpretOnly()) { argv->push_back("--compiler-filter=interpret-only"); } argv->push_back("--runtime-arg"); std::string checkstr = "-implicit-checks"; int nchecks = 0; char checksep = ':'; if (!ExplicitNullChecks()) { checkstr += checksep; checksep = ','; checkstr += "null"; ++nchecks; } if (!ExplicitSuspendChecks()) { checkstr += checksep; checksep = ','; checkstr += "suspend"; ++nchecks; } if (!ExplicitStackOverflowChecks()) { checkstr += checksep; checksep = ','; checkstr += "stack"; ++nchecks; } if (nchecks == 0) { checkstr += ":none"; } argv->push_back(checkstr); // Make the dex2oat instruction set match that of the launching runtime. If we have multiple // architecture support, dex2oat may be compiled as a different instruction-set than that // currently being executed. std::string instruction_set("--instruction-set="); instruction_set += GetInstructionSetString(kRuntimeISA); argv->push_back(instruction_set); std::string features("--instruction-set-features="); features += GetDefaultInstructionSetFeatures(); argv->push_back(features); } void Runtime::UpdateProfilerState(int state) { VLOG(profiler) << "Profiler state updated to " << state; } } // namespace art