/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_STACK_H_ #define ART_RUNTIME_STACK_H_ #include "dex_file.h" #include "instrumentation.h" #include "arch/context.h" #include "base/casts.h" #include "base/macros.h" #include "instruction_set.h" #include "mirror/object.h" #include "mirror/object_reference.h" #include "utils.h" #include "verify_object.h" #include #include namespace art { namespace mirror { class ArtMethod; class Object; } // namespace mirror class Context; class ShadowFrame; class HandleScope; class ScopedObjectAccess; class Thread; // The kind of vreg being accessed in calls to Set/GetVReg. enum VRegKind { kReferenceVReg, kIntVReg, kFloatVReg, kLongLoVReg, kLongHiVReg, kDoubleLoVReg, kDoubleHiVReg, kConstant, kImpreciseConstant, kUndefined, }; /** * @brief Represents the virtual register numbers that denote special meaning. * @details This is used to make some virtual register numbers to have specific * semantic meaning. This is done so that the compiler can treat all virtual * registers the same way and only special case when needed. For example, * calculating SSA does not care whether a virtual register is a normal one or * a compiler temporary, so it can deal with them in a consistent manner. But, * for example if backend cares about temporaries because it has custom spill * location, then it can special case them only then. */ enum VRegBaseRegNum : int { /** * @brief Virtual registers originating from dex have number >= 0. */ kVRegBaseReg = 0, /** * @brief Invalid virtual register number. */ kVRegInvalid = -1, /** * @brief Used to denote the base register for compiler temporaries. * @details Compiler temporaries are virtual registers not originating * from dex but that are created by compiler. All virtual register numbers * that are <= kVRegTempBaseReg are categorized as compiler temporaries. */ kVRegTempBaseReg = -2, /** * @brief Base register of temporary that holds the method pointer. * @details This is a special compiler temporary because it has a specific * location on stack. */ kVRegMethodPtrBaseReg = kVRegTempBaseReg, /** * @brief Base register of non-special compiler temporary. * @details A non-special compiler temporary is one whose spill location * is flexible. */ kVRegNonSpecialTempBaseReg = -3, }; // A reference from the shadow stack to a MirrorType object within the Java heap. template class MANAGED StackReference : public mirror::ObjectReference { public: StackReference() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) : mirror::ObjectReference(nullptr) {} static StackReference FromMirrorPtr(MirrorType* p) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return StackReference(p); } private: StackReference(MirrorType* p) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) : mirror::ObjectReference(p) {} }; // ShadowFrame has 3 possible layouts: // - portable - a unified array of VRegs and references. Precise references need GC maps. // - interpreter - separate VRegs and reference arrays. References are in the reference array. // - JNI - just VRegs, but where every VReg holds a reference. class ShadowFrame { public: // Compute size of ShadowFrame in bytes assuming it has a reference array. static size_t ComputeSize(uint32_t num_vregs) { return sizeof(ShadowFrame) + (sizeof(uint32_t) * num_vregs) + (sizeof(StackReference) * num_vregs); } // Create ShadowFrame in heap for deoptimization. static ShadowFrame* Create(uint32_t num_vregs, ShadowFrame* link, mirror::ArtMethod* method, uint32_t dex_pc) { uint8_t* memory = new uint8_t[ComputeSize(num_vregs)]; return Create(num_vregs, link, method, dex_pc, memory); } // Create ShadowFrame for interpreter using provided memory. static ShadowFrame* Create(uint32_t num_vregs, ShadowFrame* link, mirror::ArtMethod* method, uint32_t dex_pc, void* memory) { ShadowFrame* sf = new (memory) ShadowFrame(num_vregs, link, method, dex_pc, true); return sf; } ~ShadowFrame() {} bool HasReferenceArray() const { #if defined(ART_USE_PORTABLE_COMPILER) return (number_of_vregs_ & kHasReferenceArray) != 0; #else return true; #endif } uint32_t NumberOfVRegs() const { #if defined(ART_USE_PORTABLE_COMPILER) return number_of_vregs_ & ~kHasReferenceArray; #else return number_of_vregs_; #endif } void SetNumberOfVRegs(uint32_t number_of_vregs) { #if defined(ART_USE_PORTABLE_COMPILER) number_of_vregs_ = number_of_vregs | (number_of_vregs_ & kHasReferenceArray); #else UNUSED(number_of_vregs); UNIMPLEMENTED(FATAL) << "Should only be called when portable is enabled"; #endif } uint32_t GetDexPC() const { return dex_pc_; } void SetDexPC(uint32_t dex_pc) { dex_pc_ = dex_pc; } ShadowFrame* GetLink() const { return link_; } void SetLink(ShadowFrame* frame) { DCHECK_NE(this, frame); link_ = frame; } int32_t GetVReg(size_t i) const { DCHECK_LT(i, NumberOfVRegs()); const uint32_t* vreg = &vregs_[i]; return *reinterpret_cast(vreg); } float GetVRegFloat(size_t i) const { DCHECK_LT(i, NumberOfVRegs()); // NOTE: Strict-aliasing? const uint32_t* vreg = &vregs_[i]; return *reinterpret_cast(vreg); } int64_t GetVRegLong(size_t i) const { DCHECK_LT(i, NumberOfVRegs()); const uint32_t* vreg = &vregs_[i]; // Alignment attribute required for GCC 4.8 typedef const int64_t unaligned_int64 __attribute__ ((aligned (4))); return *reinterpret_cast(vreg); } double GetVRegDouble(size_t i) const { DCHECK_LT(i, NumberOfVRegs()); const uint32_t* vreg = &vregs_[i]; // Alignment attribute required for GCC 4.8 typedef const double unaligned_double __attribute__ ((aligned (4))); return *reinterpret_cast(vreg); } template mirror::Object* GetVRegReference(size_t i) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { DCHECK_LT(i, NumberOfVRegs()); mirror::Object* ref; if (HasReferenceArray()) { ref = References()[i].AsMirrorPtr(); } else { const uint32_t* vreg_ptr = &vregs_[i]; ref = reinterpret_cast*>(vreg_ptr)->AsMirrorPtr(); } if (kVerifyFlags & kVerifyReads) { VerifyObject(ref); } return ref; } // Get view of vregs as range of consecutive arguments starting at i. uint32_t* GetVRegArgs(size_t i) { return &vregs_[i]; } void SetVReg(size_t i, int32_t val) { DCHECK_LT(i, NumberOfVRegs()); uint32_t* vreg = &vregs_[i]; *reinterpret_cast(vreg) = val; // This is needed for moving collectors since these can update the vreg references if they // happen to agree with references in the reference array. if (kMovingCollector && HasReferenceArray()) { References()[i].Clear(); } } void SetVRegFloat(size_t i, float val) { DCHECK_LT(i, NumberOfVRegs()); uint32_t* vreg = &vregs_[i]; *reinterpret_cast(vreg) = val; // This is needed for moving collectors since these can update the vreg references if they // happen to agree with references in the reference array. if (kMovingCollector && HasReferenceArray()) { References()[i].Clear(); } } void SetVRegLong(size_t i, int64_t val) { DCHECK_LT(i, NumberOfVRegs()); uint32_t* vreg = &vregs_[i]; // Alignment attribute required for GCC 4.8 typedef int64_t unaligned_int64 __attribute__ ((aligned (4))); *reinterpret_cast(vreg) = val; // This is needed for moving collectors since these can update the vreg references if they // happen to agree with references in the reference array. if (kMovingCollector && HasReferenceArray()) { References()[i].Clear(); References()[i + 1].Clear(); } } void SetVRegDouble(size_t i, double val) { DCHECK_LT(i, NumberOfVRegs()); uint32_t* vreg = &vregs_[i]; // Alignment attribute required for GCC 4.8 typedef double unaligned_double __attribute__ ((aligned (4))); *reinterpret_cast(vreg) = val; // This is needed for moving collectors since these can update the vreg references if they // happen to agree with references in the reference array. if (kMovingCollector && HasReferenceArray()) { References()[i].Clear(); References()[i + 1].Clear(); } } template void SetVRegReference(size_t i, mirror::Object* val) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { DCHECK_LT(i, NumberOfVRegs()); if (kVerifyFlags & kVerifyWrites) { VerifyObject(val); } uint32_t* vreg = &vregs_[i]; reinterpret_cast*>(vreg)->Assign(val); if (HasReferenceArray()) { References()[i].Assign(val); } } mirror::ArtMethod* GetMethod() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { DCHECK(method_ != nullptr); return method_; } mirror::ArtMethod** GetMethodAddress() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { DCHECK(method_ != nullptr); return &method_; } mirror::Object* GetThisObject() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); mirror::Object* GetThisObject(uint16_t num_ins) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); ThrowLocation GetCurrentLocationForThrow() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); void SetMethod(mirror::ArtMethod* method) { #if defined(ART_USE_PORTABLE_COMPILER) DCHECK(method != nullptr); method_ = method; #else UNUSED(method); UNIMPLEMENTED(FATAL) << "Should only be called when portable is enabled"; #endif } bool Contains(StackReference* shadow_frame_entry_obj) const { if (HasReferenceArray()) { return ((&References()[0] <= shadow_frame_entry_obj) && (shadow_frame_entry_obj <= (&References()[NumberOfVRegs() - 1]))); } else { uint32_t* shadow_frame_entry = reinterpret_cast(shadow_frame_entry_obj); return ((&vregs_[0] <= shadow_frame_entry) && (shadow_frame_entry <= (&vregs_[NumberOfVRegs() - 1]))); } } static size_t LinkOffset() { return OFFSETOF_MEMBER(ShadowFrame, link_); } static size_t MethodOffset() { return OFFSETOF_MEMBER(ShadowFrame, method_); } static size_t DexPCOffset() { return OFFSETOF_MEMBER(ShadowFrame, dex_pc_); } static size_t NumberOfVRegsOffset() { return OFFSETOF_MEMBER(ShadowFrame, number_of_vregs_); } static size_t VRegsOffset() { return OFFSETOF_MEMBER(ShadowFrame, vregs_); } private: ShadowFrame(uint32_t num_vregs, ShadowFrame* link, mirror::ArtMethod* method, uint32_t dex_pc, bool has_reference_array) : number_of_vregs_(num_vregs), link_(link), method_(method), dex_pc_(dex_pc) { if (has_reference_array) { #if defined(ART_USE_PORTABLE_COMPILER) CHECK_LT(num_vregs, static_cast(kHasReferenceArray)); number_of_vregs_ |= kHasReferenceArray; #endif memset(vregs_, 0, num_vregs * (sizeof(uint32_t) + sizeof(StackReference))); } else { memset(vregs_, 0, num_vregs * sizeof(uint32_t)); } } const StackReference* References() const { DCHECK(HasReferenceArray()); const uint32_t* vreg_end = &vregs_[NumberOfVRegs()]; return reinterpret_cast*>(vreg_end); } StackReference* References() { return const_cast*>(const_cast(this)->References()); } #if defined(ART_USE_PORTABLE_COMPILER) enum ShadowFrameFlag { kHasReferenceArray = 1ul << 31 }; // TODO: make const in the portable case. uint32_t number_of_vregs_; #else const uint32_t number_of_vregs_; #endif // Link to previous shadow frame or NULL. ShadowFrame* link_; mirror::ArtMethod* method_; uint32_t dex_pc_; uint32_t vregs_[0]; DISALLOW_IMPLICIT_CONSTRUCTORS(ShadowFrame); }; // The managed stack is used to record fragments of managed code stacks. Managed code stacks // may either be shadow frames or lists of frames using fixed frame sizes. Transition records are // necessary for transitions between code using different frame layouts and transitions into native // code. class PACKED(4) ManagedStack { public: ManagedStack() : link_(NULL), top_shadow_frame_(NULL), top_quick_frame_(NULL), top_quick_frame_pc_(0) {} void PushManagedStackFragment(ManagedStack* fragment) { // Copy this top fragment into given fragment. memcpy(fragment, this, sizeof(ManagedStack)); // Clear this fragment, which has become the top. memset(this, 0, sizeof(ManagedStack)); // Link our top fragment onto the given fragment. link_ = fragment; } void PopManagedStackFragment(const ManagedStack& fragment) { DCHECK(&fragment == link_); // Copy this given fragment back to the top. memcpy(this, &fragment, sizeof(ManagedStack)); } ManagedStack* GetLink() const { return link_; } StackReference* GetTopQuickFrame() const { return top_quick_frame_; } void SetTopQuickFrame(StackReference* top) { DCHECK(top_shadow_frame_ == NULL); top_quick_frame_ = top; } uintptr_t GetTopQuickFramePc() const { return top_quick_frame_pc_; } void SetTopQuickFramePc(uintptr_t pc) { DCHECK(top_shadow_frame_ == NULL); top_quick_frame_pc_ = pc; } static size_t TopQuickFrameOffset() { return OFFSETOF_MEMBER(ManagedStack, top_quick_frame_); } static size_t TopQuickFramePcOffset() { return OFFSETOF_MEMBER(ManagedStack, top_quick_frame_pc_); } ShadowFrame* PushShadowFrame(ShadowFrame* new_top_frame) { DCHECK(top_quick_frame_ == NULL); ShadowFrame* old_frame = top_shadow_frame_; top_shadow_frame_ = new_top_frame; new_top_frame->SetLink(old_frame); return old_frame; } ShadowFrame* PopShadowFrame() { DCHECK(top_quick_frame_ == NULL); CHECK(top_shadow_frame_ != NULL); ShadowFrame* frame = top_shadow_frame_; top_shadow_frame_ = frame->GetLink(); return frame; } ShadowFrame* GetTopShadowFrame() const { return top_shadow_frame_; } void SetTopShadowFrame(ShadowFrame* top) { DCHECK(top_quick_frame_ == NULL); top_shadow_frame_ = top; } static size_t TopShadowFrameOffset() { return OFFSETOF_MEMBER(ManagedStack, top_shadow_frame_); } size_t NumJniShadowFrameReferences() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); bool ShadowFramesContain(StackReference* shadow_frame_entry) const; private: ManagedStack* link_; ShadowFrame* top_shadow_frame_; StackReference* top_quick_frame_; uintptr_t top_quick_frame_pc_; }; class StackVisitor { protected: StackVisitor(Thread* thread, Context* context) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); public: virtual ~StackVisitor() {} // Return 'true' if we should continue to visit more frames, 'false' to stop. virtual bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) = 0; void WalkStack(bool include_transitions = false) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); mirror::ArtMethod* GetMethod() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { if (cur_shadow_frame_ != nullptr) { return cur_shadow_frame_->GetMethod(); } else if (cur_quick_frame_ != nullptr) { return cur_quick_frame_->AsMirrorPtr(); } else { return nullptr; } } bool IsShadowFrame() const { return cur_shadow_frame_ != nullptr; } uint32_t GetDexPc(bool abort_on_failure = true) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); mirror::Object* GetThisObject() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); size_t GetNativePcOffset() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); uintptr_t* CalleeSaveAddress(int num, size_t frame_size) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { // Callee saves are held at the top of the frame DCHECK(GetMethod() != nullptr); byte* save_addr = reinterpret_cast(cur_quick_frame_) + frame_size - ((num + 1) * kPointerSize); #if defined(__i386__) || defined(__x86_64__) save_addr -= kPointerSize; // account for return address #endif return reinterpret_cast(save_addr); } // Returns the height of the stack in the managed stack frames, including transitions. size_t GetFrameHeight() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return GetNumFrames() - cur_depth_ - 1; } // Returns a frame ID for JDWP use, starting from 1. size_t GetFrameId() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return GetFrameHeight() + 1; } size_t GetNumFrames() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { if (num_frames_ == 0) { num_frames_ = ComputeNumFrames(thread_); } return num_frames_; } // Get the method and dex pc immediately after the one that's currently being visited. bool GetNextMethodAndDexPc(mirror::ArtMethod** next_method, uint32_t* next_dex_pc) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); uint32_t GetVReg(mirror::ArtMethod* m, uint16_t vreg, VRegKind kind) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); void SetVReg(mirror::ArtMethod* m, uint16_t vreg, uint32_t new_value, VRegKind kind) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); uintptr_t* GetGPRAddress(uint32_t reg) const; uintptr_t GetGPR(uint32_t reg) const; void SetGPR(uint32_t reg, uintptr_t value); // This is a fast-path for getting/setting values in a quick frame. uint32_t* GetVRegAddr(StackReference* cur_quick_frame, const DexFile::CodeItem* code_item, uint32_t core_spills, uint32_t fp_spills, size_t frame_size, uint16_t vreg) const { int offset = GetVRegOffset(code_item, core_spills, fp_spills, frame_size, vreg, kRuntimeISA); DCHECK_EQ(cur_quick_frame, GetCurrentQuickFrame()); byte* vreg_addr = reinterpret_cast(cur_quick_frame) + offset; return reinterpret_cast(vreg_addr); } uintptr_t GetReturnPc() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); void SetReturnPc(uintptr_t new_ret_pc) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); /* * Return sp-relative offset for a Dalvik virtual register, compiler * spill or Method* in bytes using Method*. * Note that (reg >= 0) refers to a Dalvik register, (reg == -1) * denotes an invalid Dalvik register, (reg == -2) denotes Method* * and (reg <= -3) denotes a compiler temporary. A compiler temporary * can be thought of as a virtual register that does not exist in the * dex but holds intermediate values to help optimizations and code * generation. A special compiler temporary is one whose location * in frame is well known while non-special ones do not have a requirement * on location in frame as long as code generator itself knows how * to access them. * * +---------------------------+ * | IN[ins-1] | {Note: resides in caller's frame} * | . | * | IN[0] | * | caller's ArtMethod | ... StackReference * +===========================+ {Note: start of callee's frame} * | core callee-save spill | {variable sized} * +---------------------------+ * | fp callee-save spill | * +---------------------------+ * | filler word | {For compatibility, if V[locals-1] used as wide * +---------------------------+ * | V[locals-1] | * | V[locals-2] | * | . | * | . | ... (reg == 2) * | V[1] | ... (reg == 1) * | V[0] | ... (reg == 0) <---- "locals_start" * +---------------------------+ * | Compiler temp region | ... (reg <= -3) * | | * | | * +---------------------------+ * | stack alignment padding | {0 to (kStackAlignWords-1) of padding} * +---------------------------+ * | OUT[outs-1] | * | OUT[outs-2] | * | . | * | OUT[0] | * | StackReference | ... (reg == -2) <<== sp, 16-byte aligned * +===========================+ */ static int GetVRegOffset(const DexFile::CodeItem* code_item, uint32_t core_spills, uint32_t fp_spills, size_t frame_size, int reg, InstructionSet isa) { DCHECK_EQ(frame_size & (kStackAlignment - 1), 0U); DCHECK_NE(reg, static_cast(kVRegInvalid)); int spill_size = POPCOUNT(core_spills) * GetBytesPerGprSpillLocation(isa) + POPCOUNT(fp_spills) * GetBytesPerFprSpillLocation(isa) + sizeof(uint32_t); // Filler. int num_ins = code_item->ins_size_; int num_regs = code_item->registers_size_ - num_ins; int locals_start = frame_size - spill_size - num_regs * sizeof(uint32_t); if (reg == static_cast(kVRegMethodPtrBaseReg)) { // The current method pointer corresponds to special location on stack. return 0; } else if (reg <= static_cast(kVRegNonSpecialTempBaseReg)) { /* * Special temporaries may have custom locations and the logic above deals with that. * However, non-special temporaries are placed relative to the locals. Since the * virtual register numbers for temporaries "grow" in negative direction, reg number * will always be <= to the temp base reg. Thus, the logic ensures that the first * temp is at offset -4 bytes from locals, the second is at -8 bytes from locals, * and so on. */ int relative_offset = (reg + std::abs(static_cast(kVRegNonSpecialTempBaseReg)) - 1) * sizeof(uint32_t); return locals_start + relative_offset; } else if (reg < num_regs) { return locals_start + (reg * sizeof(uint32_t)); } else { // Handle ins. return frame_size + ((reg - num_regs) * sizeof(uint32_t)) + sizeof(StackReference); } } static int GetOutVROffset(uint16_t out_num, InstructionSet isa) { // According to stack model, the first out is above the Method referernce. return sizeof(StackReference) + (out_num * sizeof(uint32_t)); } uintptr_t GetCurrentQuickFramePc() const { return cur_quick_frame_pc_; } StackReference* GetCurrentQuickFrame() const { return cur_quick_frame_; } ShadowFrame* GetCurrentShadowFrame() const { return cur_shadow_frame_; } HandleScope* GetCurrentHandleScope() const { StackReference* sp = GetCurrentQuickFrame(); ++sp; // Skip Method*; handle scope comes next; return reinterpret_cast(sp); } std::string DescribeLocation() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); static size_t ComputeNumFrames(Thread* thread) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); static void DescribeStack(Thread* thread) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); private: // Private constructor known in the case that num_frames_ has already been computed. StackVisitor(Thread* thread, Context* context, size_t num_frames) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); instrumentation::InstrumentationStackFrame& GetInstrumentationStackFrame(uint32_t depth) const; void SanityCheckFrame() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); Thread* const thread_; ShadowFrame* cur_shadow_frame_; StackReference* cur_quick_frame_; uintptr_t cur_quick_frame_pc_; // Lazily computed, number of frames in the stack. size_t num_frames_; // Depth of the frame we're currently at. size_t cur_depth_; protected: Context* const context_; }; } // namespace art #endif // ART_RUNTIME_STACK_H_