/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_STACK_H_ #define ART_RUNTIME_STACK_H_ #include "dex_file.h" #include "instrumentation.h" #include "base/macros.h" #include "arch/context.h" #include #include namespace art { namespace mirror { class AbstractMethod; class Object; } // namespace mirror class Context; class ShadowFrame; class StackIndirectReferenceTable; class ScopedObjectAccess; class Thread; // The kind of vreg being accessed in calls to Set/GetVReg. enum VRegKind { kReferenceVReg, kIntVReg, kFloatVReg, kLongLoVReg, kLongHiVReg, kDoubleLoVReg, kDoubleHiVReg, kConstant, kImpreciseConstant, kUndefined, }; // ShadowFrame has 3 possible layouts: // - portable - a unified array of VRegs and references. Precise references need GC maps. // - interpreter - separate VRegs and reference arrays. References are in the reference array. // - JNI - just VRegs, but where every VReg holds a reference. class ShadowFrame { public: // Compute size of ShadowFrame in bytes. static size_t ComputeSize(uint32_t num_vregs) { return sizeof(ShadowFrame) + (sizeof(uint32_t) * num_vregs) + (sizeof(mirror::Object*) * num_vregs); } // Create ShadowFrame in heap for deoptimization. static ShadowFrame* Create(uint32_t num_vregs, ShadowFrame* link, mirror::AbstractMethod* method, uint32_t dex_pc) { uint8_t* memory = new uint8_t[ComputeSize(num_vregs)]; ShadowFrame* sf = new (memory) ShadowFrame(num_vregs, link, method, dex_pc, true); return sf; } // Create ShadowFrame for interpreter using provided memory. static ShadowFrame* Create(uint32_t num_vregs, ShadowFrame* link, mirror::AbstractMethod* method, uint32_t dex_pc, void* memory) { ShadowFrame* sf = new (memory) ShadowFrame(num_vregs, link, method, dex_pc, true); return sf; } ~ShadowFrame() {} bool HasReferenceArray() const { #if defined(ART_USE_PORTABLE_COMPILER) return (number_of_vregs_ & kHasReferenceArray) != 0; #else return true; #endif } uint32_t NumberOfVRegs() const { #if defined(ART_USE_PORTABLE_COMPILER) return number_of_vregs_ & ~kHasReferenceArray; #else return number_of_vregs_; #endif } void SetNumberOfVRegs(uint32_t number_of_vregs) { #if defined(ART_USE_PORTABLE_COMPILER) number_of_vregs_ = number_of_vregs | (number_of_vregs_ & kHasReferenceArray); #else UNUSED(number_of_vregs); UNIMPLEMENTED(FATAL) << "Should only be called when portable is enabled"; #endif } uint32_t GetDexPC() const { return dex_pc_; } void SetDexPC(uint32_t dex_pc) { dex_pc_ = dex_pc; } ShadowFrame* GetLink() const { return link_; } void SetLink(ShadowFrame* frame) { DCHECK_NE(this, frame); link_ = frame; } int32_t GetVReg(size_t i) const { DCHECK_LT(i, NumberOfVRegs()); const uint32_t* vreg = &vregs_[i]; return *reinterpret_cast(vreg); } float GetVRegFloat(size_t i) const { DCHECK_LT(i, NumberOfVRegs()); // NOTE: Strict-aliasing? const uint32_t* vreg = &vregs_[i]; return *reinterpret_cast(vreg); } int64_t GetVRegLong(size_t i) const { DCHECK_LT(i, NumberOfVRegs()); const uint32_t* vreg = &vregs_[i]; return *reinterpret_cast(vreg); } double GetVRegDouble(size_t i) const { DCHECK_LT(i, NumberOfVRegs()); const uint32_t* vreg = &vregs_[i]; return *reinterpret_cast(vreg); } mirror::Object* GetVRegReference(size_t i) const { DCHECK_LT(i, NumberOfVRegs()); if (HasReferenceArray()) { return References()[i]; } else { const uint32_t* vreg = &vregs_[i]; return *reinterpret_cast(vreg); } } // Get view of vregs as range of consecutive arguments starting at i. uint32_t* GetVRegArgs(size_t i) { return &vregs_[i]; } void SetVReg(size_t i, int32_t val) { DCHECK_LT(i, NumberOfVRegs()); uint32_t* vreg = &vregs_[i]; *reinterpret_cast(vreg) = val; } void SetVRegFloat(size_t i, float val) { DCHECK_LT(i, NumberOfVRegs()); uint32_t* vreg = &vregs_[i]; *reinterpret_cast(vreg) = val; } void SetVRegLong(size_t i, int64_t val) { DCHECK_LT(i, NumberOfVRegs()); uint32_t* vreg = &vregs_[i]; *reinterpret_cast(vreg) = val; } void SetVRegDouble(size_t i, double val) { DCHECK_LT(i, NumberOfVRegs()); uint32_t* vreg = &vregs_[i]; *reinterpret_cast(vreg) = val; } void SetVRegReference(size_t i, mirror::Object* val) { DCHECK_LT(i, NumberOfVRegs()); uint32_t* vreg = &vregs_[i]; *reinterpret_cast(vreg) = val; if (HasReferenceArray()) { References()[i] = val; } } mirror::AbstractMethod* GetMethod() const { DCHECK_NE(method_, static_cast(NULL)); return method_; } mirror::Object* GetThisObject() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); mirror::Object* GetThisObject(uint16_t num_ins) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); ThrowLocation GetCurrentLocationForThrow() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); void SetMethod(mirror::AbstractMethod* method) { #if defined(ART_USE_PORTABLE_COMPILER) DCHECK_NE(method, static_cast(NULL)); method_ = method; #else UNUSED(method); UNIMPLEMENTED(FATAL) << "Should only be called when portable is enabled"; #endif } bool Contains(mirror::Object** shadow_frame_entry_obj) const { if (HasReferenceArray()) { return ((&References()[0] <= shadow_frame_entry_obj) && (shadow_frame_entry_obj <= (&References()[NumberOfVRegs() - 1]))); } else { uint32_t* shadow_frame_entry = reinterpret_cast(shadow_frame_entry_obj); return ((&vregs_[0] <= shadow_frame_entry) && (shadow_frame_entry <= (&vregs_[NumberOfVRegs() - 1]))); } } static size_t LinkOffset() { return OFFSETOF_MEMBER(ShadowFrame, link_); } static size_t MethodOffset() { return OFFSETOF_MEMBER(ShadowFrame, method_); } static size_t DexPCOffset() { return OFFSETOF_MEMBER(ShadowFrame, dex_pc_); } static size_t NumberOfVRegsOffset() { return OFFSETOF_MEMBER(ShadowFrame, number_of_vregs_); } static size_t VRegsOffset() { return OFFSETOF_MEMBER(ShadowFrame, vregs_); } private: ShadowFrame(uint32_t num_vregs, ShadowFrame* link, mirror::AbstractMethod* method, uint32_t dex_pc, bool has_reference_array) : number_of_vregs_(num_vregs), link_(link), method_(method), dex_pc_(dex_pc) { if (has_reference_array) { #if defined(ART_USE_PORTABLE_COMPILER) CHECK_LT(num_vregs, static_cast(kHasReferenceArray)); number_of_vregs_ |= kHasReferenceArray; #endif memset(vregs_, 0, num_vregs * (sizeof(uint32_t) + sizeof(mirror::Object*))); } else { memset(vregs_, 0, num_vregs * sizeof(uint32_t)); } } mirror::Object* const* References() const { DCHECK(HasReferenceArray()); const uint32_t* vreg_end = &vregs_[NumberOfVRegs()]; return reinterpret_cast(vreg_end); } mirror::Object** References() { return const_cast(const_cast(this)->References()); } #if defined(ART_USE_PORTABLE_COMPILER) enum ShadowFrameFlag { kHasReferenceArray = 1ul << 31 }; // TODO: make const in the portable case. uint32_t number_of_vregs_; #else const uint32_t number_of_vregs_; #endif // Link to previous shadow frame or NULL. ShadowFrame* link_; #if defined(ART_USE_PORTABLE_COMPILER) // TODO: make const in the portable case. mirror::AbstractMethod* method_; #else mirror::AbstractMethod* const method_; #endif uint32_t dex_pc_; uint32_t vregs_[0]; DISALLOW_IMPLICIT_CONSTRUCTORS(ShadowFrame); }; // The managed stack is used to record fragments of managed code stacks. Managed code stacks // may either be shadow frames or lists of frames using fixed frame sizes. Transition records are // necessary for transitions between code using different frame layouts and transitions into native // code. class PACKED(4) ManagedStack { public: ManagedStack() : link_(NULL), top_shadow_frame_(NULL), top_quick_frame_(NULL), top_quick_frame_pc_(0) {} void PushManagedStackFragment(ManagedStack* fragment) { // Copy this top fragment into given fragment. memcpy(fragment, this, sizeof(ManagedStack)); // Clear this fragment, which has become the top. memset(this, 0, sizeof(ManagedStack)); // Link our top fragment onto the given fragment. link_ = fragment; } void PopManagedStackFragment(const ManagedStack& fragment) { DCHECK(&fragment == link_); // Copy this given fragment back to the top. memcpy(this, &fragment, sizeof(ManagedStack)); } ManagedStack* GetLink() const { return link_; } mirror::AbstractMethod** GetTopQuickFrame() const { return top_quick_frame_; } void SetTopQuickFrame(mirror::AbstractMethod** top) { DCHECK(top_shadow_frame_ == NULL); top_quick_frame_ = top; } uintptr_t GetTopQuickFramePc() const { return top_quick_frame_pc_; } void SetTopQuickFramePc(uintptr_t pc) { DCHECK(top_shadow_frame_ == NULL); top_quick_frame_pc_ = pc; } static size_t TopQuickFrameOffset() { return OFFSETOF_MEMBER(ManagedStack, top_quick_frame_); } static size_t TopQuickFramePcOffset() { return OFFSETOF_MEMBER(ManagedStack, top_quick_frame_pc_); } ShadowFrame* PushShadowFrame(ShadowFrame* new_top_frame) { DCHECK(top_quick_frame_ == NULL); ShadowFrame* old_frame = top_shadow_frame_; top_shadow_frame_ = new_top_frame; new_top_frame->SetLink(old_frame); return old_frame; } ShadowFrame* PopShadowFrame() { DCHECK(top_quick_frame_ == NULL); CHECK(top_shadow_frame_ != NULL); ShadowFrame* frame = top_shadow_frame_; top_shadow_frame_ = frame->GetLink(); return frame; } ShadowFrame* GetTopShadowFrame() const { return top_shadow_frame_; } void SetTopShadowFrame(ShadowFrame* top) { DCHECK(top_quick_frame_ == NULL); top_shadow_frame_ = top; } static size_t TopShadowFrameOffset() { return OFFSETOF_MEMBER(ManagedStack, top_shadow_frame_); } size_t NumJniShadowFrameReferences() const; bool ShadowFramesContain(mirror::Object** shadow_frame_entry) const; private: ManagedStack* link_; ShadowFrame* top_shadow_frame_; mirror::AbstractMethod** top_quick_frame_; uintptr_t top_quick_frame_pc_; }; class StackVisitor { protected: StackVisitor(Thread* thread, Context* context) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); public: virtual ~StackVisitor() {} // Return 'true' if we should continue to visit more frames, 'false' to stop. virtual bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) = 0; void WalkStack(bool include_transitions = false) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); mirror::AbstractMethod* GetMethod() const { if (cur_shadow_frame_ != NULL) { return cur_shadow_frame_->GetMethod(); } else if (cur_quick_frame_ != NULL) { return *cur_quick_frame_; } else { return NULL; } } bool IsShadowFrame() const { return cur_shadow_frame_ != NULL; } uint32_t GetDexPc() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); mirror::Object* GetThisObject() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); size_t GetNativePcOffset() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); uintptr_t* CalleeSaveAddress(int num, size_t frame_size) const { // Callee saves are held at the top of the frame DCHECK(GetMethod() != NULL); byte* save_addr = reinterpret_cast(cur_quick_frame_) + frame_size - ((num + 1) * kPointerSize); #if defined(__i386__) save_addr -= kPointerSize; // account for return address #endif return reinterpret_cast(save_addr); } // Returns the height of the stack in the managed stack frames, including transitions. size_t GetFrameHeight() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return GetNumFrames() - cur_depth_ - 1; } // Returns a frame ID for JDWP use, starting from 1. size_t GetFrameId() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return GetFrameHeight() + 1; } size_t GetNumFrames() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { if (num_frames_ == 0) { num_frames_ = ComputeNumFrames(thread_); } return num_frames_; } uint32_t GetVReg(mirror::AbstractMethod* m, uint16_t vreg, VRegKind kind) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); void SetVReg(mirror::AbstractMethod* m, uint16_t vreg, uint32_t new_value, VRegKind kind) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); uintptr_t GetGPR(uint32_t reg) const; void SetGPR(uint32_t reg, uintptr_t value); uint32_t GetVReg(mirror::AbstractMethod** cur_quick_frame, const DexFile::CodeItem* code_item, uint32_t core_spills, uint32_t fp_spills, size_t frame_size, uint16_t vreg) const { int offset = GetVRegOffset(code_item, core_spills, fp_spills, frame_size, vreg); DCHECK_EQ(cur_quick_frame, GetCurrentQuickFrame()); byte* vreg_addr = reinterpret_cast(cur_quick_frame) + offset; return *reinterpret_cast(vreg_addr); } uintptr_t GetReturnPc() const; void SetReturnPc(uintptr_t new_ret_pc); /* * Return sp-relative offset for a Dalvik virtual register, compiler * spill or Method* in bytes using Method*. * Note that (reg >= 0) refers to a Dalvik register, (reg == -2) * denotes Method* and (reg <= -3) denotes a compiler temp. * * +------------------------+ * | IN[ins-1] | {Note: resides in caller's frame} * | . | * | IN[0] | * | caller's Method* | * +========================+ {Note: start of callee's frame} * | core callee-save spill | {variable sized} * +------------------------+ * | fp callee-save spill | * +------------------------+ * | filler word | {For compatibility, if V[locals-1] used as wide * +------------------------+ * | V[locals-1] | * | V[locals-2] | * | . | * | . | ... (reg == 2) * | V[1] | ... (reg == 1) * | V[0] | ... (reg == 0) <---- "locals_start" * +------------------------+ * | Compiler temps | ... (reg == -2) * | | ... (reg == -3) * | | ... (reg == -4) * +------------------------+ * | stack alignment padding| {0 to (kStackAlignWords-1) of padding} * +------------------------+ * | OUT[outs-1] | * | OUT[outs-2] | * | . | * | OUT[0] | * | curMethod* | ... (reg == -1) <<== sp, 16-byte aligned * +========================+ */ static int GetVRegOffset(const DexFile::CodeItem* code_item, uint32_t core_spills, uint32_t fp_spills, size_t frame_size, int reg) { DCHECK_EQ(frame_size & (kStackAlignment - 1), 0U); int num_spills = __builtin_popcount(core_spills) + __builtin_popcount(fp_spills) + 1; // Filler. int num_ins = code_item->ins_size_; int num_regs = code_item->registers_size_ - num_ins; int locals_start = frame_size - ((num_spills + num_regs) * sizeof(uint32_t)); if (reg == -2) { return 0; // Method* } else if (reg <= -3) { return locals_start - ((reg + 1) * sizeof(uint32_t)); // Compiler temp. } else if (reg < num_regs) { return locals_start + (reg * sizeof(uint32_t)); // Dalvik local reg. } else { return frame_size + ((reg - num_regs) * sizeof(uint32_t)) + sizeof(uint32_t); // Dalvik in. } } uintptr_t GetCurrentQuickFramePc() const { return cur_quick_frame_pc_; } mirror::AbstractMethod** GetCurrentQuickFrame() const { return cur_quick_frame_; } ShadowFrame* GetCurrentShadowFrame() const { return cur_shadow_frame_; } StackIndirectReferenceTable* GetCurrentSirt() const { mirror::AbstractMethod** sp = GetCurrentQuickFrame(); ++sp; // Skip Method*; SIRT comes next; return reinterpret_cast(sp); } std::string DescribeLocation() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); static size_t ComputeNumFrames(Thread* thread) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); static void DescribeStack(Thread* thread) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); private: instrumentation::InstrumentationStackFrame GetInstrumentationStackFrame(uint32_t depth) const; void SanityCheckFrame() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); Thread* const thread_; ShadowFrame* cur_shadow_frame_; mirror::AbstractMethod** cur_quick_frame_; uintptr_t cur_quick_frame_pc_; // Lazily computed, number of frames in the stack. size_t num_frames_; // Depth of the frame we're currently at. size_t cur_depth_; protected: Context* const context_; }; class VmapTable { public: explicit VmapTable(const uint16_t* table) : table_(table) { } uint16_t operator[](size_t i) const { return table_[i + 1]; } size_t size() const { return table_[0]; } // Is the dex register 'vreg' in the context or on the stack? Should not be called when the // 'kind' is unknown or constant. bool IsInContext(size_t vreg, uint32_t& vmap_offset, VRegKind kind) const { DCHECK(kind == kReferenceVReg || kind == kIntVReg || kind == kFloatVReg || kind == kLongLoVReg || kind == kLongHiVReg || kind == kDoubleLoVReg || kind == kDoubleHiVReg || kind == kImpreciseConstant); vmap_offset = 0xEBAD0FF5; // TODO: take advantage of the registers being ordered // TODO: we treat kImpreciseConstant as an integer below, need to ensure that such values // are never promoted to floating point registers. bool is_float = (kind == kFloatVReg) || (kind == kDoubleLoVReg) || (kind == kDoubleHiVReg); bool in_floats = false; for (size_t i = 0; i < size(); ++i) { // Stop if we find what we are are looking for. if ((table_[i + 1] == vreg) && (in_floats == is_float)) { vmap_offset = i; return true; } // 0xffff is the marker for LR (return PC on x86), following it are spilled float registers. if (table_[i + 1] == 0xffff) { in_floats = true; } } return false; } // Compute the register number that corresponds to the entry in the vmap (vmap_offset, computed // by IsInContext above). If the kind is floating point then the result will be a floating point // register number, otherwise it will be an integer register number. uint32_t ComputeRegister(uint32_t spill_mask, uint32_t vmap_offset, VRegKind kind) const { // Compute the register we need to load from the context. DCHECK(kind == kReferenceVReg || kind == kIntVReg || kind == kFloatVReg || kind == kLongLoVReg || kind == kLongHiVReg || kind == kDoubleLoVReg || kind == kDoubleHiVReg || kind == kImpreciseConstant); // TODO: we treat kImpreciseConstant as an integer below, need to ensure that such values // are never promoted to floating point registers. bool is_float = (kind == kFloatVReg) || (kind == kDoubleLoVReg) || (kind == kDoubleHiVReg); uint32_t matches = 0; if (is_float) { while (table_[matches] != 0xffff) { matches++; } } CHECK_LT(vmap_offset - matches, static_cast(__builtin_popcount(spill_mask))); uint32_t spill_shifts = 0; while (matches != (vmap_offset + 1)) { DCHECK_NE(spill_mask, 0u); matches += spill_mask & 1; // Add 1 if the low bit is set spill_mask >>= 1; spill_shifts++; } spill_shifts--; // wind back one as we want the last match return spill_shifts; } private: const uint16_t* table_; }; } // namespace art #endif // ART_RUNTIME_STACK_H_