/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_STACK_H_ #define ART_RUNTIME_STACK_H_ #include #include #include "arch/instruction_set.h" #include "base/bit_utils.h" #include "dex_file.h" #include "gc_root.h" #include "mirror/object_reference.h" #include "read_barrier.h" #include "verify_object.h" namespace art { namespace mirror { class Object; } // namespace mirror class ArtMethod; class Context; class ShadowFrame; class HandleScope; class ScopedObjectAccess; class StackVisitor; class Thread; // The kind of vreg being accessed in calls to Set/GetVReg. enum VRegKind { kReferenceVReg, kIntVReg, kFloatVReg, kLongLoVReg, kLongHiVReg, kDoubleLoVReg, kDoubleHiVReg, kConstant, kImpreciseConstant, kUndefined, }; std::ostream& operator<<(std::ostream& os, const VRegKind& rhs); // A reference from the shadow stack to a MirrorType object within the Java heap. template class MANAGED StackReference : public mirror::CompressedReference { }; // ShadowFrame has 2 possible layouts: // - interpreter - separate VRegs and reference arrays. References are in the reference array. // - JNI - just VRegs, but where every VReg holds a reference. class ShadowFrame { public: // Compute size of ShadowFrame in bytes assuming it has a reference array. static size_t ComputeSize(uint32_t num_vregs) { return sizeof(ShadowFrame) + (sizeof(uint32_t) * num_vregs) + (sizeof(StackReference) * num_vregs); } // Create ShadowFrame in heap for deoptimization. static ShadowFrame* CreateDeoptimizedFrame(uint32_t num_vregs, ShadowFrame* link, ArtMethod* method, uint32_t dex_pc) { uint8_t* memory = new uint8_t[ComputeSize(num_vregs)]; return Create(num_vregs, link, method, dex_pc, memory); } // Delete a ShadowFrame allocated on the heap for deoptimization. static void DeleteDeoptimizedFrame(ShadowFrame* sf) { uint8_t* memory = reinterpret_cast(sf); delete[] memory; } // Create ShadowFrame for interpreter using provided memory. static ShadowFrame* Create(uint32_t num_vregs, ShadowFrame* link, ArtMethod* method, uint32_t dex_pc, void* memory) { ShadowFrame* sf = new (memory) ShadowFrame(num_vregs, link, method, dex_pc, true); return sf; } ~ShadowFrame() {} bool HasReferenceArray() const { return true; } uint32_t NumberOfVRegs() const { return number_of_vregs_; } uint32_t GetDexPC() const { return dex_pc_; } void SetDexPC(uint32_t dex_pc) { dex_pc_ = dex_pc; } ShadowFrame* GetLink() const { return link_; } void SetLink(ShadowFrame* frame) { DCHECK_NE(this, frame); link_ = frame; } int32_t GetVReg(size_t i) const { DCHECK_LT(i, NumberOfVRegs()); const uint32_t* vreg = &vregs_[i]; return *reinterpret_cast(vreg); } float GetVRegFloat(size_t i) const { DCHECK_LT(i, NumberOfVRegs()); // NOTE: Strict-aliasing? const uint32_t* vreg = &vregs_[i]; return *reinterpret_cast(vreg); } int64_t GetVRegLong(size_t i) const { DCHECK_LT(i, NumberOfVRegs()); const uint32_t* vreg = &vregs_[i]; // Alignment attribute required for GCC 4.8 typedef const int64_t unaligned_int64 __attribute__ ((aligned (4))); return *reinterpret_cast(vreg); } double GetVRegDouble(size_t i) const { DCHECK_LT(i, NumberOfVRegs()); const uint32_t* vreg = &vregs_[i]; // Alignment attribute required for GCC 4.8 typedef const double unaligned_double __attribute__ ((aligned (4))); return *reinterpret_cast(vreg); } template mirror::Object* GetVRegReference(size_t i) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { DCHECK_LT(i, NumberOfVRegs()); mirror::Object* ref; if (HasReferenceArray()) { ref = References()[i].AsMirrorPtr(); } else { const uint32_t* vreg_ptr = &vregs_[i]; ref = reinterpret_cast*>(vreg_ptr)->AsMirrorPtr(); } if (kUseReadBarrier) { ReadBarrier::AssertToSpaceInvariant(ref); } if (kVerifyFlags & kVerifyReads) { VerifyObject(ref); } return ref; } // Get view of vregs as range of consecutive arguments starting at i. uint32_t* GetVRegArgs(size_t i) { return &vregs_[i]; } void SetVReg(size_t i, int32_t val) { DCHECK_LT(i, NumberOfVRegs()); uint32_t* vreg = &vregs_[i]; *reinterpret_cast(vreg) = val; // This is needed for moving collectors since these can update the vreg references if they // happen to agree with references in the reference array. if (kMovingCollector && HasReferenceArray()) { References()[i].Clear(); } } void SetVRegFloat(size_t i, float val) { DCHECK_LT(i, NumberOfVRegs()); uint32_t* vreg = &vregs_[i]; *reinterpret_cast(vreg) = val; // This is needed for moving collectors since these can update the vreg references if they // happen to agree with references in the reference array. if (kMovingCollector && HasReferenceArray()) { References()[i].Clear(); } } void SetVRegLong(size_t i, int64_t val) { DCHECK_LT(i, NumberOfVRegs()); uint32_t* vreg = &vregs_[i]; // Alignment attribute required for GCC 4.8 typedef int64_t unaligned_int64 __attribute__ ((aligned (4))); *reinterpret_cast(vreg) = val; // This is needed for moving collectors since these can update the vreg references if they // happen to agree with references in the reference array. if (kMovingCollector && HasReferenceArray()) { References()[i].Clear(); References()[i + 1].Clear(); } } void SetVRegDouble(size_t i, double val) { DCHECK_LT(i, NumberOfVRegs()); uint32_t* vreg = &vregs_[i]; // Alignment attribute required for GCC 4.8 typedef double unaligned_double __attribute__ ((aligned (4))); *reinterpret_cast(vreg) = val; // This is needed for moving collectors since these can update the vreg references if they // happen to agree with references in the reference array. if (kMovingCollector && HasReferenceArray()) { References()[i].Clear(); References()[i + 1].Clear(); } } template void SetVRegReference(size_t i, mirror::Object* val) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { DCHECK_LT(i, NumberOfVRegs()); if (kVerifyFlags & kVerifyWrites) { VerifyObject(val); } if (kUseReadBarrier) { ReadBarrier::AssertToSpaceInvariant(val); } uint32_t* vreg = &vregs_[i]; reinterpret_cast*>(vreg)->Assign(val); if (HasReferenceArray()) { References()[i].Assign(val); } } ArtMethod* GetMethod() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { DCHECK(method_ != nullptr); return method_; } mirror::Object* GetThisObject() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); mirror::Object* GetThisObject(uint16_t num_ins) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); bool Contains(StackReference* shadow_frame_entry_obj) const { if (HasReferenceArray()) { return ((&References()[0] <= shadow_frame_entry_obj) && (shadow_frame_entry_obj <= (&References()[NumberOfVRegs() - 1]))); } else { uint32_t* shadow_frame_entry = reinterpret_cast(shadow_frame_entry_obj); return ((&vregs_[0] <= shadow_frame_entry) && (shadow_frame_entry <= (&vregs_[NumberOfVRegs() - 1]))); } } static size_t LinkOffset() { return OFFSETOF_MEMBER(ShadowFrame, link_); } static size_t MethodOffset() { return OFFSETOF_MEMBER(ShadowFrame, method_); } static size_t DexPCOffset() { return OFFSETOF_MEMBER(ShadowFrame, dex_pc_); } static size_t NumberOfVRegsOffset() { return OFFSETOF_MEMBER(ShadowFrame, number_of_vregs_); } static size_t VRegsOffset() { return OFFSETOF_MEMBER(ShadowFrame, vregs_); } private: ShadowFrame(uint32_t num_vregs, ShadowFrame* link, ArtMethod* method, uint32_t dex_pc, bool has_reference_array) : number_of_vregs_(num_vregs), link_(link), method_(method), dex_pc_(dex_pc) { if (has_reference_array) { memset(vregs_, 0, num_vregs * (sizeof(uint32_t) + sizeof(StackReference))); } else { memset(vregs_, 0, num_vregs * sizeof(uint32_t)); } } const StackReference* References() const { DCHECK(HasReferenceArray()); const uint32_t* vreg_end = &vregs_[NumberOfVRegs()]; return reinterpret_cast*>(vreg_end); } StackReference* References() { return const_cast*>( const_cast(this)->References()); } const uint32_t number_of_vregs_; // Link to previous shadow frame or null. ShadowFrame* link_; ArtMethod* method_; uint32_t dex_pc_; uint32_t vregs_[0]; DISALLOW_IMPLICIT_CONSTRUCTORS(ShadowFrame); }; class JavaFrameRootInfo : public RootInfo { public: JavaFrameRootInfo(uint32_t thread_id, const StackVisitor* stack_visitor, size_t vreg) : RootInfo(kRootJavaFrame, thread_id), stack_visitor_(stack_visitor), vreg_(vreg) { } virtual void Describe(std::ostream& os) const OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); private: const StackVisitor* const stack_visitor_; const size_t vreg_; }; // The managed stack is used to record fragments of managed code stacks. Managed code stacks // may either be shadow frames or lists of frames using fixed frame sizes. Transition records are // necessary for transitions between code using different frame layouts and transitions into native // code. class PACKED(4) ManagedStack { public: ManagedStack() : top_quick_frame_(nullptr), link_(nullptr), top_shadow_frame_(nullptr) {} void PushManagedStackFragment(ManagedStack* fragment) { // Copy this top fragment into given fragment. memcpy(fragment, this, sizeof(ManagedStack)); // Clear this fragment, which has become the top. memset(this, 0, sizeof(ManagedStack)); // Link our top fragment onto the given fragment. link_ = fragment; } void PopManagedStackFragment(const ManagedStack& fragment) { DCHECK(&fragment == link_); // Copy this given fragment back to the top. memcpy(this, &fragment, sizeof(ManagedStack)); } ManagedStack* GetLink() const { return link_; } ArtMethod** GetTopQuickFrame() const { return top_quick_frame_; } void SetTopQuickFrame(ArtMethod** top) { DCHECK(top_shadow_frame_ == nullptr); top_quick_frame_ = top; } static size_t TopQuickFrameOffset() { return OFFSETOF_MEMBER(ManagedStack, top_quick_frame_); } ShadowFrame* PushShadowFrame(ShadowFrame* new_top_frame) { DCHECK(top_quick_frame_ == nullptr); ShadowFrame* old_frame = top_shadow_frame_; top_shadow_frame_ = new_top_frame; new_top_frame->SetLink(old_frame); return old_frame; } ShadowFrame* PopShadowFrame() { DCHECK(top_quick_frame_ == nullptr); CHECK(top_shadow_frame_ != nullptr); ShadowFrame* frame = top_shadow_frame_; top_shadow_frame_ = frame->GetLink(); return frame; } ShadowFrame* GetTopShadowFrame() const { return top_shadow_frame_; } void SetTopShadowFrame(ShadowFrame* top) { DCHECK(top_quick_frame_ == nullptr); top_shadow_frame_ = top; } static size_t TopShadowFrameOffset() { return OFFSETOF_MEMBER(ManagedStack, top_shadow_frame_); } size_t NumJniShadowFrameReferences() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); bool ShadowFramesContain(StackReference* shadow_frame_entry) const; private: ArtMethod** top_quick_frame_; ManagedStack* link_; ShadowFrame* top_shadow_frame_; }; class StackVisitor { public: // This enum defines a flag to control whether inlined frames are included // when walking the stack. enum class StackWalkKind { kIncludeInlinedFrames, kSkipInlinedFrames, }; protected: StackVisitor(Thread* thread, Context* context, StackWalkKind walk_kind) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); public: virtual ~StackVisitor() {} // Return 'true' if we should continue to visit more frames, 'false' to stop. virtual bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) = 0; void WalkStack(bool include_transitions = false) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); ArtMethod* GetMethod() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { if (cur_shadow_frame_ != nullptr) { return cur_shadow_frame_->GetMethod(); } else if (cur_quick_frame_ != nullptr) { return *cur_quick_frame_; } else { return nullptr; } } bool IsShadowFrame() const { return cur_shadow_frame_ != nullptr; } uint32_t GetDexPc(bool abort_on_failure = true) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); mirror::Object* GetThisObject() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); size_t GetNativePcOffset() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); uintptr_t* CalleeSaveAddress(int num, size_t frame_size) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { // Callee saves are held at the top of the frame DCHECK(GetMethod() != nullptr); uint8_t* save_addr = reinterpret_cast(cur_quick_frame_) + frame_size - ((num + 1) * sizeof(void*)); #if defined(__i386__) || defined(__x86_64__) save_addr -= sizeof(void*); // account for return address #endif return reinterpret_cast(save_addr); } // Returns the height of the stack in the managed stack frames, including transitions. size_t GetFrameHeight() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return GetNumFrames() - cur_depth_ - 1; } // Returns a frame ID for JDWP use, starting from 1. size_t GetFrameId() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return GetFrameHeight() + 1; } size_t GetNumFrames() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { if (num_frames_ == 0) { num_frames_ = ComputeNumFrames(thread_, walk_kind_); } return num_frames_; } size_t GetFrameDepth() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return cur_depth_; } // Get the method and dex pc immediately after the one that's currently being visited. bool GetNextMethodAndDexPc(ArtMethod** next_method, uint32_t* next_dex_pc) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); bool IsReferenceVReg(ArtMethod* m, uint16_t vreg) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); bool GetVReg(ArtMethod* m, uint16_t vreg, VRegKind kind, uint32_t* val) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); bool GetVRegPair(ArtMethod* m, uint16_t vreg, VRegKind kind_lo, VRegKind kind_hi, uint64_t* val) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); bool SetVReg(ArtMethod* m, uint16_t vreg, uint32_t new_value, VRegKind kind) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); bool SetVRegPair(ArtMethod* m, uint16_t vreg, uint64_t new_value, VRegKind kind_lo, VRegKind kind_hi) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); uintptr_t* GetGPRAddress(uint32_t reg) const; // This is a fast-path for getting/setting values in a quick frame. uint32_t* GetVRegAddrFromQuickCode(ArtMethod** cur_quick_frame, const DexFile::CodeItem* code_item, uint32_t core_spills, uint32_t fp_spills, size_t frame_size, uint16_t vreg) const { int offset = GetVRegOffsetFromQuickCode( code_item, core_spills, fp_spills, frame_size, vreg, kRuntimeISA); DCHECK_EQ(cur_quick_frame, GetCurrentQuickFrame()); uint8_t* vreg_addr = reinterpret_cast(cur_quick_frame) + offset; return reinterpret_cast(vreg_addr); } uintptr_t GetReturnPc() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); void SetReturnPc(uintptr_t new_ret_pc) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); /* * Return sp-relative offset for a Dalvik virtual register, compiler * spill or Method* in bytes using Method*. * Note that (reg == -1) denotes an invalid Dalvik register. For the * positive values, the Dalvik registers come first, followed by the * Method*, followed by other special temporaries if any, followed by * regular compiler temporary. As of now we only have the Method* as * as a special compiler temporary. * A compiler temporary can be thought of as a virtual register that * does not exist in the dex but holds intermediate values to help * optimizations and code generation. A special compiler temporary is * one whose location in frame is well known while non-special ones * do not have a requirement on location in frame as long as code * generator itself knows how to access them. * * +-------------------------------+ * | IN[ins-1] | {Note: resides in caller's frame} * | . | * | IN[0] | * | caller's ArtMethod | ... ArtMethod* * +===============================+ {Note: start of callee's frame} * | core callee-save spill | {variable sized} * +-------------------------------+ * | fp callee-save spill | * +-------------------------------+ * | filler word | {For compatibility, if V[locals-1] used as wide * +-------------------------------+ * | V[locals-1] | * | V[locals-2] | * | . | * | . | ... (reg == 2) * | V[1] | ... (reg == 1) * | V[0] | ... (reg == 0) <---- "locals_start" * +-------------------------------+ * | stack alignment padding | {0 to (kStackAlignWords-1) of padding} * +-------------------------------+ * | Compiler temp region | ... (reg >= max_num_special_temps) * | . | * | . | * | V[max_num_special_temps + 1] | * | V[max_num_special_temps + 0] | * +-------------------------------+ * | OUT[outs-1] | * | OUT[outs-2] | * | . | * | OUT[0] | * | ArtMethod* | ... (reg == num_total_code_regs == special_temp_value) <<== sp, 16-byte aligned * +===============================+ */ static int GetVRegOffsetFromQuickCode(const DexFile::CodeItem* code_item, uint32_t core_spills, uint32_t fp_spills, size_t frame_size, int reg, InstructionSet isa); static int GetOutVROffset(uint16_t out_num, InstructionSet isa) { // According to stack model, the first out is above the Method referernce. return InstructionSetPointerSize(isa) + out_num * sizeof(uint32_t); } bool IsInInlinedFrame() const { return false; } uintptr_t GetCurrentQuickFramePc() const { return cur_quick_frame_pc_; } ArtMethod** GetCurrentQuickFrame() const { return cur_quick_frame_; } ShadowFrame* GetCurrentShadowFrame() const { return cur_shadow_frame_; } HandleScope* GetCurrentHandleScope(size_t pointer_size) const { ArtMethod** sp = GetCurrentQuickFrame(); // Skip ArtMethod*; handle scope comes next; return reinterpret_cast(reinterpret_cast(sp) + pointer_size); } std::string DescribeLocation() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); static size_t ComputeNumFrames(Thread* thread, StackWalkKind walk_kind) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); static void DescribeStack(Thread* thread) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); private: // Private constructor known in the case that num_frames_ has already been computed. StackVisitor(Thread* thread, Context* context, StackWalkKind walk_kind, size_t num_frames) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); bool IsAccessibleRegister(uint32_t reg, bool is_float) const { return is_float ? IsAccessibleFPR(reg) : IsAccessibleGPR(reg); } uintptr_t GetRegister(uint32_t reg, bool is_float) const { DCHECK(IsAccessibleRegister(reg, is_float)); return is_float ? GetFPR(reg) : GetGPR(reg); } void SetRegister(uint32_t reg, uintptr_t value, bool is_float) { DCHECK(IsAccessibleRegister(reg, is_float)); if (is_float) { SetFPR(reg, value); } else { SetGPR(reg, value); } } bool IsAccessibleGPR(uint32_t reg) const; uintptr_t GetGPR(uint32_t reg) const; void SetGPR(uint32_t reg, uintptr_t value); bool IsAccessibleFPR(uint32_t reg) const; uintptr_t GetFPR(uint32_t reg) const; void SetFPR(uint32_t reg, uintptr_t value); bool GetVRegFromQuickCode(ArtMethod* m, uint16_t vreg, VRegKind kind, uint32_t* val) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); bool GetVRegFromOptimizedCode(ArtMethod* m, uint16_t vreg, VRegKind kind, uint32_t* val) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); bool GetRegisterIfAccessible(uint32_t reg, VRegKind kind, uint32_t* val) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); bool GetVRegPairFromQuickCode(ArtMethod* m, uint16_t vreg, VRegKind kind_lo, VRegKind kind_hi, uint64_t* val) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); bool GetVRegPairFromOptimizedCode(ArtMethod* m, uint16_t vreg, VRegKind kind_lo, VRegKind kind_hi, uint64_t* val) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); bool GetRegisterPairIfAccessible(uint32_t reg_lo, uint32_t reg_hi, VRegKind kind_lo, uint64_t* val) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); bool SetVRegFromQuickCode(ArtMethod* m, uint16_t vreg, uint32_t new_value, VRegKind kind) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); bool SetRegisterIfAccessible(uint32_t reg, uint32_t new_value, VRegKind kind) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); bool SetVRegPairFromQuickCode(ArtMethod* m, uint16_t vreg, uint64_t new_value, VRegKind kind_lo, VRegKind kind_hi) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); bool SetRegisterPairIfAccessible(uint32_t reg_lo, uint32_t reg_hi, uint64_t new_value, bool is_float) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); void SanityCheckFrame() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); Thread* const thread_; const StackWalkKind walk_kind_; ShadowFrame* cur_shadow_frame_; ArtMethod** cur_quick_frame_; uintptr_t cur_quick_frame_pc_; // Lazily computed, number of frames in the stack. size_t num_frames_; // Depth of the frame we're currently at. size_t cur_depth_; protected: Context* const context_; }; } // namespace art #endif // ART_RUNTIME_STACK_H_